

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M32C/80
Core Size	16/32-Bit
Speed	32MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, IrDA, SIO, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30879fkagp-u5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

M32C/87 Group (M32C/87, M32C/87A, M32C/87B) RENESAS MCU

1. Overview

1.1 Features

The M32C/87 Group (M32C/87, M32C/87A, M32C/87B) is a single-chip control MCU, fabricated using high-performance silicon gate CMOS technology, embedding the M32C/80 Series CPU core. The M32C/87 Group (M32C/87, M32C/87A, M32C/87B) is housed in 144-pin and 100-pin plastic molded LQFP/QFP packages.

With a 16-Mbyte address space, this MCU combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed.

The M32C/87 Group (M32C/87, M32C/87A, M32C/87B) has a multiplier and DMAC adequate for office automation, communication devices and industrial equipment, and other high-speed processing applications.

1.1.1 Applications

Audio components, cameras, office equipment, communication devices, mobile devices, etc.

1.3 Block Diagram

Figure 1.2 shows a block diagram of the M32C/87 Group (M32C/87, M32C/87A, M32C/87B).

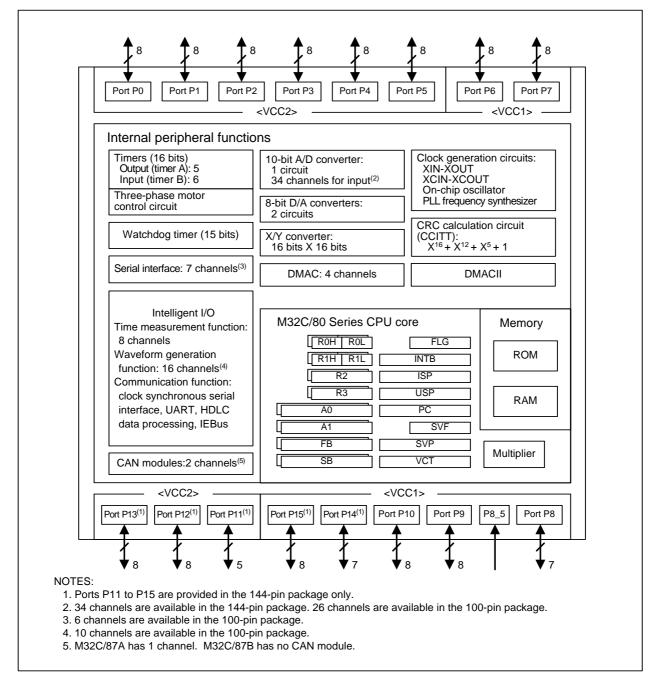


Figure 1.2 M32C/87 Group (M32C/87, M32C/87A, M32C/87B) Block Diagram

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
121		P0_1					AN0_1	D1
122		P0_0					AN0_0	D0
123		P15_7			CTS6/RTS6		AN15_7	
124		P15_6			CLK6		AN15_6	
125		P15_5			RXD6		AN15_5	
126		P15_4			TXD6		AN15_4	
127		P15_3			CTS5/RTS5		AN15_3	
128		P15_2			RXD5	ISRXD0	AN15_2	
129		P15_1			CLK5	ISCLK0	AN15_1	
130	VSS							
131		P15_0			TXD5	ISTXD0	AN15_0	
132	VCC1							
133		P10_7	KI3	RTP3_3			AN_7	
134		P10_6	KI2	RTP3_2			AN_6	
135		P10_5	KI1	RTP3_1			AN_5	
136		P10_4	KI0	RTP3_0			AN_4	
137		P10_3		RTP1_3			AN_3	
138		P10_2		RTP1_2			AN_2	
139		P10_1		RTP1_1			AN_1	
140	AVSS							
141		P10_0		RTP1_0			AN_0	
142	VREF							
143	AVCC							
144		P9_7			RXD4/SCL4/STXD4		ADTRG	

