
Infineon Technologies - TLE9834QXXUMA2 Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

EXF

Details	
Product Status	Obsolete
Applications	Automotive
Core Processor	XC800
Program Memory Type	FLASH (64kB)
Controller Series	-
RAM Size	3.25K x 8
Interface	LIN, SSI, UART
Number of I/O	11
Voltage - Supply	3V ~ 27V
Operating Temperature	-40°C ~ 150°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-29
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/tle9834qxxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1.2 Abbreviations

The following acronyms and terms are used within this document. List see in Table 2.

Table 2 Acrony	ms						
Acronyms	Name						
ALU	Arithmetic Logic Unit						
CCU6	Capture Compare Unit 6						
CGU	Clock Generation Unit						
СМИ	Cyclic Management Unit						
DAP	Device Access Port						
DPP	Data Post Processing						
ECC	Error Correction Code						
EEPROM	Electrically Erasable Programmable Read Only Memory						
GPIO	General Purpose Input Output						
FSR	Full Scale Range						
ICU	Interrupt Control Unit						
IRAM	Internal Random Access Memory - Internal Data Memory						
LDO	Low DropOut voltage regulator						
LIN	Local Interconnect Network						
LSB	Least Significant Bit						
MCU	Micro Controller Unit						
MDU	Multiplication Division Unit						
MMC	Monitor Mode Control						
MSB	Most Significant Bit						
NMI	Non Maskable Interrupt						
OCDS	On Chip Debug Support						
OTP	One Time Programmable						
OSC	Oscillator						
PC	Program Counter						
PCU	Power Control Unit						
PD	Pull Down						
PGU	Power supply Generation Unit						
PLL	Phase Locked Loop						
PMU	Power Management Unit						
PSW	Program Status Word						
PU	Pull Up						
PWM	Pulse Width Modulation						
RAM	Random Access Memory						
RCU	Reset Control Unit						
RMU	Reset Management Unit						

General Device Information

Symbol	Pin Number	Туре	Reset State	Function				
P2.3	36	I	I	AN3 CCPOS1_0 EXINT0_2 CTRAP_1 CC60_1	ADC1 analog input channel 3 CCU6 hall input 1 External interrupt input 0 CCU6 trap input CCU6 capture/compare channel 0 input			
P2.4	32	I	1	AN4 T0_2	ADC1 analog input channel 4 Timer 0 input			
P2.5	31	I	1	AN5 T1_2	ADC1 analog input channel 5 Timer 1 input			
P2.7	35	I	I	AN7 CCPOS2_0 EXINT2_0 T13HR_1 CC62_1	ADC1 analog input channel 7 CCU6 hall input 2 External interrupt input 2 CCU6 timer 13 hardware run input CCU6 capture/compare channel 2 input			
Power Supp	ly							
VS	47	Р	_	Battery supply input				
VDDP	44	Р	-	I/O port supply (5.0 V). Do not connect external loads. For buffer and bypass capacitors.				
VDDC	42	Ρ	-	0.9 V during	Core supply (1.5 V during Active Mode, 0.9 V during Stop Mode). Do not connect external loads. Fo buffer/bypass capacitor.			
VDDEXT	45	Р	_	External volta	age supply output (5.0 V, 20 mA)			
LSGND	13	Р	_	Low Side gro	und LS1, LS2			
GND	30, 43, 19, 38	Р	-	Core supply (ground; analog supply ground			
ADCGND	33	Р	_	Analog supply ground for ADC1				
LINGND	2	Р	_	LIN ground				
Monitor Inpu	Its							
MON1	5	I	I	High Voltage	Monitor Input 1			
MON2	6	I	I	High Voltage	Monitor Input 2			
MON3	7	I	I	High Voltage	Monitor Input 3			
MON4	8	I	I	High Voltage	Monitor Input 4			
MON5	9	I	I	High Voltage	Monitor Input 5			
High Side Sv	vitch / Low Side	e Switch	Outputs	· · · · · · · · · · · · · · · · · · ·				
LS1	11	0	Hi-Z	Low Side Sw	itch output 1			
LS2	12	0	Hi-Z	Low Side Sw	itch output 2			
HS1	3	0	Hi-Z	High Side Sw	vitch output 1			
HS2	4	0	Hi-Z	High Side Sw	vitch output 2			
LIN Interface	•			1				
LIN	1	I/O	PU	I IN hus inter	face input/output			

