



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 32MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB                    |
| Peripherals                | Brown-out Detect/Reset, Cap Sense, DMA, I <sup>2</sup> S, POR, PWM, WDT |
| Number of I/O              | 37                                                                      |
| Program Memory Size        | 32KB (32K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 4K x 8                                                                  |
| RAM Size                   | 10К х 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                             |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 48-LQFP                                                                 |
| Supplier Device Package    | 48-LQFP (7x7)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c6t6tr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 2.2 Ultra-low-power device continuum

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices are fully pin-to-pin and software compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture and features.

They are all based on STMicroelectronics ultra-low leakage process.

Note: The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx devices. Please refer to the STM32F and STM8L documentation for more information on these devices.

#### 2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM<sup>®</sup> Cortex<sup>®</sup>-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

### 2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

#### 2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xx and STM32L1xxxx families use a common architecture:

- Same power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xx devices)
- Architecture optimized to reach ultra-low consumption both in low power modes and Run mode
- Fast startup strategy from low power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

## 2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 384 Kbytes

## 3.1 Low power modes

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply:

- In Range 1 (V<sub>DD</sub> range limited to 1.71-3.6 V), the CPU runs at up to 32 MHz (refer to Table 17 for consumption).
- In Range 2 (full V<sub>DD</sub> range), the CPU runs at up to 16 MHz (refer to *Table 17* for consumption)
- In Range 3 (full V<sub>DD</sub> range), the CPU runs at up to 4 MHz (generated only with the multispeed internal RC oscillator clock source). Refer to *Table 17* for consumption.

Seven low power modes are provided to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Sleep mode power consumption: refer to *Table 19*.

Low power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (65 kHz), execution from SRAM or Flash memory, and internal regulator in low power mode to minimize the regulator's operating current. In the Low power run mode, the clock frequency and the number of enabled peripherals are both limited.

Low power run mode consumption: refer to *Table 20: Current consumption in Low power run mode*.

#### Low power sleep mode

This mode is achieved by entering the Sleep mode with the internal voltage regulator in Low power mode to minimize the regulator's operating current. In the Low power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Low power sleep mode consumption: refer to *Table 21: Current consumption in Low power sleep mode*.

• Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the  $V_{CORE}$  domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and



## 3.7 Memories

The STM32L151x6/8/B and STM32L152x6/8/B devices have the following features:

- Up to 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
  - 32, 64 or 128 Kbytes of embedded Flash program memory
  - 4 Kbytes of data EEPROM
  - Options bytes

The options bytes are used to write-protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex<sup>®</sup>-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

# 3.8 DMA (direct memory access)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI,  $I^2C$ , USART, general-purpose timers and ADC.

# 3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V<sub>DD</sub>. This converter can be deactivated, in which case the V<sub>LCD</sub> pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode





## 3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B and STM32L152x6/8/B devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

### 3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage  $\mathsf{V}_{\mathsf{SENSE}}$  that varies linearly with temperature.

The temperature sensor is internally connected to the ADC\_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode, see *Table 58: Temperature sensor calibration values*.

## 3.10.2 Internal voltage reference (V<sub>REFINT</sub>)

The internal voltage reference ( $V_{REFINT}$ ) provides a stable (bandgap) voltage output for the ADC and Comparators.  $V_{REFINT}$  is internally connected to the ADC\_IN17 input channel. It enables accurate monitoring of the  $V_{DD}$  value (when no external voltage, VREF+, is available for ADC). The precise voltage of  $V_{REFINT}$  is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 16: Embedded internal reference voltage*.