Table 1.11	144-Pin Package List of Pin Names (4/4)
------------	---

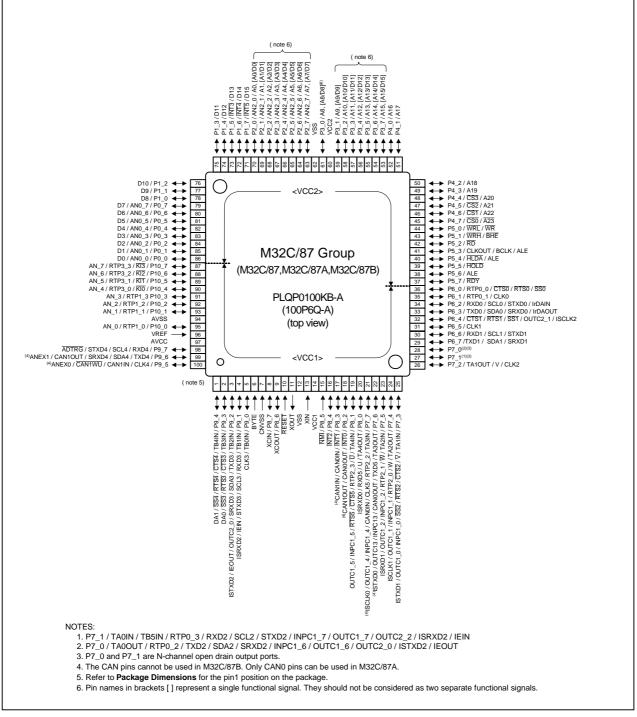


Figure 1.5 Pin Assignment for 100-Pin Package

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order (R0H/R1H) and low-order bits (R0L/R1L) to be used separately as 8-bit data registers. R0 can be combined with R2 and used as a 32-bit data register (R2R0). The same applies to R3R1.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers used for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register used for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register used for FB-relative addressing.

2.1.5 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to **2.1.8 Flag Register (FLG)** for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of a relocatable interrupt vector table.

2.1.7 Program Counter (PC)

PC is 24 bits wide and indicates the address of the next instruction to be executed.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating the CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether or not carry or borrow has been generated after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.1.8.3 Zero Flag (Z)

The Z flag becomes 1 when an arithmetic operation results in 0; otherwise becomes 0.

2.1.8.4 Sign Flag (S)

The S flag becomes 1 when an arithmetic operation results in a negative value; otherwise becomes 0.

2.1.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is set to 0. Register bank 1 is selected when this flag is set to 1.

2.1.8.6 Overflow Flag (O)

The O flag becomes 1 when an arithmetic operation results in an overflow; otherwise becomes 0.

Address	Register	Symbol	After Reset
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
0069h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
006Ah	DMA2 Interrupt Control Register	DM2IC	XXXX X000b
006Bh	UART2 Receive/ACK Interrupt Control Register	S2RIC	XXXX X000b
006Ch	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
006Dh	UART3 Receive/ACK Interrupt Control Register	S3RIC	XXXX X000b
006Eh	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
006Fh	UART4 Receive/ACK Interrupt Control Register	S4RIC	XXXX X000b
0070h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
0071h	UART0/UART3 Bus Conflict Detection Interrupt Control Register	BCN0IC/BCN3IC	XXXX X000b
0072h	UART0 Receive/ACK Interrupt Control Register	SORIC	XXXX X000b
0073h	A/D0 Conversion Interrupt Control Register	ADOIC	XXXX X000b
0074h	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X000b
0075h	II/O Interrupt Control Register 0 / CAN1 interrupt Control Register 0	IIO0IC/CAN3IC	XXXX X000b
0076h	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
0077h	II/O Interrupt Control Register 2	IIO2IC	XXXX X000b
0078h	Timer B3 Interrupt Control Register	TB3IC	XXXX X000b
0079h	II/O Interrupt Control Register 4	IIO4IC	XXXX X000b
007Ah	INT5 Interrupt Control Register	INT5IC	XX00 X000b
007Bh	II/O Interrupt Control Register 6	liO6IC	XXXX X000b
007Ch	INT3 Interrupt Control Register	INT3IC	XX00 X000b
007Dh	II/O Interrupt Control Register 8	IIO8IC	XXXX X000b
007Eh 007Fh	INT1 Interrupt Control Register II/O Interrupt Control Register 10 / CAN0 Interrupt Control Register 1	INT1IC	XX00 X000b XXXX X000b
		IIO10IC/CAN1IC	
0080h 0081h	II/O Interrupt Control Register 11 / CAN0 Interrupt Control Register 2	IIO11IC/CAN2IC	XXXX X000b
0081h		IIOTTIC/CANZIC	
0082h			
0084h			
0085h			
0086h 0087h			
0087h	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
0088h 0089h	UART2 Transmit/NACK Interrupt Control Register	S2TIC	XXXX X000b
0089h	DMA3 Interrupt Control Register	DM3IC	XXXX X000b
008An 008Bh	UART3 Transmit/NACK Interrupt Control Register	S3TIC	XXXX X000b
008Bh	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
008Ch	UART4 Transmit/NACK Interrupt Control Register	S4TIC	XXXX X000b
008Dh	Timer A3 Interrupt Control Register	TA3IC	
008En		BCN2IC	XXXX X000b
008-0	UART2 Bus Conflict Detection Interrupt Control Register	BUNZIU	XXXX X000b