Table 3 Pin Definitions and Functions (cont'd)

Functional Description

3 Functional Description

This highly integrated circuit contains analog and digital functional blocks. For system and interface control an embedded 8-Bit state-of-the-art microcontroller, compatible to the standard 8051 core with On-Chip Debug Support (OCDS), is available. For internal and external power supply purposes, on-chip low drop-out regulators are existent. An internal oscillator provides a cost effective and suitable clock in particular for LIN slave nodes. As communication interface, a LIN transceiver and several High Voltage Monitor Inputs with adjustable threshold and filters are available. Furthermore two High Side Switches (e.g. for driving LEDs or cyclic powering of switches), two Low Side Switches (e.g. for relays) and several general purpose input/outputs (GPIO) with pulse-width modulation (PWM) capabilities are available.

The Micro Controller Unit (MCU) supervision and system protection including reset feature is controlled by a programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature sensors are available on-chip.

All relevant modules offer power saving modes in order to support terminal 30 connected automotive applications. A wake-up from the power saving mode is possible via a LIN bus message, via the monitoring inputs, via the GPIO ports or repetitive with a programmable time period (cyclic wake-up).

The integrated circuit is available in a VQFN-48-29 package with 0.5 mm pitch and is designed to withstand the severe conditions of automotive applications.

Functional Description

Block Diagram

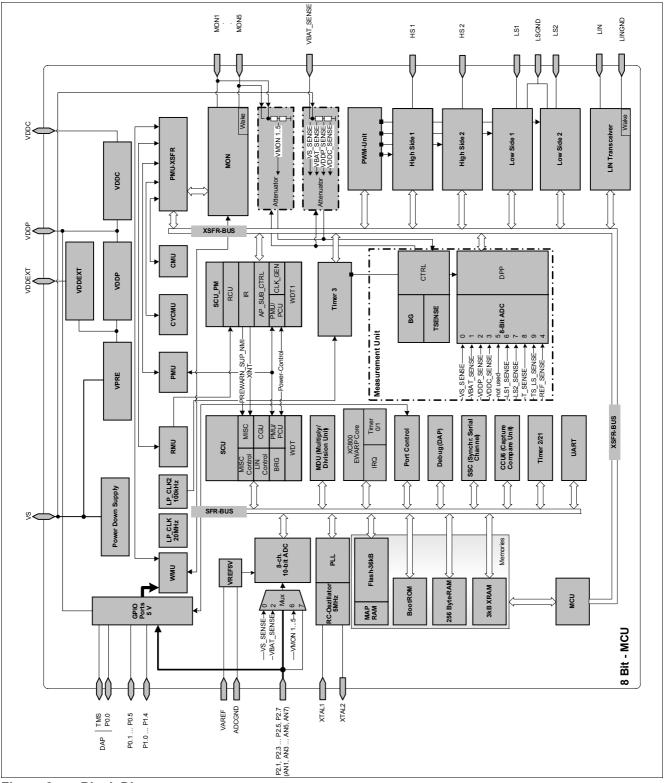


Figure 2 Block Diagram

The TLE9834QX has several operational modes mainly to support low power consumption requirements. The low power modes and state transitions are depicted in **Figure 3** below.

Functional Description

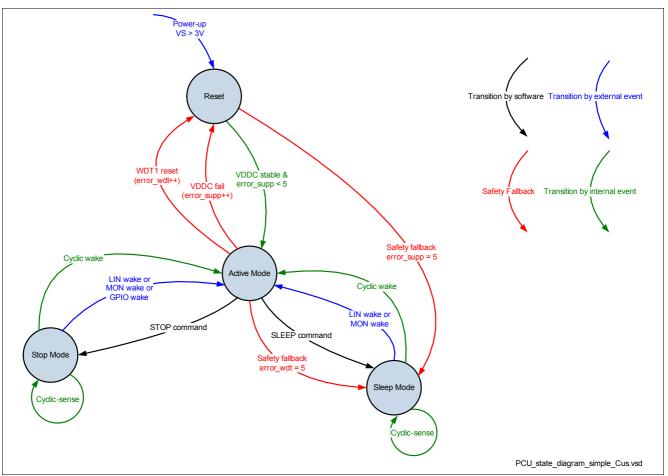


Figure 3 Power Control State Diagram

Reset Mode

The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is stable, the Active Mode is entered. In case the watchdog timer WDT1 fails for more than four times, a fail-safe transition to the Sleep Mode is done.