# 3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.



DocID17659 Rev 12

# 4 Pin descriptions

|   | 1                  | 2             | 3     | 4      | 5     | 6     | 7     | 8      | 9             | 10     | 11     | 12       |
|---|--------------------|---------------|-------|--------|-------|-------|-------|--------|---------------|--------|--------|----------|
|   |                    |               |       |        |       |       |       |        |               |        |        |          |
| A | (PE3)              | (PE1)         | (PB8) | iBOOT0 | (PD7) | (PD5) | (PB4) | (PB3)  | (PA15)        | (PA14) | (PA13) | (PA12)   |
| в | (PE4)              | (PE2)         | (PB9) | (PB7)  | (PB6) | (PD6) | (PD4) | (PD3)  | (PD1)         | PC12)  | (PC10) | (PA11)   |
| с | PC13<br>WEUP2      | (PE5)         | (PE0) | VDD_B  | (PB5) |       |       | (PD2)  | (PD0)         | PC11)  | (PH2)  | (PA10)   |
| D | PC14)<br>0\$C32_IN |               | ŃSS_B |        |       |       |       |        |               | (PA9)  | (PA8)  | (PC9)    |
| E | PC15)<br>OSC32_C   | VLCD          | NSS_¥ |        |       |       |       |        |               | (PC8)  | (PC7)  | (PC6)    |
| F | PHO)<br>QSC2IN     | a zzvi        |       |        |       |       | 1     |        |               |        | WSS_P  | wss_h    |
| G | OSC_OL             |               |       |        |       |       |       |        |               |        |        | NLOON    |
| н | (PC0)              | INRST         |       |        |       |       |       |        |               | PD15)  | PD14)  | (PD13)   |
| J | VSSA)              | (PC1)         | (PC2) |        |       |       |       |        |               | PD12)  | PD11)  | (PD10)   |
| к | VREF               | (PC3)         | (PA2) | (PA5)  | (PC4) |       |       | (PD9)  | (PD8)         | (PB15) | PB14)  | (PB13)   |
| L | (VRE#+             | PA0)<br>WKUP1 | (PA3) | (PA6)  | (PC5) | (PB2) | (PE8) | (PE10) | /PE12         | (PB10) | (PB11) | (PB12)   |
| М | NDDA               | (PA1)         | (PA4) | (PA7)  | (PB0) | (PB1) | (PE7) | (PE9)  | /-\<br>(PE11) | (PE13  | PE14   | PE19     |
|   |                    |               |       |        |       |       |       |        |               |        |        |          |
|   |                    |               |       |        |       |       |       |        |               |        |        | ai17096f |

Figure 3. STM32L15xVx UFBGA100 ballout

1. This figure shows the package top view.



|         |        | Pin     | 5        |                    |                                  |                         |               |                                                  | Pins functions                  |                                            |
|---------|--------|---------|----------|--------------------|----------------------------------|-------------------------|---------------|--------------------------------------------------|---------------------------------|--------------------------------------------|
| LQFP100 | LQFP64 | TFBGA64 | UFBGA100 | LQFP48 or UFQFPN48 | Pin name                         | Pin type <sup>(1)</sup> | I/O structure | Main<br>function <sup>(2)</sup><br>(after reset) | Alternate functions             | Additional<br>functions                    |
| 1       | -      | -       | B2       | -                  | PE2                              | I/O                     | FT            | PE2                                              | TRACECLK/LCD_SEG38/<br>TIM3_ETR | -                                          |
| 2       | -      | -       | A1       | -                  | PE3                              | I/O                     | FT            | PE3                                              | TRACED0/LCD_SEG39/<br>TIM3_CH1  | -                                          |
| 3       | -      | -       | B1       | -                  | PE4                              | I/O                     | FT            | PE4                                              | TRACED1/TIM3_CH2                | -                                          |
| 4       | -      | -       | C2       | -                  | PE5                              | I/O                     | FT            | PE5                                              | TRACED2/TIM9_CH1                | -                                          |
| 5       | -      | -       | D2       | -                  | PE6-WKUP3                        | I/O                     | FT            | PE6                                              | TRACED3/TIM9_CH2                | WKUP3                                      |
| 6       | 1      | B2      | E2       | 1                  | V <sub>LCD</sub> <sup>(3)</sup>  | S                       |               | V <sub>LCD</sub>                                 | -                               | -                                          |
| 7       | 2      | A2      | C1       | 2                  | PC13-<br>WKUP2                   | I/O                     | FT            | PC13                                             | -                               | RTC_TAMP1/<br>RTC_TS/<br>RTC_OUT/<br>WKUP2 |
| 8       | 3      | A1      | D1       | 3                  | PC14-<br>OSC32_IN <sup>(4)</sup> | I/O                     | тс            | PC14                                             | -                               | OSC32_IN                                   |
| 9       | 4      | B1      | E1       | 4                  | PC15-<br>OSC32_OUT<br>(4)        | I/O                     | тс            | PC15                                             | -                               | OSC32_OUT                                  |
| 10      | -      | -       | F2       | -                  | $V_{SS_5}$                       | S                       | -             | $V_{SS_5}$                                       | -                               | -                                          |
| 11      | -      | -       | G2       | -                  | $V_{DD_5}$                       | S                       | -             | $V_{DD_5}$                                       | -                               | -                                          |
| 12      | 5      | C1      | F1       | 5                  | PH0-<br>OSC_IN <sup>(5)</sup>    | I/O                     | тс            | PH0                                              | -                               | OSC_IN                                     |
| 13      | 6      | D1      | G1       | 6                  | PH1-<br>OSC_OUT                  | I/O                     | тс            | PH1                                              | -                               | OSC_OUT                                    |
| 14      | 7      | E1      | H2       | 7                  | NRST                             | I/O                     | RST           | NRST                                             | -                               | -                                          |
| 15      | 8      | E3      | H1       | -                  | PC0                              | I/O                     | FT            | PC0                                              | LCD_SEG18                       | ADC_IN10/<br>/COMP1_INP                    |
| 16      | 9      | E2      | J2       | -                  | PC1                              | I/O                     | FT            | PC1                                              | LCD_SEG19                       | ADC_IN11/<br>COMP1_INP                     |
| 17      | 10     | F2      | J3       | -                  | PC2                              | I/O                     | FT            | PC2                                              | LCD_SEG20                       | ADC_IN12/<br>COMP1_INP                     |
| 18      | 11     | _(6)    | K2       | -                  | PC3                              | I/O                     | тс            | PC3                                              | LCD_SEG21                       | ADC_IN13/<br>COMP1_INP                     |