Table 4.3 SFR Address Map (3/20)

X: Undefined Blank spaces are all reserved. No access is allowed.

Table 4.5	SFR Address Map (5/20)		
Address	Register	Symbol	After Reset
00E0h			
00E1h			
00E2h			
00E3h			
00E4h			
00E5h			
00E6h			
00E7h			
00E8h			XXXX XXXXb
00E9h	Group 0 SI/O Receive Buffer Register	GORB	XXX0 XXXXb
00EAh	Group 0 Transmit Buffer/Receive Data Register	G0TB/G0DR	XXh
00EBh		0010/0001	7001
00ECh	Group 0 Receive Input Register	G0RI	XXh
00EDh	Group 0 SI/O Communication Mode Register	GOMR	00h
00EEh	Group 0 Transmit Output Register	GOTO	XXh
00EFh	Group 0 SI/O Communication Control Register	GOCR	0000 X011b
00EFN 00F0h	Group 0 Data Compare Register 0	GOCK	XXh
00F0h	Group 0 Data Compare Register 0 Group 0 Data Compare Register 1	GOCMP0 GOCMP1	XXh
00F2h	Group 0 Data Compare Register 2	G0CMP2	XXh
00F3h	Group 0 Data Compare Register 3	G0CMP3	XXh
00F4h	Group 0 Data Mask Register 0	G0MSK0	XXh
00F5h	Group 0 Data Mask Register 1	G0MSK1	XXh
00F6h	Communication Clock Select Register	CCS	XXXX 0000b
00F7h			
00F8h	Group 0 Receive CRC Code Register	GORCRC	XXXXh
00F9h			
00FAh	Group 0 Transmit CRC Code Register	G0TCRC	0000h
00FBh			
00FCh	Group 0 SI/O Expansion Mode Register	G0EMR	00h
00FDh	Group 0 SI/O Extended Receive Control Register	G0ERC	00h
00FEh	Group 0 SI/O Special Communication Interrupt Detection Register	G0IRF	0000 XXXXb
00FFh	Group 0 SI/O Extended Transmit Control Register	G0ETC	0000 0XXXb
0100h 0101h	Group 1 Time Measurement/Waveform Generation Register 0	G1TM0/G1PO0	XXXXh
0102h			
0103h	Group 1 Time Measurement/Waveform Generation Register 1	G1TM1/G1PO1	XXXXh
0104h 0105h	Group 1 Time Measurement/Waveform Generation Register 2	G1TM2/G1PO2	XXXXh
0106h			
0100h	Group 1 Time Measurement/Waveform Generation Register 3	G1TM3/G1PO3	XXXXh
0108h			
0109h	Group 1 Time Measurement/Waveform Generation Register 4	G1TM4/G1PO4	XXXXh
010Ah			
010/th	Group 1 Time Measurement/Waveform Generation Register 5	G1TM5/G1PO5	XXXXh
010Dh			
010Dh	Group 1 Time Measurement/Waveform Generation Register 6	G1TM6/G1PO6	XXXXh
010Eh			
010Fh	Group 1 Time Measurement/Waveform Generation Register 7	G1TM7/G1PO7	XXXXh
0110h	Group 1 Waveform Generation Control Register 0	G1POCR0	0000 X000b
0111h	Group 1 Waveform Generation Control Register 1	G1POCR1	0X00 X000b
0112h	Group 1 Waveform Generation Control Register 2	G1POCR2	0X00 X000b
0113h	Group 1 Waveform Generation Control Register 3	G1POCR3	0X00 X000b
0114h	Group 1 Waveform Generation Control Register 4	G1POCR4	0X00 X000b
0115h	Group 1 Waveform Generation Control Register 5	G1POCR5	0X00 X000b
0116h	Group 1 Waveform Generation Control Register 6	G1POCR6	0X00 X000b
0117h	Group 1 Waveform Generation Control Register 7	G1POCR7	0X00 X000b
0118h	Group 1 Time Measurement Control Register 0	G1TMCR0	00h
0119h	Group 1 Time Measurement Control Register 1	G1TMCR1	00h

Table 4.5 SFR Address Map (5/20)

X: Undefined Blank spaces are all reserved. No access is allowed.

