

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	M32C/80
Core Size	16/32-Bit
Speed	32MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, IrDA, SIO, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	121
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 34x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30875fhagp-u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Address	Register	Symbol	After Reset
01C0h	UART5 Transmit/Receive Mode Register	U5MR	00h
01C1h	UART5 Baud Rate Register	U5BRG	XXh
01C2h 01C3h	UART5 Transmit Buffer Register	U5TB	XXXXh
01C4h	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
01C5h	UART5 Transmit/Receive Control Register 1	U5C1	XXXX 0010b
01C6h 01C7h	UART5 Receive Buffer Register	U5RB	XXXXh
01C8h	UART6 Transmit/Receive Mode Register	U6MR	00h
01C9h	UART6 Baud Rate Register	U6BRG	XXh
01CAh			
01CBh	UART6 Transmit Buffer Register	U6TB	XXXXh
01CCh	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
01CDh	UART6 Transmit/Receive Control Register 1	U6C1	XXXX 0010b
01CEh		11000	20004
01CFh	UART6 Receive Buffer Register	U6RB	XXXXh
01D0h	UART5, UART6 Transmit/Receive Control Register	U56CON	X000 0000b
01D1h	UART5, UART6 Input Pin Function Select Register	U56IS	X000 X000b
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h	RTP Output Buffer Register 0	RTPOR	XXh
01D9h	RTP Output Buffer Register 1	RTP1R	XXh
01DAh	RTP Output Buffer Register 2	RTP2R	XXh
01DBh	RTP Output Buffer Register 3	RTP3R	XXh
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	CANO Message Slot Buffer 0 Standard ID0 ⁽¹⁾⁽²⁾	COSLOTO_0	XXh
01E1h	CANO Message Slot Buffer 0 Standard ID1 ⁽¹⁾⁽²⁾	COSLOT0_1	XXh
01E2h	CANO Message Slot Buffer 0 Extended ID0(1)(2)	COSLOTO_2	XXh
01E3h 01E4h	CAN0 Message Slot Buffer 0 Extended ID1 ⁽¹⁾⁽²⁾ CAN0 Message Slot Buffer 0 Extended ID2 ⁽¹⁾⁽²⁾	C0SLOT0_3 C0SLOT0_4	XXh
01E4h 01E5h	CANO Message Slot Buffer 0 Extended ID2 ⁽¹⁾⁽²⁾ CANO Message Slot Buffer 0 Data Length Code ⁽¹⁾⁽²⁾	COSLOT0_4 COSLOT0_5	XXh XXh
01E5h	CANO Message Slot Buffer 0 Data Length Code(1)(2)	COSLOTO_5	XXh
01E6h	CANO Message Slot Buffer 0 Data (1)(2)	COSLOTO_6	XXh
01E7h	CANO Message Slot Buffer 0 Data (1)(2)	COSLOTO_7	XXh
01E9h	CANO Message Slot Buffer 0 Data 2(1)(2)	COSLOTO_8	XXh
01EAh	CANO Message Slot Buffer 0 Data 3(1)(2)	COSLOT0_9	XXh
01EBh	CANO Message Slot Buffer 0 Data 4 (X)	C0SLOT0_11	XXh
01ECh	CANO Message Slot Buffer 0 Data 5(X)	C0SLOT0_11	XXh
01EDh	CANO Message Slot Buffer 0 Data 3(X)	C0SLOT0_12	XXh
01EEh	CAN0 Message Slot Buffer 0 Time Stamp High-Order ⁽¹⁾⁽²⁾	C0SLOT0_14	XXh
01EFh	CAN0 Message Slot Buffer 0 Time Stamp Low-Order ⁽¹⁾⁽²⁾	C0SLOT0_15	XXh
		00010_10	

Table 4.8 SFR Address Map (8/20)

X: Undefined

Blank spaces are all reserved. No access is allowed. NOTES:

- 1. The CAN-associated registers (allocated in addresses 01E0h to 02BFh) cannot be used in M32C/87B. In M32C/87A, only CAN0-associated registers can be used.
- 2. Set the PM13 bit in the PM1 register to 1 (2 wait states for SFR area) before accessing the CAN-associated registers.

