E·XFL

NXP USA Inc. - PCF51AC256BCPUE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51ac256bcpue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCF	51AC256 Family Configurations
	1.1	Device Comparison
	1.2	Block Diagram
	1.3	Features
		1.3.1 Feature List
	1.4	Part Numbers
	1.5	Pinouts and Packaging
2	Elect	rical Characteristics
	2.1	Parameter Classification
	2.2	Absolute Maximum Ratings
	2.3	Thermal Characteristics
	2.4	Electrostatic Discharge (ESD) Protection Characteristics
		19
	2.5	DC Characteristics
	2.6	Supply Current Characteristics
	2.7	Analog Comparator (ACMP) Electricals
	2.8	ADC Characteristics
	2.9	External Oscillator (XOSC) Characteristics
	2.10	MCG Specifications
	2.11	AC Characteristics
		2.11.1 Control Timing
		2.11.2 Timer (TPM/FTM) Module Timing
		2.11.3 MSCAN
	2.12	SPI Characteristics
	2.13	Flash Specifications
	2.14	EMC Performance
		2.14.1 Radiated Emissions
3	Mech	anical Outline Drawings
4	Revis	sion History

List of Figures

NP

Figure 1.MCF51AC256 Series Block Diagram 5
Figure 2. MCF51AC256 Series ColdFire Microcontroller
80-Pin LQFP
Figure 3. MCF51AC256 Series ColdFire Microcontroller
64-Pin QFP/LQFP 13
Figure 4. MCF51AC256 Series ColdFire Microcontroller
44-Pin LQFP
Figure 5. Typical I _{OH} vs. V _{DD} -V _{OH} at V _{DD} = 3 V
(Low Drive, PTxDSn = 0)
Figure 6. Typical I _{OH} vs. V _{DD} -V _{OH} at V _{DD} = 3 V
(High Drive, PTxDSn = 1)
Figure 7. Typical I _{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD} = 5 V$
(Low Drive, PTxDSn = 0) 23

Figure 8. Typical I _{OH} vs. V _{DD} –V _{OH} at V _{DD} = 5 V
(High Drive, PTxDSn = 1)
Figure 9. Typical Run IDD vs. System Clock Freq.
for FEI and FBE Modes
Figure 10.ADC Input Impedance Equivalency Diagram 29
Figure 11.Reset Timing 34
Figure 12.IRQ/KBIPx Timing 34
Figure 13.Timer External Clock 35
Figure 14.Timer Input Capture Pulse
Figure 15.SPI Master Timing (CPHA = 0) 37
Figure 16.SPI Master Timing (CPHA =1)
Figure 17.SPI Slave Timing (CPHA = 0)
Figure 18.SPI Slave Timing (CPHA = 1) 38
List of Tables
Table 1. MCF51AC256 Series Device Comparison

Table 1. MCF51AC256 Series Device Comparison 3
Table 2. MCF51AC256 Series Functional Units 6
Table 3. Orderable Part Number Summary
Table 4. Pin Availability by Package Pin-Count
Table 5. Parameter Classifications 17
Table 6. Absolute Maximum Ratings
Table 7. Thermal Characteristics. 18
Table 8. ESD and Latch-up Test Conditions 20
Table 9. ESD and Latch-Up Protection Characteristics 20
Table 10.DC Characteristics
Table 11. Supply Current Characteristics 25
Table 12. Analog Comparator Electrical Specifications 27
Table 13.5 Volt 12-bit ADC Operating Conditions 28
Table 14.5 Volt 12-bit ADC Characteristics
$(V_{\text{REFH}} = V_{\text{DDA}}, V_{\text{REFL}} = V_{\text{SSA}}) \dots \dots \dots 29$
Table 15.Oscillator Electrical Specifications
(Temperature Range = -40 to 105 °C Ambient) 31
Table 16.MCG Frequency Specifications
(Temperature Range = -40 to 105 °C Ambient) 32
Table 17.Control Timing
Table 18.TPM/FTM Input Timing 35
Table 19.MSCAN Wake-Up Pulse Characteristics 35
Table 20.SPI Timing
Table 21.Flash Characteristics 39
Table 22.Package Information 40
Table 23. Revision History