Address	Register ⁽³⁾⁽⁴⁾	Symbol	After Reset
02B0h	CAN1 Message Slot 0 Control Register /	C1MCTL0 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register A Standard ID0	C1LMAR0	XXX0 0000b ⁽¹⁾⁽²⁾
02B1h	CAN1 Message Slot 1 Control Register /	C1MCTL1 /	0000 0000b(1)(2)/
	CAN1 Local Mask Register A Standard ID1	C1LMAR1	XX00 0000b ⁽¹⁾⁽²⁾
02B2h	CAN1 Message Slot 2 Control Register /	C1MCTL2 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register A Extended ID0	C1LMAR2	XXXX 0000b ⁽¹⁾⁽²⁾
02B3h	CAN1 Message Slot 3 Control Register /	C1MCTL3 /	00h ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register A Extended ID1	C1LMAR3	00h ⁽¹⁾⁽²⁾
02B4h	CAN1 Message Slot 4 Control Register /	C1MCTL4 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register A Extended ID2	C1LMAR4	XX00 0000b ⁽¹⁾⁽²⁾
02B5h	CAN1 Message Slot 5 Control Register	C1MCTL5	00h ⁽¹⁾⁽²⁾
02B6h	CAN1 Message Slot 6 Control Register	C1MCTL6	00h ⁽¹⁾⁽²⁾
02B7h	CAN1 Message Slot 7 Control Register	C1MCTL7	00h ⁽¹⁾⁽²⁾
02B8h	CAN1 Message Slot 8 Control Register /	C1MCTL8 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register B Standard ID0	C1LMBR0	XXX0 0000b ⁽¹⁾⁽²⁾
02B9h	CAN1 Message Slot 9 Control Register /	C1MCTL9 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register B Standard ID1	C1LMBR1	XX00 0000b ⁽¹⁾⁽²⁾
02BAh	CAN1 Message Slot 10 Control Register /	C1MCTL10 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register B Extended ID0	C1LMBR2	XXXX 0000b ⁽¹⁾⁽²⁾
02BBh	CAN1 Message Slot 11 Control Register /	C1MCTL11 /	00h(1)(2)/
	CAN1 Local Mask Register B Extended ID1	C1LMBR3	00h ⁽¹⁾⁽²⁾
02BCh	CAN1 Message Slot 12 Control Register /	C1MCTL12 /	0000 0000b ⁽¹⁾⁽²⁾ /
	CAN1 Local Mask Register B Extended ID2	C1LMBR4	XX00 0000b ⁽¹⁾⁽²⁾
02BDh	CAN1 Message Slot 13 Control Register	C1MCTL13	00h ⁽¹⁾⁽²⁾
02BEh	CAN1 Message Slot 14 Control Register	C1MCTL14	00h ⁽¹⁾⁽²⁾
02BFh	CAN1 Message Slot 15 Control Register	C1MCTL15	00h(1)(2)

Table 4.13 SFR Address Map (13/20)

X: Undefined

Blank spaces are all reserved. No access is allowed.

NOTES:

1. The BANKSEL bit in the C1CTLR1 register can switch functions for addresses 02A0h to 02BFh.

2. Values are obtained by setting the SLEEP bit in the C1SLPR register to "1" (sleep mode exited) after reset and supplying a clock to the CAN module.

3. The CAN-associated registers (allocated in addresses 01E0h to 02BFh) cannot be used in M32C/87B. In M32C/87A, only CAN0-associated registers can be used.