Address	Register	Symbol	After Reset
02C0h	X0 Register, Y0 Register	X0R, Y0R	XXXXh
02C1h			
02C2h	X1 Register, Y1 Register	X1R, Y1R	XXXXh
02C3h			70000
02C4h	X2 Register, Y2 Register	X2R, Y2R	XXXXh
02C5h		,	
02C6h	X3 Register, Y3 Register	X3R, Y3R	XXXXh
02C7h			
02C8h	X4 Register, Y4 Register	X4R, Y4R	XXXXh
02C9h			
02CAh	X5 Register, Y5 Register	X5R, Y5R	XXXXh
02CBh			
02CCh	X6 Register, Y6 Register	X6R, Y6R	XXXXh
02CDh			
02CEh 02CFh	X7 Register, Y7 Register	X7R, Y7R	XXXXh
02CFN 02D0h			
02D011	X8 Register, Y8 Register	X8R, Y8R	XXXXh
02D111 02D2h			
02D2h	X9 Register, Y9 Register	X9R, Y9R	XXXXh
02D3h			
02D5h	X10 Register, Y10 Register	X10R, Y10R	XXXXh
02D6h			
02D7h	X11 Register, Y11 Register	X11R, Y11R	XXXXh
02D8h			
02D9h	X12 Register, Y12 Register	X12R, Y12R	XXXXh
02DAh			
02DBh	X13 Register, Y13 Register	X13R, Y13R	XXXXh
02DCh			
02DDh	X14 Register, Y14 Register	X14R, Y14R	XXXXh
02DEh	VAC Devictor VAC Devictor		VVVVL
02DFh	X15 Register, Y15 Register	X15R, Y15R	XXXXh
02E0h	X/Y Control Register	XYC	XXXX XX00b
02E1h			
02E2h			
02E3h			
02E4h	UART1 Special Mode Register 4	U1SMR4	00h
02E5h	UART1 Special Mode Register 3	U1SMR3	00h
02E6h	UART1 Special Mode Register 2	U1SMR2	00h
02E7h	UART1 Special Mode Register	U1SMR	00h
02E8h	UART1 Transmit/Receive Mode Register	U1MR	00h
02E9h	UART1 Baud Rate Register	U1BRG	XXh
02EAh	UART1 Transmit Buffer Register	U1TB	XXXXh
02EBh	, i i i i i i i i i i i i i i i i i i i		
02ECh	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
02EDh	UART1 Transmit/Receive Control Register 1	U1C1	0000 0010b
02EEh	UART1 Receive Buffer Register	U1RB	XXXXh
02EFh			

Table 4.14 SFR Address Map (14/20)

REJ03B0127-0151 Rev.1.51 Jul 31, 2008 RENESAS Page 40 of 85

Address	Register	Symbol	After Reset
02F0h			
02F1h			
02F2h			
02F3h			
02F4h	UART4 Special Mode Register 4	U4SMR4	00h
02F5h	UART4 Special Mode Register 3	U4SMR3	00h
02F6h	UART4 Special Mode Register 2	U4SMR2	00h
02F7h	UART4 Special Mode Register	U4SMR	00h
02F8h	UART4 Transmit/Receive Mode Register	U4MR	00h
02F9h	UART4 Baud Rate Register	U4BRG	XXh
02FAh			XXXXk
02FBh	UART4 Transmit Buffer Register	U4TB	XXXXh
02FCh	UART4 Transmit/Receive Control Register 0	U4C0	0000 1000b
02FDh	UART4 Transmit/Receive Control Register 1	U4C1	0000 0010b
02FEh			20004
02FFh	UART4 Receive Buffer Register	U4RB	XXXXh
0300h	Timer B3, B4, B5 Count Start Register	TBSR	000X XXXXb
0301h			
0302h			
0303h	Timer A11 Register	TA11	XXXXh
0304h			
0305h	Timer A21 Register	TA21	XXXXh
0306h			
0307h	Timer A41 Register	TA41	XXXXh
0308h	Three-Phase PWM Control Register 0	INVC0	00h
0309h	Three-Phase PWM Control Register 1	INVC1	00h
030Ah	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Bh	Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
030Ch	Dead Time Timer	DTT	XXh
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
030Eh			
030Fh			
0310h			
0311h	Timer B3 Register	TB3	XXXXh
0312h			
0313h	Timer B4 Register	TB4	XXXXh
0314h			
0315h	Timer B5 Register	TB5	XXXXh
0316h			
0317h			
0318h			
0319h			
0319h			
031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
031Ch	Timer B4 Mode Register	TB3MR TB4MR	00XX 0000b
031Ch 031Dh	Timer B4 Mode Register	TB5MR	00XX 0000b
	5		
031Eh	External Interrupt Source Select Register 1 ⁽¹⁾	IFSRA	00h
031Fh	External Interrupt Source Select Register	IFSR	00h

Table 4.15 SFR Address Map (15/20)

X: Undefined Blank spaces are all reserved. No access is allowed. NOTE: 1. The IFSRA register is included in the 144-pin package only.