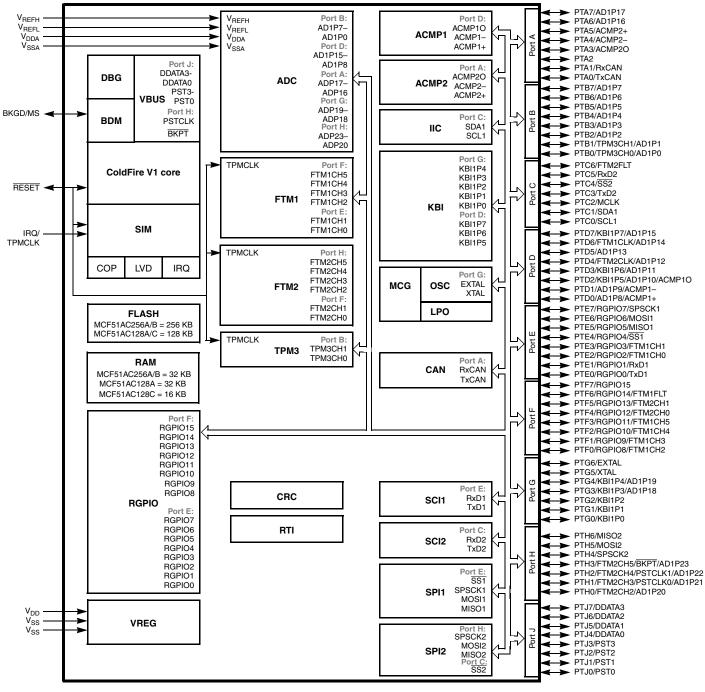


Figure 1. MCF51AC256 Series Block Diagram

1.3 Features

Table 2 describes the functional units of the MCF51AC256 series.Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1_INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

- Trimmable internal reference allows 0.2% resolution and 2% deviation
- Analog-to-digital converter (ADC)
 - 24 analog inputs with 12 bits resolution
 - Output formatted in 12-, 10- or 8-bit right-justified format
 - Single or continuous conversion (automatic return to idle after single conversion)
 - Operation in low-power modes for lower noise operation
 - Asynchronous clock source for lower noise operation
 - Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value
 - On-chip temperature sensor
- Flexible timer/pulse-width modulators (FTM)
 - 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned
 - Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode
 - Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs)
 - Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal)
 - Deadtime insertion is available for each complementary pair
 - The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers
 - Generation of the triggers to ADC (hardware trigger)
 - A fault input for global fault control
 - Backwards compatible with TPM
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Two channels, each channel may be input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt
- Cyclic redundancy check (CRC) generator
 - High speed hardware CRC generator circuit using 16-bit shift register
 - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
 - Error detection for all single, double, odd, and most multi-bit errors
 - Programmable initial seed value
- Analog comparators (ACMP)
 - Full rail to rail supply operation
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to allow comparator output to be visible on a pin, ACMPxO

- Inter-integrated circuit (IIC)
 - Compatible with IIC bus standard
 - Multi-master operation
 - Software programmable for one of 64 different serial clock frequencies
 - Interrupt driven byte-by-byte data transfer
 - Arbitration lost interrupt with automatic mode switching from master to slave
 - Calling address identification interrupt
 - Bus busy detection
 - 10-bit address extension
- Controller area network (CAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Standard and extended data frames
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbps
 - Support for remote frames
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable listen-only mode for monitoring of CAN bus
 - Programmable bus-off recovery functionality
 - Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off)
 - Internal timer for time-stamping of received and transmitted messages
- Serial communications interfaces (SCI)
 - Full-duplex, standard non-return-to-zero (NRZ) format
 - Double-buffered transmitter and receiver with separate enables
 - Programmable baud rates (13-bit modulo divider)
 - Interrupt-driven or polled operation
 - Hardware parity generation and checking
 - Programmable 8-bit or 9-bit character length
 - Receiver wakeup by idle-line or address-mark
 - Optional 13-bit break character generation / 11-bit break character detection
 - Selectable transmitter output polarity
- Serial peripheral interfaces (SPI)
 - Master or slave mode operation
 - Full-duplex or single-wire bidirectional option
 - Programmable transmit bit rate

- Double-buffered transmit and receive
- Serial clock phase and polarity options
- Slave select output
- Selectable MSB-first or LSB-first shifting
- 16-bit and FIFO operations in SPI2
- Input/Output
 - 69 GPIOs
 - 8 keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins
 - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