4. Set the PM13 bit in the PM1 register to 1 (2 wait states for SFR area) before accessing the CAN-associated registers.

Address	Register	Symbol	After Reset
02C0h	X0 Register, Y0 Register	X0R, Y0R	XXXXh
02C1h			
02C2h	X1 Register, Y1 Register	X1R, Y1R	XXXXh
02C3h			700001
02C4h	X2 Register, Y2 Register	X2R, Y2R	XXXXh
02C5h		,	
02C6h	X3 Register, Y3 Register	X3R, Y3R	XXXXh
02C7h			
02C8h	X4 Register, Y4 Register	X4R, Y4R	XXXXh
02C9h			
02CAh	X5 Register, Y5 Register	X5R, Y5R	XXXXh
02CBh			
02CCh	X6 Register, Y6 Register	X6R, Y6R	XXXXh
02CDh			
02CEh 02CFh	X7 Register, Y7 Register	X7R, Y7R	XXXXh
02CFN 02D0h			
02D011	X8 Register, Y8 Register	X8R, Y8R	XXXXh
02D1h 02D2h			
02D2h	X9 Register, Y9 Register	X9R, Y9R	XXXXh
02D3h			
02D5h	X10 Register, Y10 Register	X10R, Y10R	XXXXh
02D6h			
02D7h	X11 Register, Y11 Register	X11R, Y11R	XXXXh
02D8h			
02D9h	X12 Register, Y12 Register	X12R, Y12R	XXXXh
02DAh			
02DBh	X13 Register, Y13 Register	X13R, Y13R	XXXXh
02DCh			N0004
02DDh	X14 Register, Y14 Register	X14R, Y14R	XXXXh
02DEh	VAC Devictor VAC Devictor		VVVVL
02DFh	X15 Register, Y15 Register	X15R, Y15R	XXXXh
02E0h	X/Y Control Register	XYC	XXXX XX00b
02E1h			
02E2h			
02E3h			
02E4h	UART1 Special Mode Register 4	U1SMR4	00h
02E5h	UART1 Special Mode Register 3	U1SMR3	00h
02E6h	UART1 Special Mode Register 2	U1SMR2	00h
02E7h	UART1 Special Mode Register	U1SMR	00h
02E8h	UART1 Transmit/Receive Mode Register	U1MR	00h
02E9h	UART1 Baud Rate Register	U1BRG	XXh
02EAh	UART1 Transmit Buffer Register	U1TB	XXXXh
02EBh	, i i i i i i i i i i i i i i i i i i i		
02ECh	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
02EDh	UART1 Transmit/Receive Control Register 1	U1C1	0000 0010b
02EEh	UART1 Receive Buffer Register	U1RB	XXXXh
02EFh			

Table 4.14 SFR Address Map (14/20)

X: Undefined Blank spaces are all reserved. No access is allowed.

REJ03B0127-0151 Rev.1.51 Jul 31, 2008 RENESAS Page 40 of 85

Symbol	Parameter		Standard		Unit	
Symbol	Parameter			Тур.	Max.	Unit
IOH(peak)	Peak output high "H" current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽³⁾			-10.0	mA
IOH(avg)	Average output high "H" current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽³⁾			-5.0	mA
IOL(peak)	Peak output low "L" current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽³⁾			10.0	mA
IOL(avg)	Average output low "L" current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽³⁾			5.0	mA

Table 5.3Recommended Operating Conditions (2/3)(VCC1 = VCC2 = 3.0 to 5.5 V, Topr = -20 to 85°C unless otherwise specified

NOTES:

1. Average output current is the average value within 100 ms.

2. A total IOL(peak) of P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14, and P15 must be 80 mA or less.

A total IOL(peak) of P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80 mA or less.

A total IOH(peak) of P0, P1, P2, and P11 must be -40 mA or less.

A total IOH(peak) of P8_6 to P8_7, P9, P10, P14, and P15 must be -40 mA or less.

A total IOH(peak) of P3, P4, P5, P12, and P13 must be -40 mA or less.

A total IOH(peak) of P6, P7, and P8_0 to P8_4 must be -40 mA or less.