Address	Register	Symbol	After Reset
0320h			
0321h			
0322h			
0323h			
0324h	UART3 Special Mode Register 4	U3SMR4	00h
0325h	UART3 Special Mode Register 3	U3SMR3	00h
0326h	UART3 Special Mode Register 2	U3SMR2	00h
0327h	UART3 Special Mode Register	U3SMR	00h
0328h	UART3 Transmit/Receive Mode Register	U3MR	00h
0329h	UART3 Baud Rate Register	U3BRG	XXh
032Ah	LIADT2 Transmit Duffer Deviator	U3TB	VVVVh
032Bh	UART3 Transmit Buffer Register	0318	XXXXh
032Ch	UART3 Transmit/Receive Control Register 0	U3C0	0000 1000b
032Dh	UART3 Transmit/Receive Control Register 1	U3C1	0000 0010b
032Eh	LIAPT2 Passivo Puffer Pagistar		VVVVh
032Fh	UART3 Receive Buffer Register	U3RB	XXXXh
0330h			
0331h			
0332h			
0333h			
0334h	UART2 Special Mode Register 4	U2SMR4	00h
0335h	UART2 Special Mode Register 3	U2SMR3	00h
0336h	UART2 Special Mode Register 2	U2SMR2	00h
0337h	UART2 Special Mode Register	U2SMR	00h
0338h	UART2 Transmit/Receive Mode Register	U2MR	00h
0339h	UART2 Baud Rate Register	U2BRG	XXh
033Ah			VVVVL
033Bh	UART2 Transmit Buffer Register	U2TB	XXXXh
033Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
033Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
033Eh			NNNN F
033Fh	UART2 Receive Buffer Register	U2RB	XXXXh
0340h	Count Start Register	TABSR	00h
0341h	Clock Prescaler Reset Register	CPSRF	0XXX XXXXb
0342h	One-Shot Start Register	ONSF	00h
0343h	Trigger Select Register	TRGSR	00h
0344h	Up/Down Select Register	UDF	00h
0345h			
0346h			
0347h	Timer A0 Register	TAO	XXXXh
0348h	Timer A4 Desister	TA4	VVVVb
0349h	Timer A1 Register	TA1	XXXXh
034Ah	Timer A2 Desister	740	VVVVb
034Bh	Timer A2 Register	TA2	XXXXh
044Ch			
034Dh	Timer A3 Register	TA3	XXXXh
034Eh	Timer A4 Desister		VVVVh
034Fh	Timer A4 Register	TA4	XXXXh

Table 4.16 SFR Address Map (16/20)

Address	Register	Symbol	After Reset
0350h	Timer B0 Register	тво	XXXXh
0351h			7000011
0352h	Timer B1 Register	TB1	XXXXh
0353h			7000011
0354h	Timer B2 Register	TB2	XXXXh
0355h			7000011
0356h	Timer A0 Mode Register	TA0MR	00h
0357h	Timer A1 Mode Register	TA1MR	00h
0358h	Timer A2 Mode Register	TA2MR	00h
0359h	Timer A3 Mode Register	TA3MR	00h
035Ah	Timer A4 Mode Register	TA4MR	00h
035Bh	Timer B0 Mode Register	TB0MR	00XX 0000b
035Ch	Timer B1 Mode Register	TB1MR	00XX 0000b
035Dh	Timer B2 Mode Register	TB2MR	00XX 0000b
035Eh	Timer B2 Special Mode Register	TB2SC	XXXX XXX0b
035Fh	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 0000b
0360h			
0361h			
0362h			
0363h			
0364h	UART0 Special Mode Register 4	U0SMR4	00h
0365h	UART0 Special Mode Register 3	U0SMR3	00h
0366h	UART0 Special Mode Register 2	U0SMR2	00h
0367h	UART0 Special Mode Register	U0SMR	00h
0368h	UART0 Transmit/Receive Mode Register	UOMR	00h
0369h	UARTO Baud Rate Register	U0BRG	XXh
036Ah			
036Bh	UART0 Transmit Buffer Register	UOTB	XXXXh
036Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
036Dh	UARTO Transmit/Receive Control Register 1	U0C1	0000 0010b
036Eh			
036Fh	UART0 Receive Buffer Register	UORB	XXXXh
0370h			
0371h			
0372h	IrDA Control Register	IRCON	X000 0000b
0373h			
0374h			
0375h			
0376h			
0377h 0378h	DMA0 Request Source Select Register	DM0SL	0X00 0000b
0378h 0379h	DMA0 Request Source Select Register		0X00 0000b
0379h 037Ah	DMA1 Request Source Select Register	DM1SL	0X00 0000b
USIAN		DM2SL	
0070	DMA3 Request Source Select Register	DM3SL	0X00 0000b
037Bh			
037Ch	CRC Data Register	CRCD	XXXXh
	CRC Data Register	CRCD	XXXXh XXh

