

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	M32C/80
Core Size	16/32-Bit
Speed	32MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, IrDA, SIO, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	121
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 34x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30875fhagp-u5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Item	Function	Specification			
Serial Interface	UART0 to UART4	Clock synchronous/asynchronous × 5 $I^{2}C$ bus, special mode 2, GCI mode, SIM mode, IrDA mode ⁽²⁾ , IEBus (optional) ⁽¹⁾⁽³⁾			
	UART5	Clock synchronous/asynchronous × 1			
A/D Converter		10-bit resolution × 26 channels (in single-chip mode) 10-bit resolution × 10 channels (in memory expansion mode and microprocessor mode) Including sample and hold function			
D/A Converter		8-bit resolution × 2 channels			
CRC Calculation	n Circuit	CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$) compliant			
X/Y Converter		16 bits x 16 bits			
Intelligent I/O		 16-bit timer × 2 Time measurement function (input capture): 8 channels Waveform generation function (output compare): 10 channels Communication function: Clock synchronous mode, clock asynchronous mode, HDLC data processing mode, IEBus (optional)⁽¹⁾⁽³⁾ 2-phase pulse signal processing (2-phase encoder input) × 1 			
ROM Correction	n Function	Address match interrupt × 8			
CAN modules		Supporting CAN 2.0B specification M32C/87: 16 slots × 2 channels, M32C/87A: 16 slots × 1 channel M32C/87B: none			
I/O Ports	Programmable I/O ports	 Input only: 1 CMOS I/O: 85, selectable pull-up resistor N channel open drain ports: 2 			
Flash Memory		 Erase and program voltage: 3.3 V ± 0.3 V or 5.0 V ± 0.5 V Erase and program endurance: 100 times (all areas) Program security: ROM code protect and ID code check Debug functions: On-chip debug and on-board flash reprogram 			
Operating Frequ	uency/Supply Voltage	32 MHz: VCC1 = 4.2 to 5.5 V, VCC2 = 3.0 V to VCC1 24 MHz: VCC1 = 3.0 to 5.5 V, VCC2 = 3.0 V to VCC1			
Current Consumption		32 mA (32 MHz, VCC1 = VCC2 = 5 V) 23 mA (24 MHz, VCC1 = VCC2 = 3.3 V) 45 μ A (approx. 1 MHz, VCC1 = VCC2 = 3.3 V, on-chip oscillator low-power consumption mode \rightarrow wait mode) 0.8 μ A (VCC1 = VCC2 = 3.3 V, stop mode)			
Operating Ambi	ent Temperature (°C)	-20 to 85°C, -40 to 85°C (optional) ⁽³⁾			
Package		100-pin LQFP (PLQP0100KB-A) 100-pin QFP (PRQP0100JB-A)			

 Table 1.4
 Specifications (100-Pin Package) (2/2)

NOTES:

1. IEBus is a registered trademark of NEC Electronics Corporation.

2. Available in UART0.

3. Please contact a Renesas sales office for optional features.

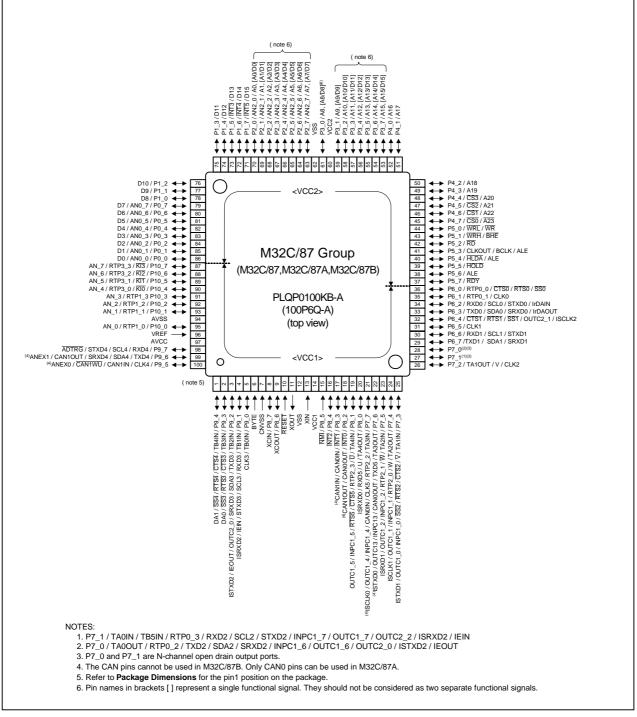


Figure 1.5 Pin Assignment for 100-Pin Package

1. Overview

Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin ⁽¹⁾	Intelligent I/O Pin	Analog Pin	Bus Contro Pin
1	99		P9_6			TXD4/SDA4/SRXD4/ CAN1OUT		ANEX1	
2	100		P9_5			CLK4/CAN1IN/ CAN1WU		ANEX0	
3	1		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
4	2		P9_3		TB3IN	CTS3/RTS3/SS3		DA0	
5	3		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/IEOUT/ISTXD2		
6	4		P9_1		TB1IN	RXD3/SCL3/STXD3	IEIN/ISRXD2		
7	5		P9_0		TB0IN	CLK3			
8	6	BYTE							
9	7	CNVSS							
10	8	XCIN	P8_7						
11	9	XCOUT	P8_6						
12	10	RESET							
13	11	XOUT							
14	12	VSS		1				1	
15	13	XIN							
16	14	VCC1							
17	15		P8_5	NMI					
18	16		P8_4	INT2					
19	17		P8_3	INT1		CAN0IN/CAN1IN			
20	18		P8_2	INTO		CAN0OUT/CAN1OUT			
21	19		P8_1		TA4IN/U/RTP2_3	CTS5/RTS5	INPC1_5/OUTC1_5		
22	20		P8_0		TA4OUT/U	RXD5	ISRXD0		
23	21		P7_7		TA3IN/RTP2_2	CLK5/CAN0IN	INPC1_4/OUTC1_4/ ISCLK0		
24	22		P7_6		TA3OUT	TXD5/CAN0OUT	INPC1_3/OUTC1_3/ ISTXD0		
25	23		P7_5		TA2IN/W/RTP2_1		INPC1_2/OUTC1_2 ISRXD1		
26	24		P7_4		TA2OUT/W/ RTP2_0		INPC1_1/OUTC1_1/ ISCLK1		
27	25		P7_3		TA1IN/V	CTS2/RTS2/SS2	INPC1_0/OUTC1_0/ ISTXD1		
28	26		P7_2		TA1OUT/V	CLK2			
29	27		P7_1		TA0IN/TB5IN/ RTP0_3	RXD2/SCL2/STXD2	INPC1_7/OUTC1_7/ OUTC2_2/ISRXD2/IEIN		
30	28		P7_0		TA0OUT/RTP0_2	TXD2/SDA2/SRXD2	INPC1_6/OUTC1_6/ OUTC2_0/ISTXD2/IEOUT		
31	29		P6_7			TXD1/SDA1/SRXD1			
32	30		P6_6			RXD1/SCL1/STXD1			
33	31		P6_5			CLK1			
34	32		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2		
35	33		P6_3			TXD0/SDA0/SRXD0/ IrDAOUT			
36	34		P6_2			RXD0/SCL0/STXD0/ IrDAIN			
37	35		P6_1		RTP0_1	CLK0			
38	36		P6_0		RTP0_0	CTS0/RTS0/SS0			
39	37		P5_7						RDY
40	38		P5_6						ALE

 Table 1.12
 100-Pin Package List of Pin Names (1/3)

NOTE:

1. The CAN pins cannot be used in M32C/87B. Only CAN0 pins can be used in M32C/87A.

Туре	Symbol	I/O Type	Supply Voltage	Description			
Main clock input	XIN	I	VCC1	Input/output pins for the main clock oscillation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT. To			
Main clock output	XOUT	0	VCC1	 apply an external clock, apply it to XIN and leave XOUT op Input/output pins for the sub clock oscillation circuit. Connect 			
Sub clock input	XCIN	I	VCC1	Input/output pins for the sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT. To apply an external			
Sub clock output	XCOUT	0	VCC1	clock, apply it to XCIN and leave XCOUT open.			
BCLK output	BCLK	0	VCC2	Bus clock output pin.			
Clock output	CLKOUT	0	VCC2	The CLKOUT pin outputs the clock having the same frequency as fC, f8, or f32.			
INT interrupt	INT0 to INT2	I	VCC1	INT interrupt input pins.			
input	INT3 to INT5	I	VCC2				
NMI interrupt input	NMI	I	VCC1	NMI interrupt input pin. Connect the NMI pin to VCC1 via a resistor when the NMI interrupt is not used.			
Timer A	TA0OUT to TA4OUT	I/O	VCC1 Timer A0 to A4 input/output pins. (TA0OUT is N-channel open drain output.)				
TAOIN to I VCC1 Timer A0 to A4 input pins. TA4IN VCC1 Timer A0 to A4 input pins.			Timer A0 to A4 input pins.				
Timer B	TB0IN to TB5IN	I	VCC1				
Three-phase motor control timer output	U, Ū, V, V, W, W	0	VCC1	Three-phase motor control timer output pins.			
Serial	CTS0 to CTS5	I	VCC1	Input pins to control data transmission.			
interface	RTS0 to RTS5	0	VCC1	Output pins to control data reception.			
	CLK0 to CLK5	I/O	VCC1	Serial clock input/output pins.			
	RXD0 to RXD5	I	VCC1	Serial data input pins.			
	TXD0 to TXD5	0	VCC1	Serial data output pins. (TXD2 is N-channel open drain output.)			
I ² C mode	SDA0 to SDA4	I/O	VCC1	Serial data input/output pins. (SDA2 is N-channel open drain output.)			
	SCL0 to SCL4	I/O	VCC1	Serial clock input/output pins. (SCL2 is N-channel open drain output.)			
Serial interface	STXD0 to STXD4	0	VCC1	Serial data output pins when slave mode is selected. (STXD2 is N-channel open drain output.)			
special function	SRXD0 to SRXD4	Ι	VCC1	Serial data input pins when slave mode is selected.			
	SS0 to SS4	I	VCC1	Control input pins used in the serial interface special mode.			
IrDA	IrDAIN	I	VCC1	IrDA serial data input pin.			
	IrDAOUT	0	VCC1	IrDA serial data output pin.			
CAN ⁽¹⁾	CAN0IN, CAN1IN	I	VCC1	Received data input pins for the CAN communication function.			
	CAN0OUT, CAN1OUT	0	VCC1	Transmit data output pins for the CAN communication function.			
	CAN1WU	1	VCC1	CAN wake-up interrupt input pin.			