Active Mode

In Active Mode all modules are activated and the TLE9834QX is fully operational.

Stop Mode

The Stop Mode is one out of two low power modes. The transition to the low power modes is done by setting the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still powered allowing faster wake-up reaction times. A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pins or the respective 5V GPIOs.

Sleep Mode

The Sleep Mode is the second low-power mode. The transition to the low-power modes is done by setting the respective Bits in the MCU mode control register. In Sleep Mode the embedded microcontroller power supply is deactivated allowing the lowest system power consumption, but the wake-up time is longer compared to the Stop Mode. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor Input pins. A wake-up from Sleep Mode behaves similar to a power-on reset.

Mod. Name	Modules	Functions				
Power Down Supply	Independent Supply Voltage Generation for PMU	This supply is only dedicated to the PMU to ensure a independent operation of generated power supplies (VDDP, VDDC).				
LP_CLK (= 20 MHz)	 Clock Source for all PMU submodules Backup Clock Source for System Clock Source for WDT1 	This ultra low power oscillator generates the clock for the PMU. This clock is also used as backup clock for the system in case of PLL clock failure and as independent clock source for WDT1				
LP_CLK2 (= 100 kHz)	Clock Source for PMU	This ultra low power oscillator generates the clock for the PMU mainly in Stop Mode and in the cyclic modes.				
Peripherals	Peripheral blocks of PMU	This blocks includes all relevant peripherals to ensure a stable and fail safe PMU startup and operation				
Power Supply Generation Unit (PGU)	Voltage regulators for VDDP and VDDC	This block includes the voltage regulators for the pad supply (VDDP) and the core supply (VDDC) including al diagnosis and safety features				
VDDEXT (Hall Sensor Supply)	Voltage regulator for VDDEXT to supply external modules (e.g. Hall Sensors)	This voltage regulator is a dedicated supply for external modules and can also be used for cyclic sense operations (e.g. with hall sensor)				
PMU-XSFR	All PMU relevant Extended Special Function Registers	This module contains all PMU relevant registers, which are needed to control and monitor the PMU.				
PMU-PCU	Power Control Unit of the PMU	This block is responsible for controlling all power related actions within the PGU Module.				
PMU-WMU	Wake-up Management Unit of the PMU	This block is responsible for controlling all wake-up related actions within the PMU Module.				
PMU-CYCMU	Cyclic Management Unit of the PMU This block is responsible for controlling all a cyclic mode.					
PMU-CMU	Clock Management Unit of the PMU	This block is responsible for controlling all clocking actions within the PMU.				
PMU-RMU	Reset Management Unit of the PMU	J This block is responsible for generating all system required resets.				

Table 5 Description of PMU Submodules

3.1.2 Voltage Regulator 1.5V (VDDC)

This module represents the 1.5 V voltage regulator, which serves as core supply for the 8-bit μ C and other chip internal analog 1.5 V functions (e.g. 8 Bit ADC). To further reduce the current consumption of the 8-bit MCU during Stop Mode the output voltage is optionally reduced to 0.9 V.

Features

- 1.5 V low-drop voltage regulator
- Optional 0.9 V in Stop Mode
- Current limitation
- Overcurrent monitoring and shutdown with MCU signalling (interrupt)
- Overvoltage monitoring with MCU signalling (interrupt)
- Undervoltage monitoring with MCU signalling (interrupt)
- Pull-down current source at the output for Sleep Mode (100 μA)

The output capacitor C_{VDDC} is mandatory to ensure a proper regulator functionality.