Table 4.17	SFR Address	Map (17/20)
------------	-------------	-------------

NOTE: 1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	After Reset
0380h	A/D0 Register 0	AD00	00XXh
0381h		ADOO	00,7,11
0382h	A/D0 Register 1	AD01	00XXh
0383h			00/041
0384h	A/D0 Register 2	AD02	00XXh
0385h		-	
0386h	A/D0 Register 3	AD03	00XXh
0387h			
0388h	A/D0 Register 4	AD04	00XXh
0389h 038Ah			
038An	A/D0 Register 5	AD05	00XXh
038Ch			
038Dh	A/D0 Register 6	AD06	00XXh
038Eh			
038Fh	A/D0 Register 7	AD07	00XXh
0390h			
0391h			
0392h	A/D0 Control Register 4	AD0CON4	XXXX 00XXb
0393h			
0394h	A/D0 Control Register 2	AD0CON2	XX0X X000b
0395h	A/D0 Control Register 3	AD0CON3	XXXX X000b
0396h	A/D0 Control Register 0	AD0CON0	00h
0397h	A/D0 Control Register 1	AD0CON1	00h
0398h	D/A Register 0	DA0	XXh
0399h			
039Ah	D/A Register 1	DA1	XXh
039Bh			100011012
039Ch	D/A Control Register	DACON	XXXX XX00b
039Dh	D/A Control Register 1	DACON1	XXXX 0000b
039Eh			
039Fh			

Table 4.18 SFR Address Map (18/20)

Table 5.2Recommended Operating Conditions (1/3)
(VCC1 = VCC2 = 3.0 to 5.5 V, Topr = -20 to 85°C unless otherwise specified)

Symphol		Parameter	Standard			Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit	
VCC1, VCC2	Supply voltage	P (VCC1 \geq VCC2)	3.0	5.0	5.5	V
AVCC	Analog supply	voltage		VCC1		V
VSS	Supply voltage)		0		V
AVSS	Analog supply	voltage		0		V
VIH	Input high "H" voltage	P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7 ⁽²⁾	0.8VCC2		VCC2	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7 ⁽¹⁾ , P9_0 to P9_7, P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7 ⁽²⁾ , XIN, RESET, CNVSS, BYTE	0.8VCC1		VCC1	
		P7_0, P7_1	0.8VCC1		6.0	
		P0_0 to P0_7, P1_0 to P1_7 (in single-chip mode)	0.8VCC2		VCC2	
		P0_0 to P0_7, P1_0 to P1_7 (in memory expansion mode and microprocessor mode)	0.5VCC2		VCC2	
VIL	Input low "L" voltage	P2_0 to P2_7,P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7 ⁽²⁾	0		0.2VCC2	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7 ⁽¹⁾ , P9_0 to P9_7, P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7 ⁽²⁾ , XIN, RESET, CNVSS, BYTE	0		0.2VCC1	
		P0_0 to P0_7, P1_0 to P1_7 (in single-chip mode)	0		0.2VCC2	1
		P0_0 to P0_7, P1_0 to P1_7 (in memory expansion mode and microprocessor mode)	0		0.16VCC2	

NOTES:

1. VIH and VIL reference for P8_7 apply when P8_7 is used as a programmable input port. It does not apply when P8_7 is used as XCIN.

2. P11 to P15 are provided in the 144-pin package only.

Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85° C unless otherwise specified)

Table 5.13 External Clock Input

Symbol	Parameter	Standard		Unit
Symbol	Symbol Parameter		Max.	Unit
tc	External clock input cycle time	31.25		ns
tw(H)	External clock input high ("H") pulse width	13.75		ns
tw(L)	External clock input low ("L") pulse width	13.75		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 5.14 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Doromotor	Standard		Unit
Symbol	Parameter		Max.	Unit
tc(TA)	TAiIN input cycle time	100		ns
tw(TAH)	TAiIN input high ("H") pulse width	40		ns
tw(TAL)	TAilN input low ("L") pulse width	40		ns

i = 0 to 4

Table 5.15 Timer A Input (Gate Signal Input in Timer Mode)

Symbol	Parameter	Standard		Unit
Symbol	Symbol		Max.	Onit
tc(TA)	TAilN input cycle time	400		ns
tw(TAH)	TAilN input high ("H") pulse width	200		ns
tw(TAL)	TAiIN input low ("L") pulse width	200		ns

i = 0 to 4

Table 5.16 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falameter	Min.	Max.	
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAiIN input low ("L") pulse width	100		ns

i = 0 to 4

Table 5.17 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	– Unit ns
	i alametei	Min.	Max.	Unit
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAilN input low ("L") pulse width	100		ns

i = 0 to 4

Timing Requirements

(VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85° C unless otherwise specified)