Table 1.16	Pin Functions (100-Pin and 144-Pin Packages) (2/4)
------------	-----------------	-------------------------------------

I: Input O: Output I/O: Input and output NOTE:

1. The CAN pins cannot be used in M32C/87B. Only CAN0 pins can be used in M32C/87A.

Туре	Symbol	I/O Type	Supply Voltage	Description
I/O port P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 I/O VCC2		VCC2	8-bit CMOS I/O ports. The Port Pi Direction Register (i = 0 to 15) determines if each pin is used as an input port or an output port. The Pull-Up Control Registers determine if the input ports, divided into groups of four, are pulled up or not.	
	P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_7	I/O	VCC1	These 8-bit I/O ports are functionally equivalent to P0. (P7_0 and P7_1 are N-channel open drain output.)
	P8_0 to P8_4 P8_6, P8_7	I/O	VCC1	These I/O ports are functionally equivalent to P0.
Input port	P8_5	I	VCC1	Shares the pin with $\overline{\text{NMI}}$. Input port to read $\overline{\text{NMI}}$ pin level.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Key input interrupt input pins.

 Table 1.18
 Pin Functions (100-Pin and 144-Pin Package) (4/4)

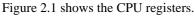
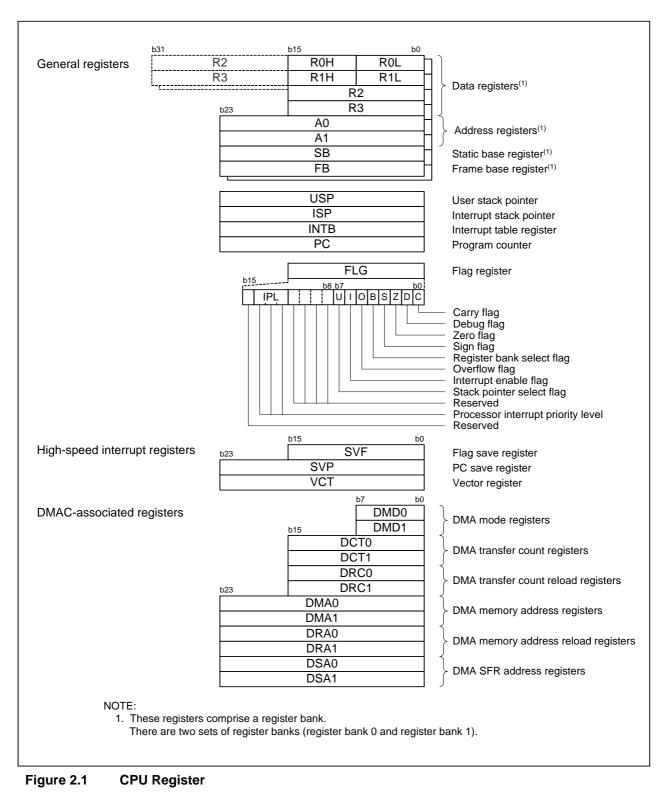

I: Input O: Output I/O: Input and output

Table 1.19 Pin Functions (144-Pin Package Only)


		I/O	Supply	
Туре	Symbol	7/0 Туре	Supply Voltage	Description
INT Interrupt Input	INT6 to INT8	-	VCC1	INT interrupt input pins.
Serial interface	CTS6	Ι	VCC1/ VCC2	Input pin to control data transmission.
	RTS6	0	VCC1/ VCC2	Output pin to control data reception.
	CLK6	I/O	VCC1/ VCC2	Serial clock input/output pin.
	RXD6	Ι	VCC1/ VCC2	Serial data input pin.
	TXD6	0	VCC1/ VCC2	Serial data output pin.
Intelligent I/O	OUTC2_3 to OUTC2_7	0	VCC2	Output pins for the waveform generation function.
A/D converter	AN15_0 to AN15_7	I	VCC1	Analog input pins for the A/D converter.
I/O port	P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7	I/O	VCC2	These I/O ports are functionally equivalent to P0.
	P14_0 to P14_6, P15_0 to P15_7	I/O	VCC1	These I/O ports are functionally equivalent to P0.

I: Input O: Output I/O: Input and output

2. Central Processing Unit (CPU)

The register bank is comprised of eight registers (R0, R1, R2, R3, A0, A1, SB, and FB) out of 28 CPU registers. There are two sets of register banks.