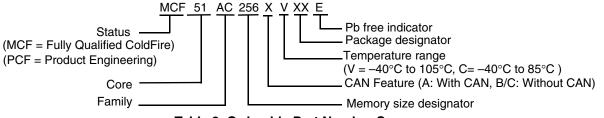


 Table 3. Orderable Part Number Summary

Freescale Part Number	e Part Number Description		Package	Temperature
MCF51AC256AVFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256BVFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256AVLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256BVLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256AVPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC256BVPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC128AVFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 105°C
MCF51AC128CVFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 105°C
MCF51AC128AVLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 105°C
MCF51AC128CVLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 105°C
MCF51AC128AVPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 105°C
MCF51AC128CVPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 105°C
MCF51AC256ACFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256BCFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256ACLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 85°C
MCF51AC256BCLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	–40°C to 85°C

Pir	n Num	ber	Low	est < Prio	ority> Hi	ghest
80	64	44	Port Pin	ort Pin Alt 1 Alt 2		
8	8	6	PTF4	RGPIO12	FTM2CH0	
9	9	—	PTC6	FTM2FLT		
10	10	_	PTF7	RGPIO15		
11	11	7	PTF5	RGPIO13	FTM2CH1	
12	12	—	PTF6	RGPIO14	FTM1FLT	
13	_	—	PTJ0	PST0		
14		_	PTJ1	PST1		
15	_	_	PTJ2	PST2		
16	_	_	PTJ3	PST3		
17	13	8	PTE0	RGPIO0	TxD1	
18	14	9	PTE1	RGPIO1	RxD1	
19	15	10	PTE2	RGPIO2	FTM1CH0	
20	16	11	PTE3	RGPIO3	FTM1CH1	
21	17	12	PTE4	RGPIO4	SS1	
22	18	13	PTE5	RGPIO5	MISO1	
23	19	14	PTE6	RGPIO6	MOSI1	
24	20	15	PTE7	RGPIO7	SPSCK1	
25	21	16	V _{SS}			
26	22	17	V _{DD}			
27	_	_	PTJ4	DDATA0		
28	_	—	PTJ5	DDATA1		
29	—	—	PTJ6	DDATA2		
30	—	—	PTJ7	DDATA3		
31	23	18	PTG0	KBI1P0		
32	24	19	PTG1	KBI1P1		
33	25	20	PTG2	KBI1P2		
34	26	21	PTA0	TxCAN ²		
35	27	22	PTA1	RxCAN ³		
36	28	-	PTA2			
37	29		PTA3	ACMP2O		
38	30		PTA4	ACMP2-		
39	31		PTA5	ACMP2+		
40	32	—	PTA6	AD1P16		
41	33	—	PTA7	AD1P17		
42			PTH0	FTM2CH2	AD1P20	
43	—	—	PTH1	FTM2CH3	PSTCLK0	AD1P21
44	—	—	PTH2	FTM2CH4	PSTCLK1	AD1P22
45	—	—	PTH3	FTM2CH5	BKPT	AD1P23
46	34	23	PTB0	TPM3CH0	AD1P0	
47	35	24	PTB1	TPM3CH1	AD1P1	
48	36	25	PTB2	AD1P2		

Table 4. Pin Availability by Package Pin-Count (continued)

Pin Number			Low	est < Pric	ority> H	ighest
80	80 64 44		Port Pin	Alt 1	Alt 2	Alt 3
49	37	26	PTB3	AD1P3		
50	38		PTB4	AD1P4		
51	39	—	PTB5	AD1P5		
52	40	—	PTB6	AD1P6		
53	41	—	PTB7	AD1P7		
54	42	27	PTD0	AD1P8	ACMP1+	
55	43	28	PTD1	AD1P9	ACMP1-	
56	44	29	V _{DDA}			
57	45	30	V _{SSA}			
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10
59	47	32	PTD3	KBI1P6	AD1P11	
60	48	33	PTG3	KBI1P3	AD1P18	
61	49	—	PTG4	KBI1P4	AD1P19	
62	50		PTD4	FTM2CLK	AD1P12	
63	51	—	PTD5	AD1P13		
64	52	—	PTD6	FTM1CLK	AD1P14	
65	53	—	PTD7	KBI1P7	AD1P15	
66	54	34	V _{REFH}			
67	55	35	V _{REFL}			
68	56	36	BKGD	MS		
69	57	37	PTG5	XTAL		
70	58	38	PTG6	EXTAL		
71	59	39	V _{SS}			
72	_	—	V _{DD}			
73	60	40	PTC0	SCL1		
74	61	41	PTC1	SDA1		
75	—	—	PTH4	SPCK2		
76	_	—	PTH5	MOSI2		
77	—	—	PTH6	MISO2		
78	62	42	PTC2	MCLK		
79	63	43	PTC3	TxD2		
80	64	44	PTC5	RxD2		