VCC1 = VCC2 = 5V

Table 5.5Electrical Characteristics (1/3)
(VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32 MHz unless
otherwise specified)

Symbol	Parameter			Measurement	Sta	ndard	-	Unit
Gymbol		r arameter		Condition	Min.	Тур.	Max.	Onit
VOH	H Output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, IC high "H" P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, voltage P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7 ⁽¹⁾		IOH = -5 mA	VCC2 - 2.0		VCC2	V	
		P6_0 to P6_7, P7_2 to P7_ P8_6, P8_7, P9_0 to P9_7, P14_0 to P14_6, P15_0 to	P10_0 to P10_7,	IOH = -5 mA	VCC1 - 2.0		VCC1	
		P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P11_0 to P11_4, P12_0 to P13_0 to P13_7 ⁽¹⁾	7, P5_0 to P5_7,	IOH = -200 μA	VCC2 - 0.3		VCC2	V
		P6_0 to P6_7, P7_2 to P7_ P8_6, P8_7, P9_0 to P9_7, P14_0 to P14_6, P15_0 to	P10_0 to P10_7,	IOH = -200 μA	VCC1 - 0.3		VCC1	
		XOUT		IOH = -1 mA	3.0		VCC1	V
		XCOUT	Drive capability = high	No load applied		2.5		V
			Drive capability = low	No load applied		1.6		V
VOL	Output low "L" voltage	P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾		IOL = 5 mA			2.0	V
				IOL = 200 μA			0.45	V
		XOUT		IOL = 1 mA			2.0	V
		XCOUT	Drive capability = high	No load applied		0		V
			Drive capability = low	No load applied		0		V
VT+ - VT-	Hysteresis	HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT8, ADTRG, CTS0 to CTS6, CLK0 to CLK6, TA0OUT to TA4OUT, NMI, KI0 to KI3, RXD0 to RXD6, SCL0 to SCL4, SDA0 to SDA4, INPC1_0 to INPC1_7, ISCLK0 to ISCLK2, ISRXD0 to ISRXD2, IEIN, CAN0IN, CAN1IN, CAN1WU			0.2		1.0	V
		RESET			0.2		1.8	V

NOTE:

VCC1 = VCC2 = 5V

Table 5.6Electrical Characteristics (2/3)
(VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32 MHz unless
otherwise specified)

Symbol		Parameter		5	Unit		
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
ШН	Input high "H" current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾ , XIN, RESET, CNVSS, BYTE	VI = 5 V			5.0	μΑ
IIL	Input low "L" current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾ , XIN, RESET, CNVSS, BYTE	VI = 0V			-5.0	μΑ
RPULLUP	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾	VI = 0V	30	50	167	kΩ
RfXIN	Feedback resistance	XIN			1.5		MΩ
RfXCIN	Feedback resistance	XCIN			10		MΩ
VRAM	RAM data retention voltage	In stop mode		2.0			V

NOTE:

VCC1 = VCC2 = 5V

Table 5.8A/D Conversion Characteristics
(VCC1 = VCC2 = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, Topr = -20 to 85°C, f(CPU) =
32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition			Standard			
Symbol	Falameter	Measurement Condition		Min.	Тур.	Max.	Unit	
-	Resolution	VREF = VCC1				10	Bits	
INL	Integral nonlinearity error	VREF = VCC1 = VCC2 = 5 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1			±3	LSB	
			External op-amp connection mode			±7	LSB	
DNL	Differential nonlinearity error					±1	LSB	
_	Offset error					±3	LSB	
_	Gain error					±3	LSB	
RLADDER	Resistor ladder	VREF = VCC1		8		40	kΩ	
tCONV	10-bit conversion time ⁽¹⁾⁽²⁾			2.06			μS	
tCONV	8-bit conversion time ⁽¹⁾⁽²⁾			1.75			μS	
tSAMP	Sampling time ⁽¹⁾			0.188			μS	
VREF	Reference voltage			2		VCC1	V	
VIA	Analog input voltage			0		VREF	V	

NOTES:

1. The value is obtained when ϕ AD frequency is at 16 MHz. Keep ϕ AD frequency at 16 MHz or lower.

2. With using the sample and hold function

Table 5.9D/A Conversion Characteristics
(VCC1 = VCC2 = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, Topr = -20 to 85°C,
f(CPU) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition		Standard			
Symbol	Falameter			Тур.	Max.	Unit	
-	Resolution				8	Bits	
-	Absolute accuracy				1.0	%	
tsu	Setup time				3	μs	
RO	Output resistance		4	10	20	kΩ	
IVREF	Reference power supply input current	(note 1)			1.5	mA	

NOTE:

 Measured when one D/A converter is used, and the DAi register (i = 0, 1) of the unused D/A converter is set to 00h. The current flown into the resistor ladder in the A/D converter is excluded. IVREF flows even if the VCUT bit in the AD0CON1 register is set to 0 (VREF not connected)