4. Special Function Registers (SFRs)

Special Function Registers (SFRs) are the control registers of peripheral functions. Tables 4.1 to 4.20 list SFR address maps.

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 ⁽¹⁾	PM0	1000 0000b(CNVSS="L 0000 0011b(CNVSS="H
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	0000 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	XXXX 0000b
000Bh	External Data Bus Width Control Register	DS	XXXX 1000b(BYTE="L XXXX 0000b(BYTE="H
000Ch	Main Clock Division Register	MCD	XXX0 1000b
000Dh	Oscillation Stop Detection Register	CM2	00h
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0010h			
0011h	Address Match Interrupt Register 0	RMAD0	000000h
0012h			
0013h	Processor Mode Register 2	PM2	00h
0014h			
0015h	Address Match Interrupt Register 1	RMAD1	000000h
0016h			
0017h	Voltage Detection Register 2	VCR2	00h
0018h			
0019h	Address Match Interrupt Register 2	RMAD2	000000h
001Ah			
001Bh	Voltage Detection Register 1	VCR1	0000 1000b
001Ch			
001Dh	Address Match Interrupt Register 3	RMAD3	000000h
001Eh	1		
001Fh			
0020h			
0021h			
0022h			
0023h			
0024h			
0025h			
0026h	PLL Control Register 0	PLC0	0001 X010b
0027h	PLL Control Register 1	PLC1	000X 0000b
0028h			
0029h	Address Match Interrupt Register 4	RMAD4	000000h
002Ah			
002Bh			
002Ch			
002Dh	Address Match Interrupt Register 5	RMAD5	000000h
002Eh	1		
002Fh	Vdet4 Detection Interrupt Register	D4INT	XX00 0000b

Table 4.1SFR Address Map (1/20)

X: Undefined

Blank spaces are all reserved. No access is allowed.

NOTE: 1. Bits PM01 and PM00 in the PM0 register maintain values set before reset, even after software reset or watchdog timer reset has been performed.

Address	Register	Symbol	After Reset
0090h	UART0 Transmit/NACK Interrupt Control Register	SOTIC	XXXX X000b
0091h	UART1/UART4 Bus Conflict Detection Interrupt Control Register	BCN1IC/BCN4IC	XXXX X000b
0092h	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X000b
0093h	Key Input Interrupt Control Register	KUPIC	XXXX X000b
0094h	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
0095h	II/O Interrupt Control Register 1 / CAN1 Interrupt Control Register 1	IIO1IC/CAN4IC	XXXX X000b
0096h	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
0097h	II/O Interrupt Control Register 3	IIO3IC	XXXX X000b
0098h	Timer B4 Interrupt Control Register	TB4IC	XXXX X000b
0099h	II/O Interrupt Control Register 5 /CAN1 Interrupt Control Register 2	IIO5IC/CAN5IC	XXXX X000b
009Ah	INT4 Interrupt Control Register	INT4IC	XX00 X000b
009Bh	II/O Interrupt Control Register 7	IIO7IC	XXXX X000b
009Ch	INT2 Interrupt Control Register	INT2IC	XX00 X000b
009Dh	II/O Interrupt Control Register 9 / CAN0 Interrupt Control Register 0	IIO9IC/CAN0IC	XXXX X000b
009Eh	INTO Interrupt Control Register	INTOIC	XX00 X000b
009Eh	Exit Priority Register	RLVL	XXXX 0000b
009111 00A0h	Interrupt Request Register 0	IIO0IR	0000 000Xb
00A0h	Interrupt Request Register 0	liO1IR	0000 000Xb
00A11	Interrupt Request Register 2	llO2IR	0000 000Xb
00A2h	Interrupt Request Register 3	IIO3IR	0000 000Xb
00A3h	Interrupt Request Register 4	liO4IR	0000 000Xb
00A4n	Interrupt Request Register 5	IIO5IR	0000 000Xb
00A6h	Interrupt Request Register 6	liO6IR	0000 000Xb
00A7h	Interrupt Request Register 7	liO7IR	0000 000Xb
00A8h	Interrupt Request Register 8	IIO8IR	0000 000Xb
00A0h	Interrupt Request Register 9	IIO9IR	0000 000Xb
00AAh	Interrupt Request Register 10	IIO10IR	0000 000Xb
00ABh	Interrupt Request Register 11	IIO11IR	0000 000Xb
00ACh			
00ADh			
00ABh			
00AFh			
00B0h	Interrupt Enable Register 0	IIO0IE	00h
00B0h	Interrupt Enable Register 1	IIO1IE	00h
00B2h	Interrupt Enable Register 2	IIO2IE	00h
00B3h	Interrupt Enable Register 3	IIO3IE	00h
00B3h	Interrupt Enable Register 4	IIO4IE	00h
00B5h	Interrupt Enable Register 5	IIO5IE	00h
00B6h	Interrupt Enable Register 6	IIO6IE	00h
00B0h	Interrupt Enable Register 7	IIO7IE	00h
00B8h	Interrupt Enable Register 8	IIO8IE	00h
00B9h	Interrupt Enable Register 9	IIO9IE	00h
00BAh	Interrupt Enable Register 10	IIO10IE	00h
00BAh 00BBh	Interrupt Enable Register 11	IIO11IE	00h
00BBh 00BCh			
00BCh 00BDh			
00BEh			
00BEh			
to			
00DFh			

Table 4.4 SFR Address Map (4/20)

X: Undefined Blank spaces are all reserved. No access is allowed.