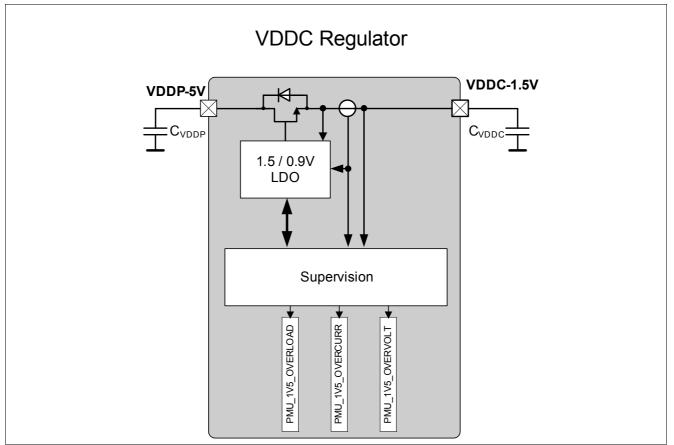


Figure 7 Module Block Diagram of VDDC Voltage Regulator

3.1.3 External Voltage Regulator 5.0V (VDDEXT)

The external voltage regulator provides 5 V output voltage in order to supply external circuitry like LEDs, hall sensors or potentiometers.

Features

- Switchable +5 V, 20 mA low-drop voltage regulator
- Switch-on overcurrent blanking time in order to drive small capacitive loads
- Short circuit robust
- Overvoltage monitoring with MCU interrupt signalling
- Undervoltage monitoring with MCU interrupt signalling
- Selectable switch-on slew-rate 0.95 V/µs max. @10 mA supply current, 10 nF capacitive load
- Pull-down current source at the output for Sleep Mode and off mode (100 μA)
- Cyclic sense option together with GPIOs

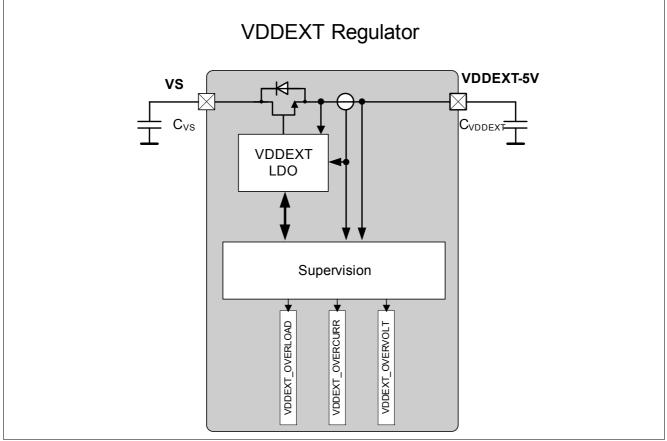
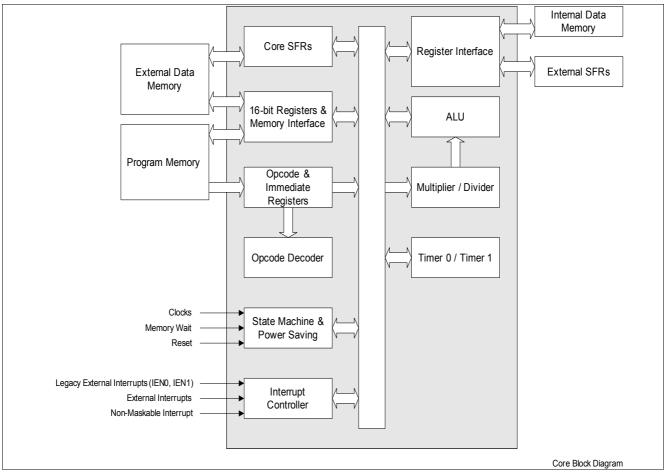



Figure 8 Module Block Diagram

Figure 10 shows the functional blocks of the XC800 Core. The XC800 Core consists mainly of the instruction decoder, the arithmetic section, the program control section, the access control section, and the interrupt controller.

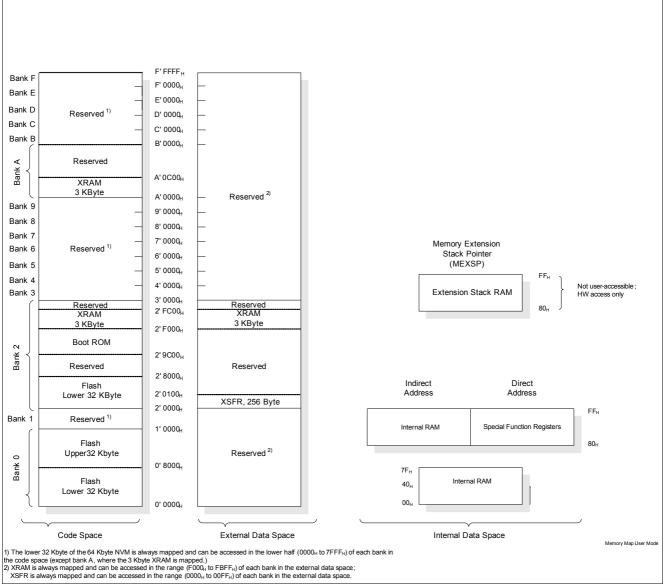
The instruction decoder decodes each instruction and accordingly generates the internal signals required to control the functions of the individual units within the core. These internal signals have an effect on the source and destination of data transfers and control the ALU processing.