Table 5.18 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	i diameter	Min.	Max.	Offic
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input high ("H") pulse width	1000		ns
tw(UPL)	TAiOUT input low ("L") pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

i = 0 to 4

Table 5.19 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	- Unit
	i diameter	Min.	Max.	
tc(TA)	TAilN input cycle time	800		ns
tsu(TAIN-TAOUT)	TAiOUT input setup time	200		ns
tsu(TAOUT-TAIN)	TAilN input setup time	200		ns

i = 0 to 4

Table 5.20 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	i alametei	Min.	Max.	Offic
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on one edge)	40		ns
tc(TB)	TBiIN input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on both edges)	80		ns

i = 0 to 5

Table 5.21 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	- Unit ns
		Min.	Max.	
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Table 5.22 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	Offic
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85° C unless otherwise specified)

Table 5.23A/D Trigger Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (required for trigger)	1000		ns
tw(ADL)	ADTRG input low ("L") pulse width	125		ns

Table 5.24 Serial Interface

Symbol	Parameter	Stan	dard	Unit
	Falanielei	Min.	Max.	
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input high ("H") pulse width	100		ns
tw(CKL)	CLKi input low ("L") pulse width	100		ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi output hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90		ns

i = 0 to 6

Table 5.25Intelligent I/O Communication Function (Groups 0 and 1)

Symbol	Parameter	Stan	ndard	Linit
	Falanelei	Min.	Max.	Unit
tc(CK)	ISCLKi input cycle time	600		ns
tw(CKH)	ISCLKi input high ("H") pulse width	300		ns
tw(CKL)	ISCLKi input low ("L") pulse width	300		ns
td(C-Q)	ISTXDi output delay time		100	ns
th(C-Q)	ISTXDi output hold time	0		ns
tsu(D-C)	ISRXDi input setup time	100		ns
th(C-D)	ISRXDi input hold time	100		ns

i = 0, 1

Table 5.26 Intelligent I/O Communication Function (Group 2)

Symbol	Parameter	Star	Idard	Lloit
	Falameter	Min.	Max.	Unit
tc(CK)	ISCLK2 input cycle time	600		ns
tw(CKH)	ISCLK2 input high ("H") pulse width	300		ns
tw(CKL)	ISCLK2 input low ("L") pulse width	300		ns
td(C-Q)	ISTXD2 output delay time		180	ns
th(C-Q)	ISTXD2 output hold time	0		ns
tsu(D-C)	ISRXD2 input setup time	150		ns
th(C-D)	ISRXD2 input hold time	100		ns

Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.28 Memory Expansion mode and Microprocessor Mode

Symbol	Parameter	Stan	Idard	Unit
Symbol	Falameter	Min.	Max.	Onit
tac1(RD-DB)	Data input access time (RD standard)		(note 1)	ns
tac1(AD-DB)	Data input access time (AD standard, CS standard)		(note 1)	ns
tac2(RD-DB)	Data input access time (RD standard, when accessing a space with the multiplexed bus)		(note 1)	ns
tac2(AD-DB)	Data input access time (AD standard, when accessing a space with the multiplexed bus)		(note 1)	ns
tsu(DB-BCLK)	Data input setup time	26		ns
tsu(RDY-BCLK)	RDY input setup time	26		ns
tsu(HOLD-BCLK)	HOLD input setup time	30		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		25	ns

NOTE:

1. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. Insert wait states or lower the operation frequency, f(BCLK), if the calculated value is negative.

tac1(RD-DB) =	$\frac{10^9 \times m}{f(BCLK) \times 2}$	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, m = (b × 2) + 1)
tac1(AD-DB) =	10 ⁹ × n f(BCLK)	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, n = a + b)
tac2(RD-DB) =	$\frac{10^9 \times m}{f(BCLK) \times 2}$	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, m = (b × 2) - 1)
tac2(AD-DB) =	10 ⁹ × p f(BCLK) × 2	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, p = {(a + b - 1) × 2} + 1)