Table 5.11Voltage Detection Circuit Electrical Characteristics
(VCC1 = VCC2 = 3.0 to 5.5 V, VSS = 0 V, Topr = 25°C unless otherwise specified)

Symbol	Parameter	Measurement Condition	ŝ	Unit		
Symbol	i alametei	Measurement Condition	Min.	Тур.	Max.	Onit
Vdet4	Vdet4 detection voltage		3.3	3.8	4.4	V
Vdet3	Vdet3 detection voltage	VCC1 = 3.0 V to 5.5 V		3.0		V
Vdet3s	Hardware reset 2 hold voltage	VCCT = 3.0 V to 5.5 V			2.0	V
Vdet3r	Hardware reset 2 release voltage			3.1		V

NOTES:

1. Vdet4 > Vdet3

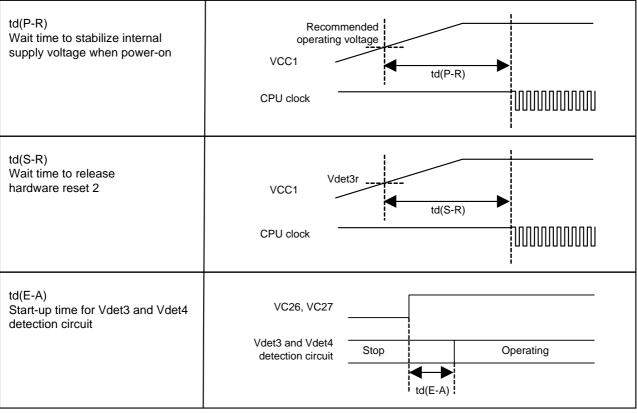

2. Vdet3r > Vdet3 is not guaranteed.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measurement Condition	0,	Unit		
Symbol	Falanielei	Measurement Condition	Min.	Тур.	Max.	Offic
td(P-R)	Wait time to stabilize internal supply voltage when power-on	VCC1 = 3.0 to 5.5 V			2	ms
td(S-R)	Wait time to release hardware reset 2	VCC1 = Vdet3r to 5.5 V		6 ⁽¹⁾	20	ms
td(E-A)	Start-up time for Vdet3 and Vdet4 detection circuit	VCC1 = 3.0 to 5.5 V			20	μS

NOTE:

1. When VCC1 = 5 V

Figure 5.1	Power Supply Timing Diagram
------------	-----------------------------

Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85° C unless otherwise specified)

Table 5.13 External Clock Input

Symbol	(L) External clock input low ("L") pulse width	Standard		Unit
Symbol	Falanelei	Min.	Max.	Unit
tc	External clock input cycle time	31.25		ns
tw(H)	External clock input high ("H") pulse width	13.75		ns
tw(L)	External clock input low ("L") pulse width	13.75		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 5.14 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Parameter		Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(TA)	TAiIN input cycle time	100		ns
tw(TAH)	TAiIN input high ("H") pulse width	40		ns
tw(TAL)	TAilN input low ("L") pulse width	40		ns

i = 0 to 4

Table 5.15 Timer A Input (Gate Signal Input in Timer Mode)

Symbol	Parameter	Standard		Unit
Symbol		Min.	Max.	Onit
tc(TA)	TAilN input cycle time	400		ns
tw(TAH)	TAilN input high ("H") pulse width	200		ns
tw(TAL)	TAiIN input low ("L") pulse width	200		ns

i = 0 to 4

Table 5.16 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAiIN input low ("L") pulse width	100		ns

i = 0 to 4

Table 5.17 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	i alametei	Min.	Max.	Unit
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAilN input low ("L") pulse width	100		ns

i = 0 to 4

Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.28 Memory Expansion mode and Microprocessor Mode

Symbol	Parameter	Stan	Idard	Unit
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (RD standard)		(note 1)	ns
tac1(AD-DB)	Data input access time (AD standard, CS standard)		(note 1)	ns
tac2(RD-DB)	Data input access time (RD standard, when accessing a space with the multiplexed bus)		(note 1)	ns
tac2(AD-DB)	Data input access time (AD standard, when accessing a space with the multiplexed bus)		(note 1)	ns
tsu(DB-BCLK)	Data input setup time	26		ns
tsu(RDY-BCLK)	RDY input setup time	26		ns
tsu(HOLD-BCLK)	HOLD input setup time	30		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		25	ns

NOTE:

1. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. Insert wait states or lower the operation frequency, f(BCLK), if the calculated value is negative.