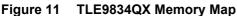
Figure 10 XC800 Core Block Diagram

The arithmetic section of the processor performs extensive data manipulation and consists of the arithmetic/logic unit (ALU), A register, B register and PSW register. The ALU accepts 8-Bit data words from one or two sources and generates an 8-Bit result under the control of the instruction decoder. The ALU performs both arithmetic and logic operations. Arithmetic operations include add, subtract, multiply, divide, increment, decrement, BCD-decimal-add-adjust and compare. Logic operations include AND, OR, Exclusive OR, complement and rotate (right, left or swap nibble (left four)). Also included is a Boolean unit performing the Bit operations as set, clear, complement, jump-if-set, jump-if-not-set, jump-if-set-and-clear and move to/from carry. The ALU can perform the Bit operations of logical AND or logical OR between any addressable Bit (or its complement) and the carry flag, and place the new result in the carry flag.

The program control section controls the sequence in which the instructions stored in program memory are executed. The 16-Bit program counter (PC) holds the address of the next instruction to be executed. The conditional branch logic enables internal and external events to the processor to cause a change in the program execution sequence.

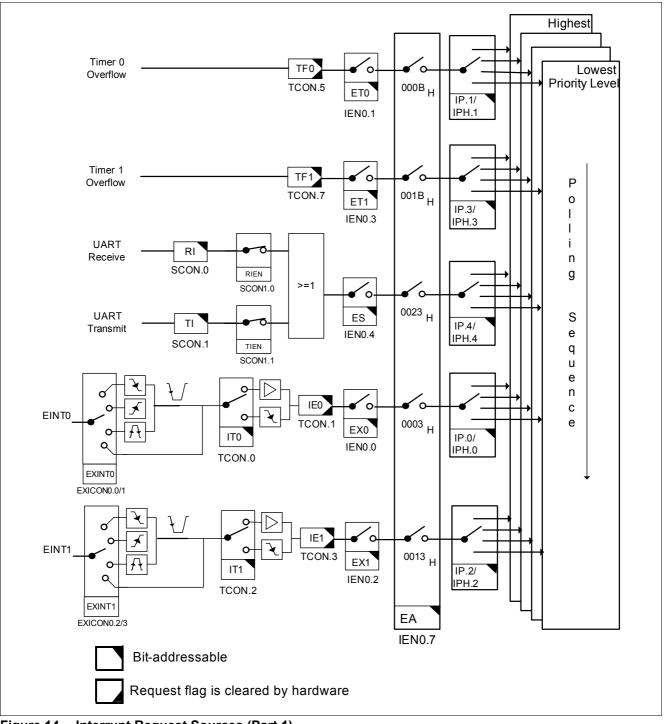
The access control unit is responsible for the selection of the on-chip memory resources. The interrupt requests from the peripheral units are handled by the interrupt controller unit.




3.4 Memory Architecture

The TLE9834QX CPU manipulates operands in the following memory spaces:

- 64 kByte of Flash memory in code space
- BootROM memory in code space
- 256 Byte of internal RAM data memory in internal data space
- 3 kByte of XRAM memory in code space and external data space (XRAM can be read/written as program memory or external data memory)
- 128 Byte of special function registers SFR in internal data space
- 256 Byte of special function registers XSFR in external data space.


Figure 11 illustrates the memory address spaces of the TLE9834QX.

Functional Description

3.16 LIN Transceiver

The LIN module is a transceiver for the Local Interconnect Network (LIN) compliant to the standards LIN 1.3, LIN 2.0 and LIN 2.1. It operates as a bus driver between the protocol controller and the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks, using baud rates between 2.4 kbps and 20 kbps. Additionally baud rates up to 40 kBaud are implemented.