Table 4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

 2 TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	۱ _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Maximum junction temperature		Т _Ј	150	°C
Thermal resistance 1,2,3,4				
80-pin LQFP 64-pin LQFP 64-pin QFP	1s 2s2p 1s 2s2p	θյΑ	51 38 59 41	°C/W
44-pin LQFP	1s 2s2p 1s 2s2p		50 36 67 45	

Table 7. Thermal Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
		DC injection current ^{5 6 7 8} (single pin limit) $$V_{IN}\!>\!V_{DD}$ \\ $V_{IN}\!<\!V_{SS}$$		0 0	_	2 0.2	mA
22		DC injection current (Total MCU limit, includes sum of all stressed pins) V _{IN} >V _{DD} V _{IN} <v<sub>SS</v<sub>	I _{IC}	0 0	_	25 -5	mA

Table 10. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

³ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 6 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ The RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

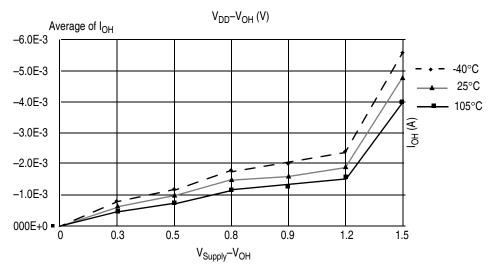


Figure 5. Typical I_{OH} vs. V_{DD}-V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0)

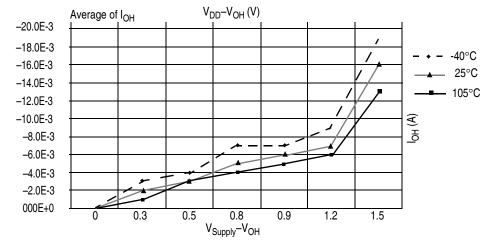


Figure 6. Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 3 V (High Drive, PTxDSn = 1)

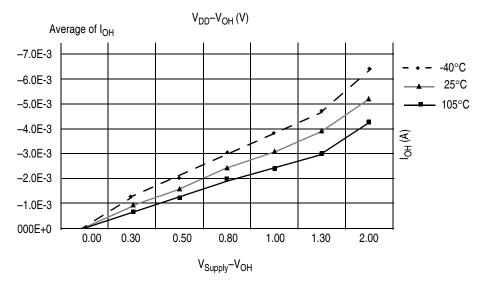


Figure 7. Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 5 V (Low Drive, PTxDSn = 0)

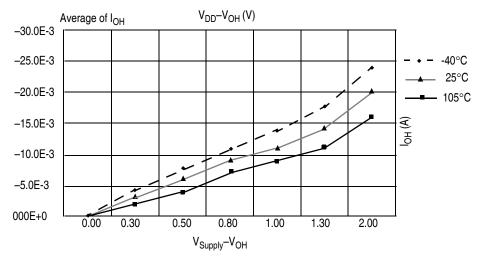


Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

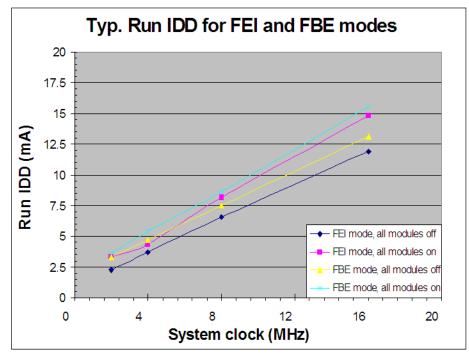
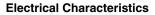


Figure 9. Typical Run I_{DD} vs. System Clock Freq. for FEI and FBE Modes

2.7 Analog Comparator (ACMP) Electricals

Table 12. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1		Supply voltage	V _{DD}	2.7		5.5	V
2	Т	Supply current (active)	IDDAC	—	20	35	μA
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}	—	20	40	mV
5	D	Analog comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	_	_	1.0	μA
7	D	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μS
8	Ρ	Bandgap voltage reference factory trimmed at V_{DD} = 5.3248 V, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V