tac1(RD-DB) =	$\frac{10^9 \times m}{f(BCLK) \times 2}$	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, m = (b × 2) + 1)
tac1(AD-DB) =	10 ⁹ × n f(BCLK)	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, n = a + b)
tac2(RD-DB) =	$\frac{10^9 \times m}{f(BCLK) \times 2}$	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, m = (b × 2) - 1)
tac2(AD-DB) =	10 ⁹ × p f(BCLK) × 2	- 35 [ns] (if external bus cycle is $a\phi + b\phi$, p = {(a + b - 1) × 2} + 1)

Switching Characteristics (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.29Memory Expansion Mode and Microprocessor Mode (when accessing external
memory space)

Symbol	Parameter	Measurement	Stan	dard	Unit
Symbol	Farameter	Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard) ⁽³⁾		0		ns
th(WR-AD)	Address output hold time (WR standard) ⁽³⁾		(note 1)		ns
td(BCLK-CS)	Chip-select signal output delay time			18	ns
th(BCLK-CS)	Chip-select signal output hold time (BCLK standard)		-3		ns
th(RD-CS)	Chip-select signal output hold time (RD standard) ⁽³⁾		0		ns
th(WR-CS)	Chip-select signal output hold time (WR standard) ⁽³⁾	See Figure 5.2	(note 1)		ns
td(BCLK-RD)	RD signal output delay time			18	ns
th(BCLK-RD)	RD signal output hold time		-5		ns
td(BCLK-WR)	WR signal output delay time			18	ns
th(BCLK-WR)	WR signal output hold time		-5		ns
td(DB-WR)	Data output delay time (WR standard)		(note 2)		ns
th(WR-DB)	Data output hold time (WR standard) ⁽³⁾	1	(note 1)		ns
tw(WR)	WR output width	1	(note 2)		ns

NOTES:

1. Values, which depend on BCLK frequency, can be obtained from the following equations.

th(WR-DB) =
$$\frac{10^9}{f(BCLK) \times 2} - 15 \text{ [ns]}$$

th(WR-AD) = $\frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$
th(WR-CS) = $\frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$

2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations.

$$td(DB-WR) = \frac{10^9 \times m}{f(BCLK)} - 20 \text{ [ns] (if external bus cycle is } a\phi + b\phi, m = b)$$
$$tw(WR) = \frac{10^9 \times n}{f(BCLK) \times 2} - 15 \text{ [ns] (if external bus cycle is } a\phi + b\phi, n = (b \times 2) - 1)$$

3. tc [ns] is added when recovery cycle is inserted.

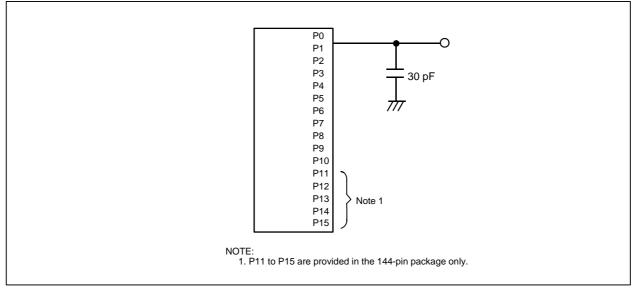


Figure 5.2 P0 to P15 Measurement Circuit

VCC1 = VCC2 = 3.3 V

Table 5.31Electrical Characteristics (1/3)
(VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 24 MHz unless otherwise
specified)

Symbol		Parameter		Measurement	Sta	ndard		Unit
Symbol		Faldilletei		Condition	Min.	Тур.	Max.	Onit
VOH	Output high "H" voltage	P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P11_0 to P11_4, P12_0 to P13_0 to P13_7 ⁽¹⁾	7, P5_0 to P5_7,	IOH = -1 mA	VCC2 - 0.6		VCC2	~
		P6_0 to P6_7, P7_2 to P7_ P8_6, P8_7, P9_0 to P9_7, P14_0 to P14_6, P15_0 to	P10_0 to P10_7,		VCC1 - 0.6		VCC1	
		XOUT		IOH = -0.1 mA	2.7		VCC1	V
		XCOUT	Drive capability = high	No load applied		2.5		V
			Drive capability = low	No load applied		1.6		V
VOL	Output low "L" voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾		IOL = 1 mA			0.5	V
		XOUT		IOL = 0.1 mA			0.5	V
		XCOUT	Drive capability = high	No load applied		0		V
			Drive capability = low	No load applied		0		V
VT+ - VT-	Hysteresis	HOLD, RDY, TAOIN to TA4 TBOIN to TB5IN, INTO to IN CTS0 to CTS6, CLK0 to C TA0OUT to TA4OUT, NMI RXD0 to RXD6, SCL0 to S SDA0 to SDA4, INPC1_0 t ISCLK0 to ISCLK2, ISRXD IEIN, CANOIN, CAN1IN, C	NT8, ADTRG, LK6, , KI0 to KI3, CL4, o INPC1_7, 10 to ISRXD2,		0.2		1.0	V
		RESET			0.2		1.8	V

NOTE:

1. P11 to P15 are provided in the 144-pin package only.

VCC1 = VCC2 = 3.3 V

Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.36 External Clock Input

Symbol		Standard		Unit
Symbol	Falanetei	Min.	Max.	Unit
tc	External clock input cycle time	41		ns
tw(H)	External clock input high ("H") pulse width	18		ns
tw(L)	External clock input low ("L") pulse width	18		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 5.37 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(TA)	TAiIN input cycle time	100		ns
tw(TAH)	TAiIN input high ("H") pulse width	40		ns
tw(TAL)	TAilN input low ("L") pulse width	40		ns

i = 0 to 4

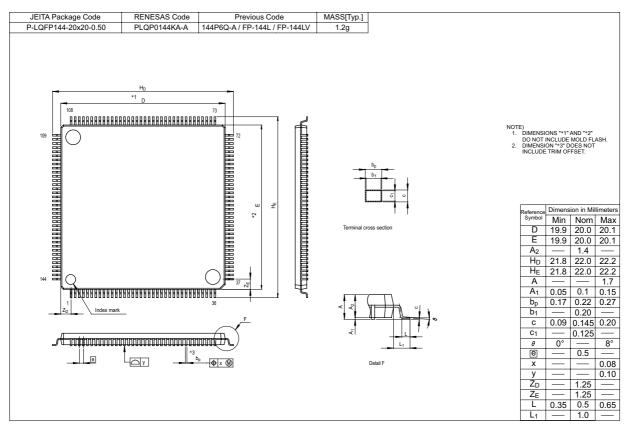
Table 5.38 Timer A Input (Gate Signal Input in Timer Mode)

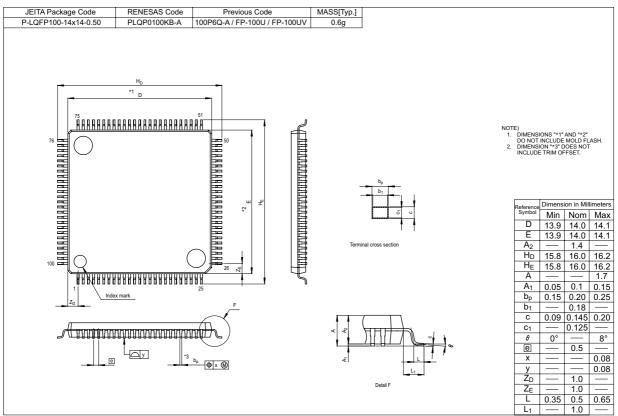
Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAiIN input cycle time	400		ns
tw(TAH)	TAiIN input high ("H") pulse width	200		ns
tw(TAL)	TAiIN input low ("L") pulse width	200		ns

i = 0 to 4

Table 5.39 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAiIN input low ("L") pulse width	100		ns


i = 0 to 4


Table 5.40 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAilN input low ("L") pulse width	100		ns

i = 0 to 4

Appendix 1. Package Dimensions

REJ03B0127-0151 Rev.1.51 Jul 31, 2008 **RENESAS** Page 84 of 85

REVISION HISTORY

M32C/87 Group Datasheet

Rev.	Date		Description
Nev.	Dale	Page	Summary
0.50	Dec.16, 04	-	New Document
1.00	Jul.14, 05	-	M32C/87A and M32C/87B added
		-	Package code changed: 144P6Q-A to PLQP0144KA-A, 100P6Q-A to
			PLQP0100KB-A, 100P6S-A to PRQP0100JB-A
		-	"Low Voltage Detection Reset" changed to "Brown-out Detection Reset"
			Overview
		2	• Table 1.2 M32C/87 Group Performance (144-Pin Package) M32C/87A
			and M32C/87B performance added to the CAN module performance;
		3	Power Consumption performance released
		3	• Table 1.2 M32C/87 Group Performance (100-Pin Package) M32C/87A and M32C/87B performance added to the CAN module performance;
			Power Consumption performance released
		4	• Figure 1.1 M32C/87 Group Block Diagram Note 4 deleted; note 5 added
		7	• Figure 1.3 Pin Assignment for 144-Pin Package Note 15 added
		8	• Table 1.4 Pin Characteristics for 144-Pin Package Note 1 added
		11	• Figure 1.4 Pin Assignment for 100-Pin Package Note 19 added
		12	• Figure 1.5 Pin Assignment for 100-Pin Package Note 15 added
		13	• Table 1.5 Pin Characteristics for 100-Pin Package Note 1 added
		17	Table 1.6 Pin Description Note 2 added
		22	Memory Figure 3.1 Memory Map Note 3 changed
			Special Function Register (SFR)
		26	• The RLVL register Value after reset modified
		26	The IIO0IR to IIO11IR registers Value after reset modified
		27 to 30	 Name of the registers assosiated to Intelligent I/O changed
		27	 The G0RB register Value after reset modified
		27	• The G1BCR0 and G1BCR1 registers Value after reset modified
		29	The GOCR register Value after reset modified
		32 to 37 40	Note added to the CAN-associated registers The TCSPR register Value after react modified; note 1 added
		40	 The TCSPR register Value after reset modified; note 1 added The AD00 register Value after reset modified
		41	The PSC register Value after reset modified
		42	The PS2 register Value after reset modified
		43	The PCR register Value after reset modified
		44	The PSD1 register Value after reset modified
		45	The PCR register Value after reset modified
			Electrical Characteristics
		48	• Table 5.2 Electrical Characteristics Parameter f(BCLK) and its values
			added; min. and max. values for f(RING) added
		49	• Table 5.3 Electrical Characteristics VoH values modified; RPULLUP value
		50	modified
		50	Table 5.3 Electrical Characteristics (Continued) Measurement Condition and standard values for ICC added and some released
		52	• Table 5.6 Flash Memory Version Electrical Characteristics Word
			Program Time and Lock bit Program Time values modified; parameter All-
			Unlocked-Block-Erase Time deleted; note 1 deleted
		54	Table 5.10 Memory Expansion Mode and Microprocessor Mode
			tac1(RD-DB) expression on note 1 modified; tac2(RD-DB) expression on
			note 1 added