The LIN module offers several different operation modes, including a Sleep Mode and the normal operation mode. The integrated slope control allows to use several data transmission rates with optimized EMC performance. For data transfer at the end of line, a Flash Mode up to 115 kBaud is also implemented.

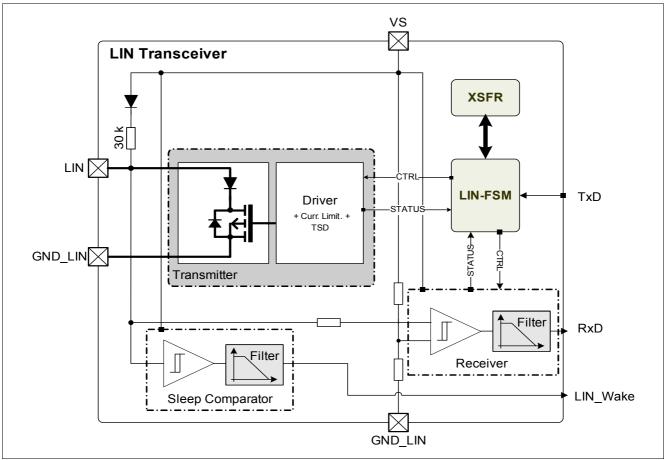


Figure 23 LIN Transceiver Block Diagram

3.17 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-Bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format

- Programmable number of data Bits: 2 to 8 Bits
- Programmable shift direction: LSB or MSB shift first
- Programmable clock polarity: idle low or high state for the shift clock
- Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 24 shows all functional relevant interfaces associated with the SSC Kernel.

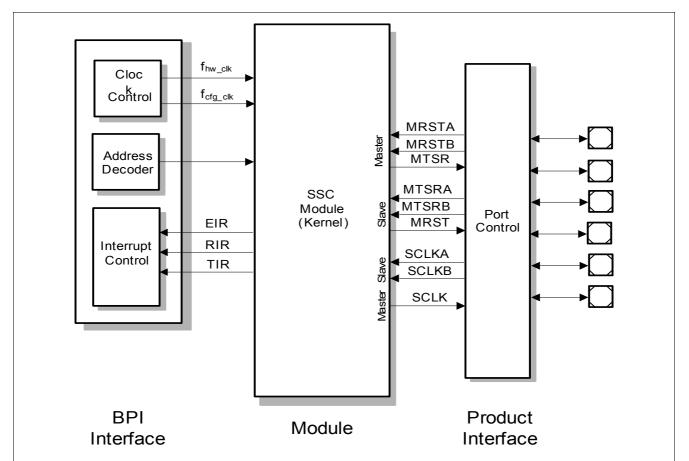


Figure 24 SSC Interface Diagram

5.2.2 PMU Core Supply Parameters VDDC

Table 20 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values			Note /	Number
		Min.	Тур.	Max.		Test Condition	
Specified Output Current	I _{VDDC}	0	-	30	mA	¹⁾ only used as internal core supply	P_5.2.11
Required Output Capacitance	$C_{\rm VDDC}$	0.1	-	10	μF	²⁾ ESR < 1Ω	P_5.2.12
Output Voltage including line regulation @ Active Mode	V _{DDCOUT}	1.44	1.5	1.56	V	I_{load} < 40mA	P_5.2.13
Output Voltage including line regulation @ Stop Mode	V _{DDCOUT}	0.89	0.95	1.15	V	I _{load} < 200μΑ	P_5.2.14
Dynamic Load Regulation	V _{DDCLOR}	-50	-	50	mV	²⁾ 2 30mA; C=330nF; dl/dt=100mA/μs	P_5.2.15
Dynamic Line Regulation		-25	-	25	mV	²⁾ V _{DDP} = 2.5 5.5V; dV/dt=5V/µs	P_5.2.16
Over Voltage Detection	V _{DDCOV}	1.61	-	1.68	V	Overvoltage leads to SUPPLY_NMI	P_5.2.17
Under Voltage Reset	V _{DDVUV}	1.10	-	1.19	V	-	P_5.2.18
Over Current Shutdown	<i>I</i> _{VDDCOC}	35	-	80	mA	-	P_5.2.19