2.8 ADC Characteristics

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	D		Absolute	V _{DDA}	2.7		5.5	V	
1	D	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
2	D	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	
3	D	Reference voltage high		V _{REFH}	2.7	V _{DDA}	V _{DDA}	v	
4	D	Reference voltage low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	v	
5	D	Input voltage		V _{ADIN}	V _{REFL}	_	V_{REFH}	V	
6	С	Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
7	С	Input resistance		R _{ADIN}	_	3	5	kΩ	
	С		12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_		2 5		
8	С	Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		5 10	kΩ	External to MCU
	С		8-bit mode (all valid f _{ADCK})		_	_	10		
9	D	D ADC conversion	High speed (ADLPC = 0)	f	0.4	_	8.0	MHz	
3	D	clock frequency	Low power (ADLPC = 1)	f _{adck}	0.4	_	4.0		

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

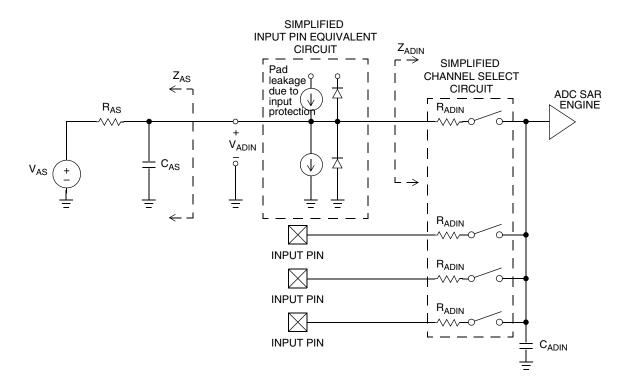


Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μA	
2	т	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}	_	218	_	μA	
3	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	327		μA	
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.582	1	mA	
5	Т	Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA	
			High speed (ADLPC = 0)	f _{adack}	2	3.3	5		t _{ADACK} =
6	P	asynchronous clock source	Low power (ADLPC = 1)		1.25	2	3.3	MHz	1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
_	1	Conversion	Short sample (ADLSMP = 0)			20		ADCK	See Table 10 for
7	Р	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}	_	40	_	cycles	
0		Completing a	Short sample (ADLSMP = 0)		_	3.5	_	ADCK	conversion time variances
8	Т	Sample time	Long sample (ADLSMP = 1)	t _{ADS}		23.5		cycles	
	Т	Total	12-bit mode			±3.0			Includes
9	Ρ	unadjusted	10-bit mode	E _{TUE}		±1	±2.5	LSB ²	quantizatio
	Т	error	8-bit mode			±0.5	±1.0		n
	Т		12-bit mode			±1.75			
10	Р	Differential non-linearity	10-bit mode ³	DNL		±0.5	±1.0	LSB ²	
	Т		8-bit mode ³			±0.3	±0.5		
	Т		12-bit mode			±1.5			
11	Т	Integral non-linearity	10-bit mode	INL		±0.5	±1.0	LSB ²	
	Т		8-bit mode			±0.3	±0.5		
	Т	Zero-scale error	12-bit mode	E _{ZS}		±1.5			V _{ADIN} = V _{SSA}
12	Р		10-bit mode			±0.5	±1.5	LSB ²	
	Т		8-bit mode			±0.5	±0.5		
	Т		12-bit mode	E _{FS}		±1			V _{ADIN} = V _{DDA}
13	Р	Full-scale error	10-bit mode			±0.5	±1	LSB ²	
	Т		8-bit mode			±0.5	±0.5		DDA
			12-bit mode			-1 to 0			
14	D	Quantization error	10-bit mode	EQ		—	±0.5	LSB ²	
			8-bit mode			_	±0.5		
			12-bit mode			±1			Pad
15	D	Input leakage error	10-bit mode	EIL		±0.2	±2.5	LSB ²	leakage ⁴ *
			8-bit mode			±0.1	±1	1	R _{AS}
16	D	Temp sensor voltage	25°C	V _{TEMP25}	_	1.396	_	V	
17	P	Temp sensor	–40 °C–25 °C	~		3.266		m\//°C	
17	D	slope	25 °C–85 °C	m		3.638		mV/°C	1

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{\text{N}}$.

Table 16. MCG Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
18	D	Lock exit frequency tolerance ⁸	D _{unl}	±4.47	_	±5.97	%
19	D	Lock time — FLL	t _{fll_lock}	_		t _{fll_acquire+} 1075(1/ ^f int_t)	s
20	D	Lock time — PLL	t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_ref)	s
21	D	Loss of external clock minimum frequency — RANGE = 0	f _{loc_low}	$(3/5) \times f_{int}$	_	_	kHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.

³ This specification applies when the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ This specification applies when the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

⁶ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.

⁷ Below D_{lock} minimum, the MCG enters lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.

⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.12 SPI Characteristics

Table 20 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Мах	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns

Table 20. SPI Timing