REVISION HISTORY		TORY	M32C/87 Group Datasheet
Rev. Date			Description
Rev.	Rev. Date		Summary
		42	 SFR [Register names changed] 0342h One-Shot Start Flag → One-Shot Start Register 0344h Up-Down Flag → Up/Down Select Register
		27 27 29 31 31 32 34 34	• [Value After Reset changed] 000Fh WDC 000X XXX2 \rightarrow 00XX XXXb 002Fh D4INT 0016 \rightarrow XX00 0000b 007Bh IIO6IC XX00 X0002 \rightarrow XXXX X000b 00EFh G0CR XX00 X0112 \rightarrow 0000 X011b 00FEh G0IRF 0016 \rightarrow 0000 XXXb 013Eh G1IRF 0016 \rightarrow 0000 XXXb 01C7h to 01C6h U5RB XXXX XXXX 0XXX2 \rightarrow XXXh 01CFh to 01CEh U6RB XXXX XXXX 0XX2 \rightarrow XXXh
		34 44	01CFn to 01CEn 06RB XXXX XXXX XXXX 0XXX2 \rightarrow XXXXn 038Fh to 0382h AD07 to AD01 XXXX16 \rightarrow 00XXh
		47 50-53 50 51,69 53,71 54 54,55 56,73 58,74 59 60 61 62-63 65-68 69-72 75 76 77 78-79 80-83	 Electrical Characteristics [Term changed] Low Voltage Reset → Hardware Reset 2 Low Voltage Detection → Vdet3 and Vdet4 detection circuit Table 5.1 Description in Condition field of Pd (Power consumption) partially modified Tables 5.2 to 5.9 f(BCLK) is changed to f(CPU) Table 5.4 Description added in Parameter field of f(CPU); f(VCO) added Tables 5.5 to 5.7 and Tables 5.31 to 5.33 Description in XCOUT and Hysteresis in Parameter fields partially modified Table 5.7 and 5.33 Structure and standard values revised; items in Measurement Condition and NOTE added Table 5.8 Description in Parameter field and NOTE partially modified Table 5.9 and 5.10 Description in Parameter field and NOTE partially modified Tables 5.11 and 5.36 Description in Parameter field and standard value partially modified Tables 5.24 values revised; Table 5.25 and 5.26 added Table 5.29 NOTE 3 added; NOTE added Table 5.28 moved to the last table in Timing Requirements Table 5.29 NOTE 3 added; Table 26.30 NOTE 5 added Figures 5.3 to 5.6 Order rearranged; measurement condition modified Table 5.31 to 5.35 f(BCLK) revised to f(CPU) Table 5.47 Values revised; Table 5.48 and 5.49 added Table 5.50 Titles modified; NOTE added Table 5.51 Table moved to the last table in Timing Requirements Table 5.51 Table moved to the last table in Timing Requirements Table 5.51 Table moved to the last table in Timing Requirements Table 5.51 Table moved to the last table in Timing Requirements Table 5.51 Table moved to the last table in Timing Requirements Table 5.52 NOTE 3 added; Table 5.53 NOTE 5 added Table 5.51 Table moved to the last table in Timing Requirements Table 5.52 NOTE 3 added; Table 5.53 NOTE 5 added Figures 5.7 to 5.10 Order rearranged
1.51	Jul 31, 2008	-	All in this manual [description modified] • Title of group tables "(current table number / total tables)" added
		19 21	Overview 1.5 Pin Descriptions Chapter and table title changed to Pin Functions Table 1.17 Supply voltage for AN0_0 to AN0_7, AN2_0 to AN2_7 modified

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as a such as assued reasonable care in compling the information in this document, but Renesas assumes no liability Mattowere for any damages incurred as a second was and regulations.
 Renesas has used reasonable care in compling the information in this document, but Renesas assumes no liability Mattowere for any damages incurred as a such as such assued reasonable care in compling the information may care as products are not designed provided in this document.
 When using or otherwise regulations in the information in this document. Dut Renesas assumes no liability Mattowere for any damages incurred as a state of the index of the second in the document.
 When using or otherwise regulations in the information in this document. Tou should evaluate the information conting in the information in the information in the information and traffic information conting is a state of the instate of the second in this documen

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com