1) VDDC is not intended to be used as external voltage regulator

2) Not subject to production test, specified by design

5.2.3 VDDEXT Voltage Regulator 5.0V

Table 21 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note /	Number
		Min. Typ.		Max.		Test Condition	
Output Current	I _{VDDEXT}	0	-	20	mA	1)	P_5.2.20
Output Capacitance	C _{VDDEXT}	10	-	1000	nF	¹⁾ ESR < 1 Ω	P_5.2.21
Output Voltage including line regulation	V _{DDEXT}	4.9	5.0	5.1	V	$I_{\rm load}$ < 20mA;Vs > 5.5V	P_5.2.22
Output Drop	$V_{\rm s}$ - $V_{\rm DDEXT}$		-	+400	mV	¹⁾ $I_{\rm load}$ < 20mA; 3V < $V_{\rm s}$ < 5.5V	P_5.2.23
Dynamic Load Regulation	V _{DDEXTLOR}	-50	-	50	mV	¹⁾ 2 20mA; C=10nF; dl/dt=10mA/μs	P_5.2.24
Dynamic Line Regulation	V _{VDDEXTLIR}	-25	-	25	mV	V _s = 5.5 20V; dV/dt=5V/μs	P_5.2.25
Power Supply Ripple Rejection ¹⁾	P _{SSRVDDEXT}	50	-	-	dB	V _s = 13.5V; f=0 1KHz; V _r =2Vpp	P_5.2.26
Over Voltage Detection	V _{VDDEXTOV}	5.05	-	5.4	V	V _s > 5.5V	P_5.2.27
Under Voltage Detection	V _{VDDEXTUV}	2.6	-	2.9	V	$^{2)}V_{\rm s}$ > 3.0V	P_5.2.28
Over Current Diagnostic	I _{VDDEXTOC}	25	-	70	mA	-	P_5.2.29

1) Not subject to production test, specified by design

2) When the condition is met, the Bit VDDEXT_CTRL.VDDEXT_SHORT will be set

Electrical Characteristics

5.3 System Clocks

5.3.1 Oscillators and PLL

Table 22 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	6	Unit	Note / Test Condition	Number
		Min.	Тур.	Max.			
PMU Oscillators (Powe	r Manager	nent Unit)					
Frequency of LP_CLK	$f_{\sf LP_CLK1}$	14	18	22	MHz	this clock is used at startup and can be used in case the PLL fails	P_5.3.1
Frequency of LP_CLK2	$f_{\rm LP_CLK2}$	70	100	130	kHz	this clock is used for cyclic wake and cyclic sense	P_5.3.2
CGU Oscillator (Clock	Generatio	n Unit Mic	roconti	roller)			
Short term frequency deviation	f _{trimst}	-1.5%	5	+1.5%	MHz	¹⁾ with respect to nominal configured system frequency within one LIN message (< 10ms 100ms)	P_5.3.3
Long term frequency deviation	f_{TRIMLT}	-3.0%	5	+3.0%	MHz	with respect to nominal configured system frequency over lifetime and temperature	P_5.3.4
CGU-OSC Start-up time	T _{OSC}	_	_	10	μs	startup time OSC from Sleep Mode and Stop Mode, power supply stable	P_5.3.5
PLL (Clock Generation	Unit Micro	ocontrolle	r)				
VCO frequency range Mode 0	f _{vco-0}	48	-	112	MHz	VCOSEL ="0"	P_5.3.6
VCO frequency range Mode 1	fvco-1	96	-	160	MHz	VCOSEL ="1"	P_5.3.7
Input frequency range	fosc	4	-	16	MHz	-	P_5.3.8
XTAL1 input freq. range	fosc	4	-	16	MHz	-	P_5.3.9
Output freq. range	f_{PLL}	0.04687	-	80	MHz	-	P_5.3.10
Free-running frequency Mode 0	$f_{\rm VCOfree_0}$	-	-	38	MHz	VCOSEL ="0"	P_5.3.11
Free-running frequency Mode 1	$f_{\rm VCOfree_1}$	-	-	76	MHz	VCOSEL ="1"	P_5.3.12
Input clock high/low time	t _{high/low}	10	-	-	ns	-	P_5.3.13
Peak period jitter	t _{jp}	-500	_	500	ps	for K=1	P_5.3.14