Symbol	Doromotor	arameter Measurement Condition ⁽¹⁾	Standard			Unit	
Symbol	Parameter			Min.	Typ. N	Max.	Uni
ICC	Power	Flash memory	f(CPU) = 24 MHz		23	33	mA
	supply current	version	f(CPU) = 16 MHz		17		mA
	current		f(CPU) = 8 MHz		11		mA
			f(CPU) = f(Ring) In on-chip oscillator low-power consumption mode		2.6		mA
			f(CPU) = 32 kHz In low-power consumption mode While flash memory is operating		430		μA
			f(CPU) = 32 kHz In low-power consumption mode While flash memory is stopped ⁽²⁾		30		μA
			Wait mode: f(CPU) = f(Ring) After entering wait mode from on-chip oscillator low-power consumption mode		45		μA
			Stop mode (while clock is stopped)		0.8	5	μA
			Stop mode (while clock is stopped) Topr = 85°C			50	μA
		Mask ROM	f(CPU) = 24 MHz		23	33	mA
		version	f(CPU) = 16 MHz		17		mA
			f(CPU) = 8 MHz		11		mA
		f(CPU) = f(Ring) In on-chip oscillator low-power consumption mode		1		mA	
		f(CPU) = 32 kHz In low-power consumption mode		30		μA	
		Wait mode: f(CPU) = f(Ring) After entering wait mode from on-chip oscillator low-power consumption mode		45		μA	
			Stop mode (while clock is stopped)		0.8	5	μA
			Stop mode (while clock is stopped) Topr = 85°C			50	μA

Table 5.33Electrical Characteristics (3/3)
(VCC1 = VCC2 = 3.3 V, VSS = 0 V, Topr = 25°C)

NOTES:

1. In single-chip mode, leave the output pins open and connect the input pins to VSS.

2. Value is obtained when setting the FMSTP bit in the FMR0 register to 1 (flash memory stopped) and running the program on RAM.

Timing Requirements

(VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.41 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input high ("H") pulse width	1000		ns
tw(UPL)	TAiOUT input low ("L") pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

i = 0 to 4

Table 5.42 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TA)	TAilN input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiOUT input setup time	500		ns
tsu(TAOUT-TAIN)	TAilN input setup time	500		ns

i = 0 to 4

Table 5.43 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	Falameter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on one edge)	40		ns
tc(TB)	TBiIN input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on both edges)	80		ns

i = 0 to 5

Table 5.44 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Table 5.45 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

A/D Trigger Input Table 5.46

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (required for trigger)	1000		ns
tw(ADL)	ADTRG input low ("L") pulse width	125		ns

Table 5.47 **Serial Interface**

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Onit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input high ("H") pulse width	100		ns
tw(CKL)	CLKi input low ("L") pulse width	100		ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi output hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90		ns

i = 0 to 6

Table 5.48 Intelligent I/O Communication Function (Groups 0 and 1)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Unit
tc(CK)	ISCLKi input cycle time	600		ns
tw(CKH)	ISCLKi input high ("H") pulse width	300		ns
tw(CKL)	ISCLKi input low ("L") pulse width	300		ns
td(C-Q)	ISTXDi output delay time		100	ns
th(C-Q)	ISTXDi output hold time	0		ns
tsu(D-C)	ISRXDi input setup time	100		ns
th(C-D)	ISRXDi input hold time	100		ns

i = 0, 1

Table 5.49 Intelligent I/O Communication Function (Group 2)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Unit
tc(CK)	ISCLK2 input cycle time	600		ns
tw(CKH)	ISCLK2 input high ("H") pulse width	300		ns
tw(CKL)	ISCLK2 input low ("L") pulse width	300		ns
td(C-Q)	ISTXD2 output delay time		180	ns
th(C-Q)	ISTXD2 output hold time	0		ns
tsu(D-C)	ISRXD2 input setup time	150		ns
th(C-D)	ISRXD2 input hold time	100		ns

Switching Characteristics (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.52Memory Expansion Mode and Microprocessor Mode (when accessing external
memory space)

Sympol	Parameter	Measurement	Stan	dard	Unit
Symbol	Farameter	Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard) ⁽³⁾		0		ns
th(WR-AD)	Address output hold time (WR standard) ⁽³⁾		(note 1)		ns
td(BCLK-CS)	Chip-select signal output delay time			18	ns
th(BCLK-CS)	Chip-select signal output hold time (BCLK standard)		-3		ns
th(RD-CS)	Chip-select signal output hold time (RD standard) ⁽³⁾		0		ns
th(WR-CS)	Chip-select signal output hold time (WR standard) ⁽³⁾	See Figure 5.2	(note 1)		ns
td(BCLK-RD)	RD signal output delay time			18	ns
th(BCLK-RD)	RD signal output hold time		-5		ns
td(BCLK-WR)	WR signal output delay time			18	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(note 2)		ns
th(WR-DB)	Data output hold time (WR standard) ⁽³⁾	1	(note 1)		ns
tw(WR)	WR output width	1	(note 2)		ns

NOTES:

1. Values, which depend on BCLK frequency, can be obtained from the following equations.

th(WR-DB) =
$$\frac{10^9}{f(BCLK) \times 2} - 20 \text{ [ns]}$$

th(WR-AD) = $\frac{10^9}{f(BCLK) \times 2} - 15 \text{ [ns]}$
th(WR-CS) = $\frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$

2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations.

$$td(DB-WR) = \frac{10^9 \times m}{f(BCLK)} - 20 \text{ [ns] (if external bus cycle is } a\phi + b\phi, m = b)$$
$$tw(WR) = \frac{10^9 \times n}{f(BCLK) \times 2} - 15 \text{ [ns] (if external bus cycle is } a\phi + b\phi, n = (b \times 2) - 1)$$

3. tc [ns] is added when recovery cycle is inserted.

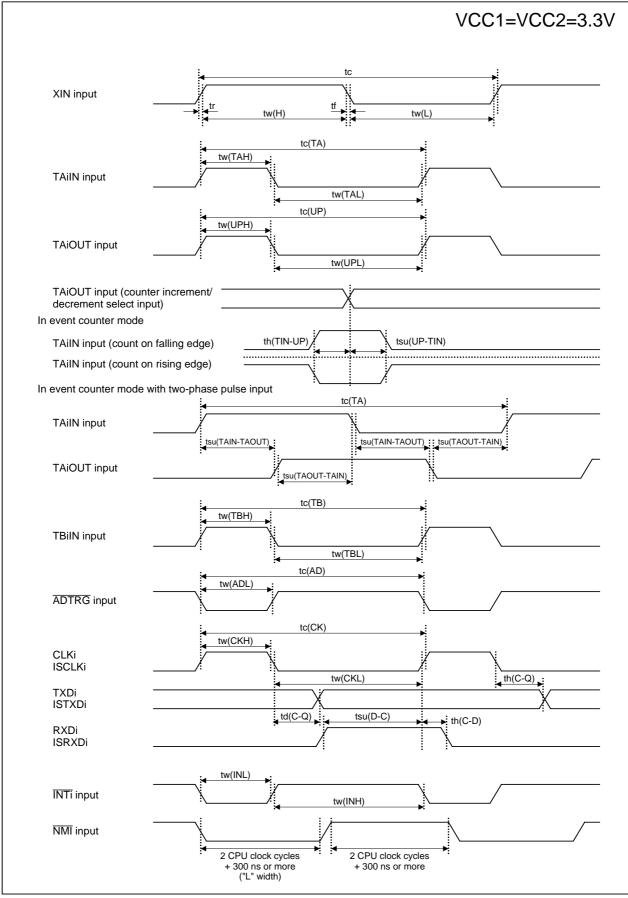


Figure 5.7 VCC1 = VCC2 = 3.3 V Timing Diagram (1/4)

REVISION HISTORY

M32C/87 Group Datasheet

Rev.	Date	Description	
Nev.	Dale	Page	Summary
0.50	Dec.16, 04	-	New Document
1.00	Jul.14, 05	-	M32C/87A and M32C/87B added
		-	Package code changed: 144P6Q-A to PLQP0144KA-A, 100P6Q-A to
			PLQP0100KB-A, 100P6S-A to PRQP0100JB-A
		-	"Low Voltage Detection Reset" changed to "Brown-out Detection Reset"
			Overview
		2	• Table 1.2 M32C/87 Group Performance (144-Pin Package) M32C/87A
			and M32C/87B performance added to the CAN module performance;
		3	Power Consumption performance released
		3	• Table 1.2 M32C/87 Group Performance (100-Pin Package) M32C/87A and M32C/87B performance added to the CAN module performance;
			Power Consumption performance released
		4	• Figure 1.1 M32C/87 Group Block Diagram Note 4 deleted; note 5 added
		7	• Figure 1.3 Pin Assignment for 144-Pin Package Note 15 added
		8	• Table 1.4 Pin Characteristics for 144-Pin Package Note 1 added
		11	• Figure 1.4 Pin Assignment for 100-Pin Package Note 19 added
		12	• Figure 1.5 Pin Assignment for 100-Pin Package Note 15 added
		13	• Table 1.5 Pin Characteristics for 100-Pin Package Note 1 added
		17	Table 1.6 Pin Description Note 2 added
		22	Memory Figure 3.1 Memory Map Note 3 changed
			Special Function Register (SFR)
		26	• The RLVL register Value after reset modified
		26	The IIO0IR to IIO11IR registers Value after reset modified
		27 to 30	 Name of the registers assosiated to Intelligent I/O changed
		27	 The G0RB register Value after reset modified
		27	• The G1BCR0 and G1BCR1 registers Value after reset modified
		29	The GOCR register Value after reset modified
		32 to 37 40	Note added to the CAN-associated registers The TCSPR register Value after react modified; note 1 added
		40	 The TCSPR register Value after reset modified; note 1 added The AD00 register Value after reset modified
		41	The PSC register Value after reset modified
		42	The PS2 register Value after reset modified
		43	The PCR register Value after reset modified
		44	The PSD1 register Value after reset modified
		45	The PCR register Value after reset modified
			Electrical Characteristics
		48	• Table 5.2 Electrical Characteristics Parameter f(BCLK) and its values
			added; min. and max. values for f(RING) added
		49	• Table 5.3 Electrical Characteristics VoH values modified; RPULLUP value
		50	modified
		50	Table 5.3 Electrical Characteristics (Continued) Measurement Condition and standard values for ICC added and some released
		52	• Table 5.6 Flash Memory Version Electrical Characteristics Word
			Program Time and Lock bit Program Time values modified; parameter All-
			Unlocked-Block-Erase Time deleted; note 1 deleted
		54	Table 5.10 Memory Expansion Mode and Microprocessor Mode
			tac1(RD-DB) expression on note 1 modified; tac2(RD-DB) expression on
			note 1 added