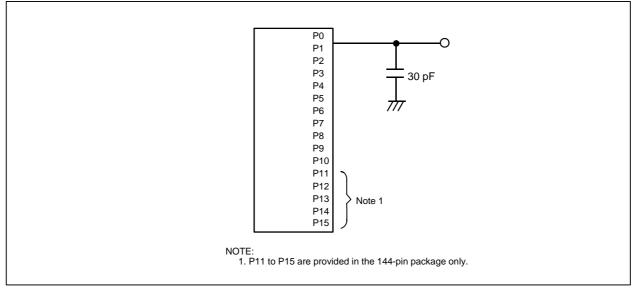


Figure 5.2 P0 to P15 Measurement Circuit

Table 5.32Electrical Characteristics (2/3)
(VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 24 MHz unless
otherwise specified)

Symbol		Parameter	Measurement	Sta	Indard		Unit
Symbol		Falametei	Condition	Min.	Тур.	Max.	Unit
ШН	Input high "H" current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾ , XIN, RESET, CNVSS, BYTE	VI = 3 V			4.0	μA
IIL	Input low "L" current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾ , XIN, RESET, CNVSS, BYTE	VI = 0V			-4.0	μA
RPULLUP	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7 ⁽¹⁾	VI=0V	40	90	500	kΩ
RfXIN	Feedback resistance	XIN			3.0		MΩ
RfXCIN	Feedback resistance	XCIN			20.0		MΩ
VRAM	RAM data retention voltage	In stop mode		2.0			V

NOTE:

Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.36 External Clock Input

Symbol	Parameter	Standard		Unit	
	Falanetei	Min.	Max.	Unit	
tc	External clock input cycle time	41		ns	
tw(H)	External clock input high ("H") pulse width	18		ns	
tw(L)	External clock input low ("L") pulse width	18		ns	
tr	External clock rise time		5	ns	
tf	External clock fall time		5	ns	

Table 5.37 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard Min. Ma	Standard		Unit
	Falantelei		Max.	Unit	
tc(TA)	TAiIN input cycle time	100		ns	
tw(TAH)	TAiIN input high ("H") pulse width	40		ns	
tw(TAL)	TAilN input low ("L") pulse width	40		ns	

i = 0 to 4

Table 5.38 Timer A Input (Gate Signal Input in Timer Mode)

Symbol	Parameter	Standard Min. Max.	Unit	
	i alametei		Max.	Offic
tc(TA)	TAiIN input cycle time	400		ns
tw(TAH)	TAiIN input high ("H") pulse width	200		ns
tw(TAL)	TAiIN input low ("L") pulse width	200		ns

i = 0 to 4

Table 5.39 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Standard	
	Falainetei	Min. Max.	Max.	Unit
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAiIN input low ("L") pulse width	100		ns

i = 0 to 4

Table 5.40 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min. Max.	Max.	
tw(TAH)	TAilN input high ("H") pulse width	100		ns
tw(TAL)	TAilN input low ("L") pulse width	100		ns

i = 0 to 4

Timing Requirements

(VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.41 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Standard Min. Max.	Unit	
	i didificici		Onit	
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input high ("H") pulse width	1000		ns
tw(UPL)	TAiOUT input low ("L") pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

i = 0 to 4

Table 5.42 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	Falailletei	Min.	Max.	Unit
tc(TA)	TAilN input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiOUT input setup time	500		ns
tsu(TAOUT-TAIN)	TAilN input setup time	500		ns

i = 0 to 4

Table 5.43 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter		Standard	
	Falameter	Min. Max.	Unit	
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on one edge)	40		ns
tc(TB)	TBiIN input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiIN input high ("H") pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input low ("L") pulse width (counted on both edges)	80		ns

i = 0 to 5

Table 5.44 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Standard	
	i alametei	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Table 5.45 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
	Falaneter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input high ("H") pulse width	200		ns
tw(TBL)	TBiIN input low ("L") pulse width	200		ns

i = 0 to 5

Switching Characteristics (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified)

Table 5.53 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space with multiplexed bus)