Electrical Characteristics

Port Output Driver Mode	Maximum Out (I _{OLmax} , - I _{OH}	•	Nominal Outp $(I_{OLnom}, -I_{OH})$	Number	
	$\textbf{VDDP} \geq \textbf{4.5V}$	VDDP < 4.5V	$\textbf{VDDP} \geq \textbf{4.5V}$	VDDP < 4.5V	
Strong Driver	7.5 mA	7.5 mA	2.5 mA	2.5 mA	P_5.5.16
Medium Driver	4 mA	2.5 mA	1.0 mA	1.0 mA	P_5.5.17
Weak Driver	0.5 mA	0.5 mA	0.1 mA	0.1 mA	P_5.5.18

Table 27 Current Limits for Port Output Drivers¹⁾

1) Not subject to production test, specified by design.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < GND$) the voltage on V_{DDP} pins with respect to ground (GND) must not exceed the values defined by the absolute maximum ratings.

5.9.2 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 36 A/D Converter Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Unit	Note /	Number		
		Min.	Тур.	Max.		Test Condition	
Analog reference supply	V _{AREFSR}	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	1)	P_5.9.7
Analog reference ground	V _{AGNDSR}	<i>GND</i> - 0.05	-	1.5	V	2)	P_5.9.8
Analog input voltage range	V_{AIN}	V_{AGND}	_	V_{AREF}	V	3)	P_5.9.9
Analog clock frequency	$f_{\sf ADCI}$	0.5	-	20	MHz	4)	P_5.9.10
Conversion time for 10-bit result ⁵⁾	<i>t</i> _{C10}	(13 + STC) × t_{ADCI} + 2 x t_{SYS}	(13 + STC) × <i>t</i> _{ADCI} + 2 x <i>t</i> _{SYS}	(13 + STC) × t _{ADCI} + 2 x t _{SYS}	_	_	P_5.9.11
Conversion time for 8-bit result	t _{C8}	$(11 + STC) \times t_{ADCI} + 2 \times t_{SYS}$	$(11 + STC) \times t_{ADCI} + 2 \times t_{SYS}$	$(11 + STC) \times t_{ADCI} + 2 \times t_{SYS}$	_	_	P_5.9.12
Wake-up time from analog Stop Mode, fast mode	t _{WAF}	-	-	4	μs	6)	P_5.9.13
Wake-up time from analog Stop Mode, slow mode	t _{WAS}	_	-	15	μs	6)	P_5.9.14
Total unadjusted error ⁷⁾	TUE	-15	-	+ 15	LSB	¹⁾ V _{AREF} = 5.0 V±1%	P_5.9.15
DNL error	EA _{DNL} EA	-2	-	+ 2	LSB	-	P_5.9.16
INL error	EA _{INL} EA	-5	-	+ 5	LSB	_	P_5.9.17
Gain error	EA_GAINEA	-10	_	+ 10	LSB	-	P_5.9.18
Offset error	EA _{OFF} EA	-2	-	+ 2	LSB	-	P_5.9.19
Total capacitance of an analog input	C_{AINT}	_	-	10	pF	6)8)	P_5.9.20
Switched capacitance of an analog input	C_{AINS}	-	-	4	pF	6)8)	P_5.9.21
Resistance of the analog input path	R _{AIN}	-	-	2	kΩ	6)8)	P_5.9.22
Total capacitance of the reference input	C_{AREFT}	-	-	15	pF	6)8)	P_5.9.23
Switched capacitance of the reference input	C_{AREFS}	-	-	7	pF	6)8)	P_5.9.24
Resistance of the reference input path	R _{AREF}	-	_	2	kΩ	6)8)	P_5.9.25

Revision History

Revision	Date	Changes
1.1	2012-03-08	Table 14:
		- Renamed Parameter "Output voltage VDDP" to "Voltage VDDP" (2x)
		- Renamed Parameter "Output voltage VDDC" to "Voltage VDDC"
1.1	2012-03-08	Table 28: Added value LIN input capacity C _{LIN IN}

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], EconoPACK[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OptiMOS[™], ORIGA[™], PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-ig™ of DECT Forum. COLOSSUS™, FirstGPS[™] of Trimble Navigation Ltd. EMV[™] of EMVCo, LLC (Visa Holdings Inc.). EPCOS[™] of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM[™] of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD[™] RF Micro Devices, Inc. SIRIUS[™] of Sirius Satellite Radio Inc. SOLARIS[™] of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX[™] of X/Open Company Limited. VERILOG[™], PALLADIUM[™] of Cadence Design Systems, Inc. VLYNQ[™] of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24

www.infineon.com