REVISION HISTORY			M32C/87 Group Datasheet
Rev.	Date		Description
		Page	Summary
1.50	Oct 20, 2007	All	 All in this manual Descriptions and formats unified Notation of numbers changed (e.g. 002 → 00b, FF₁₆ → FFh) Notation of pin name changed (e.g. RTP00 → RTP_0, A15(/D15) → [A15/D15]) [Term changed] Serial I/O → Serial interface Clock synchronous serial I/O mode → Clock synchronous mode Clock asynchronous serial I/O mode → Clock asynchronous mode Clock synchronous variable length → Variable data length clock synchronous Voltage detection circuit → Power supply voltage detection function Low voltage detection reset → Vdet3 detection function
			 Overview Header SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER RENESAS MCU 1.1 Features title added; 1.1 Applications changed to 1.1.1 Applications 1.2 Performance Overview changed to 1.1.2 Specifications Tables 1.1 to 1.4 Structure, descriptions in Specification field, NOTE, and value partially revised or deleted Real-Time Port Item deleted; ROM Correction Function Item added 1.3 Block Diagram moved following the 1.2 Product List 1.2 Product List Tables revised; NOTE 1 added Figures 1.3 to 1.5 Arrows for VSS and VCC deleted; NOTES partially modified Tables 1.9 and 1.13 CLKOUT pin moved from Bus Control Pin column to Control Pin column Tables 1.15 to 1.19 Descriptions revised; NOTE 1 added
		26	Memory Text partially modified
		34-39	 SFR Tables 4.8 to 4.13 NOTE "Set the PM13 bit in the PM1 register to 1 (2 wait states for SFR area) before accessing the CAN-associated registers." added
		45	 Table 4.19 The PSL5 register added to the Address field of 03BBh item; the PSL7 register added to the Address field of 03BFh item [Register names changed]
		27	002Fh Low Voltage Detection Interrupt Register → Vdet4 Detection Interrupt Register
		34	 01C1h UART5 Bit Rate Register → UART5 Baud Rate Register 01C9h UART6 Bit Rate Register → UART6 Baud Rate Register 01D0h UART5, UART6 Transmit/Receive Control Register 2 → UART5, UART6 Transmit/Receive Control Register 01DBh to 01D8h Pulse Output Data Register → RTP Output Buffer Register
		41 42	0303h to 0302h Timer A1-1 Register \rightarrow Timer A11 Register 0305h to 0304h Timer A2-1 Register \rightarrow Timer A21 Register 0307h to 0306h Timer A4-1 Register \rightarrow Timer A41 Register 0340h Count Start Flag \rightarrow Count Start Register
		76	0341h Clock Prescaler Reset Flag \rightarrow Clock Prescaler Reset Register

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as a such as assued reasonable care in compling the information in this document, but Renesas assumes no liability Mattowere for any damages incurred as a second was and regulations.
 Renesas has used reasonable care in compling the information in this document, but Renesas assumes no liability Mattowere for any damages incurred as a such as such assued reasonable care in compling the information may care as products are not designed provided in this document.
 When using or otherwise regulations in the information in this document. Dut Renesas assumes no liability Mattowere for any damages incurred as a state of the index of the second in the document.
 When using or otherwise regulations in the information in this document. Tou should evaluate the information conting in the information in the iso document.
 When using or otherwise regulations and product data. Bargeres to the asses products are not de

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com