Symbol	Deremeter	Measurement	Stan	dard	Unit
Symbol	Parameter	Condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard) ⁽⁵⁾	-	(note 1)		ns
th(WR-AD)	Address output hold time (WR standard) ⁽⁵⁾	-	(note 1)		ns
td(BCLK-CS)	Chip-select signal output delay time	-		18	ns
th(BCLK-CS)	Chip-select signal output hold time (BCLK standard)	-	-3		ns
th(RD-CS)	Chip-select signal output hold time (RD standard) ⁽⁵⁾	-	(note 1)		ns
th(WR-CS)	Chip-select signal output hold time (WR standard) ⁽⁵⁾	-	(note 1)		ns
td(BCLK-RD)	RD signal output delay time	-		18	ns
th(BCLK-RD)	RD signal output hold time	See Figure 5.2	-5		ns
td(BCLK-WR)	WR signal output delay time	-		18	ns
th(BCLK-WR)	WR signal output hold time	-	0		ns
td(DB-WR)	Data output delay time (WR standard)	-	(note 2)		ns
th(WR-DB)	Data output hold time (WR standard) ⁽⁵⁾	-	(note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)	-		18	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)	-	-2		ns
td(AD-ALE)	ALE signal output delay time (address standard)		(note 3)		ns
th(ALE-AD)	ALE signal output hold time (address standard)		(note 4)		ns
tdz(RD-AD)	Address output float start time			8	ns

NOTES:

1. Values, which depend on BCLK frequency, can be obtained from the following equations.

$$th(RD-AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR-AD) = \frac{10^9}{f(BCLK) \times 2} - 15 \text{ [ns]}$$

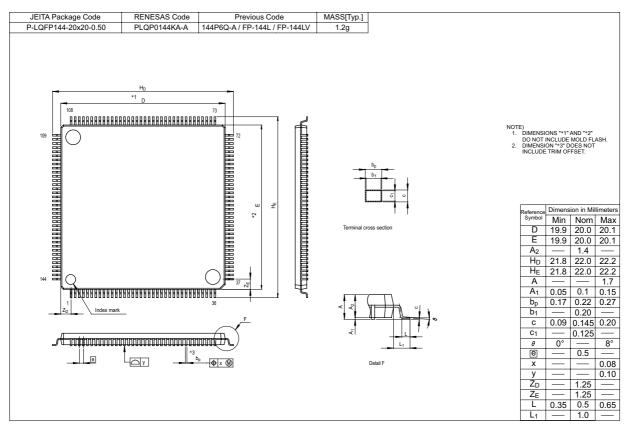
$$th(RD-CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

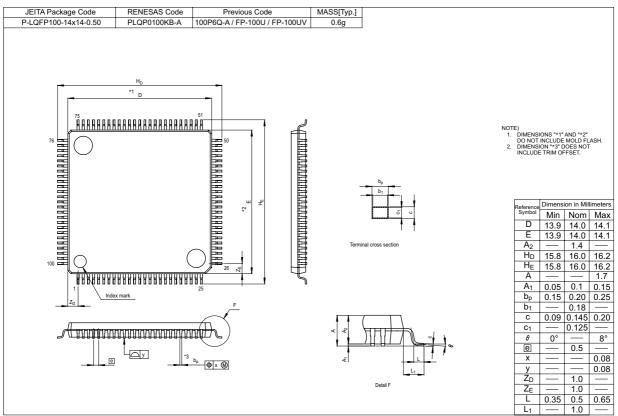
$$th(WR-CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR-DB) = \frac{10^9}{f(BCLK) \times 2} - 20 \text{ [ns]}$$
Values, which depend on BCI K frequent

2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. $td(DB-WR) = \frac{10^9 \times m}{f(BCLK) \times 2} - 25 \text{ [ns] (if external bus cycle is } a\phi + b\phi, m = (b \times 2) - 1)$

3. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation.


$$td(AD-ALE) = \frac{10^9 \times n}{f(BCLK) \times 2} - 20 \text{ [ns] (if external bus cycle is a} + b\phi, n = a)$$


4. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation.

th(ALE-AD) =
$$\frac{10^9 \times n}{f(BCLK) \times 2}$$
 - 20 [ns] (if external bus cycle is a ϕ + b ϕ , n = a)

5. tc [ns] is added when recovery cycle is inserted.

Appendix 1. Package Dimensions

REJ03B0127-0151 Rev.1.51 Jul 31, 2008 **RENESAS** Page 84 of 85