| Table 8 | . STM32L1 | 51x6/8/B a | and STM32 | 2L152x6/8/B | pin | definitions |
|---------|-----------|------------|-----------|-------------|-----|-------------|
|---------|-----------|------------|-----------|-------------|-----|-------------|



|         |        | Pin       | S        |                    |                   |                         |               |                                                  | Pins functions                             |                                    |
|---------|--------|-----------|----------|--------------------|-------------------|-------------------------|---------------|--------------------------------------------------|--------------------------------------------|------------------------------------|
| LQFP100 | LQFP64 | TFBGA64   | UFBGA100 | LQFP48 or UFQFPN48 | Pin name          | Pin type <sup>(1)</sup> | I/O structure | Main<br>function <sup>(2)</sup><br>(after reset) | Alternate functions                        | Additional<br>functions            |
| 19      | 12     | F1        | J1       | 8                  | V <sub>SSA</sub>  | S                       | -             | V <sub>SSA</sub>                                 | -                                          | -                                  |
| 20      | -      | -         | K1       | -                  | V <sub>REF-</sub> | S                       | -             | V <sub>REF-</sub>                                | -                                          | -                                  |
| 21      | -      | G1<br>(6) | L1       | -                  | V <sub>REF+</sub> | S                       | -             | V <sub>REF+</sub>                                | -                                          | -                                  |
| 22      | 13     | H1        | M1       | 9                  | V <sub>DDA</sub>  | S                       | -             | V <sub>DDA</sub>                                 | -                                          | -                                  |
| 23      | 14     | G2        | L2       | 10                 | PA0-WKUP1         | I/O                     | FT            | PA0                                              | USART2_CTS/<br>TIM2_CH1_ETR                | WKUP1/<br>ADC_IN0/<br>COMP1_INP    |
| 24      | 15     | H2        | M2       | 11                 | PA1               | I/O                     | FT            | PA1                                              | USART2_RTS/<br>TIM2_CH2/LCD_SEG0           | ADC_IN1/<br>COMP1_INP              |
| 25      | 16     | F3        | K3       | 12                 | PA2               | I/O                     | FT            | PA2                                              | USART2_TX/TIM2_CH3/<br>TIM9_CH1/LCD_SEG1   | ADC_IN2/<br>COMP1_INP              |
| 26      | 17     | G3        | L3       | 13                 | PA3               | I/O                     | тс            | PA3                                              | USART2_RX/TIM2_CH4/<br>TIM9_CH2/LCD_SEG2   | ADC_IN3/<br>COMP1_INP              |
| 27      | 18     | C2        | E3       | -                  | V <sub>SS_4</sub> | S                       | I             | V <sub>SS_4</sub>                                | -                                          | -                                  |
| 28      | 19     | D2        | H3       | -                  | V <sub>DD_4</sub> | S                       | -             | V <sub>DD_4</sub>                                | -                                          | -                                  |
| 29      | 20     | H3        | M3       | 14                 | PA4               | I/O                     | TC            | PA4                                              | SPI1_NSS/USART2_CK                         | ADC_IN4/<br>DAC_OUT1/<br>COMP1_INP |
| 30      | 21     | F4        | K4       | 15                 | PA5               | I/O                     | тс            | PA5                                              | SPI1_SCK/<br>TIM2_CH1_ETR                  | ADC_IN5/<br>DAC_OUT2/<br>COMP1_INP |
| 31      | 22     | G4        | L4       | 16                 | PA6               | I/O                     | FT            | PA6                                              | SPI1_MISO/TIM3_CH1/<br>LCD_SEG3/TIM10_CH1  | ADC_IN6<br>/COMP1_INP              |
| 32      | 23     | H4        | M4       | 17                 | PA7               | I/O                     | FT            | PA7                                              | SPI1_MOSI//TIM3_CH2/<br>LCD_SEG4/TIM11_CH1 | ADC_IN7/<br>COMP1_INP              |
| 33      | 24     | H5        | K5       | -                  | PC4               | I/O                     | FT            | PC4                                              | LCD_SEG22                                  | ADC_IN14/<br>COMP1_INP             |
| 34      | 25     | H6        | L5       | -                  | PC5               | I/O                     | FT            | PC5                                              | LCD_SEG23                                  | ADC_IN15/<br>COMP1_INP             |

## Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)



|                    | 1      |       |          | Table 9.   | Alterna | te functio | n inpu     | t/output (co   | ntinue | ea)   |                            |        |        |          |     |
|--------------------|--------|-------|----------|------------|---------|------------|------------|----------------|--------|-------|----------------------------|--------|--------|----------|-----|
|                    |        |       |          |            |         | Digital al | ternate fu | inction number |        |       |                            |        |        |          |     |
|                    | AFIO0  | AFIO1 | AFIO2    | AFIO3      | AFIO4   | AFIO5      | AFOI6      | AFIO7          | AFIO8  | AFIO9 | AFIO11                     | AFIO12 | AFIO13 | AFIO14   | AF  |
| Port name          | I      |       | 1        |            |         | A          | lternate f | unction        |        |       |                            |        |        |          |     |
|                    | SYSTEM | TIM2  | TIM3/4   | TIM9/10/11 | I2C1/2  | SPI1/2     | N/A        | USART1/2/3     | N/A    | N/A   | LCD                        | N/A    | N/A    | RI       | SYS |
| PC11               | -      | -     | -        | -          | -       | -          | -          | USART3_RX      | -      | -     | COM5 /<br>SEG29/<br>SEG41  | -      | -      | TIMx_IC4 | EVE |
| PC12               | -      | -     | -        | -          | -       | -          | -          | USART3_CK      | -      | -     | COM6 /<br>SEG30 /<br>SEG42 | -      | -      | TIMx_IC1 | EVE |
| PC13-<br>WKUP2     | -      | -     | -        | -          | -       | -          | -          | -              | -      | -     | -                          | -      | -      | TIMx_IC2 | EVE |
| PC14-<br>OSC32_IN  | -      | -     | -        | -          | -       | -          | -          | -              | -      | -     | -                          | -      | -      | TIMx_IC3 | EVE |
| PC15-<br>OSC32_OUT | -      | -     | -        | -          | -       | -          | -          | -              | -      | -     | -                          | -      | -      | TIMx_IC4 | EVE |
| PD0                | -      | -     | -        | TIM9_CH1   | -       | SPI2_NSS   | -          | -              | -      | -     | -                          | -      | -      | TIMx_IC1 | EVE |
| PD1                | -      | -     | -        | -          | -       | SPI2_SCK   | -          | -              | -      | -     | -                          | -      | -      | TIMx_IC2 | EVE |
| PD2                | -      | -     | TIM3_ETR | -          | -       | -          | -          | -              | -      | -     | COM7 /<br>SEG31/<br>SEG43  | -      | -      | TIMx_IC3 | EVE |
| PD3                | -      | -     | -        | -          | -       | SPI2_MISO  | -          | USART2_CTS     | -      | -     | -                          | -      | -      | TIMx_IC4 | EVE |
| PD4                | -      | -     | -        | -          | -       | SPI2_MOSI  | -          | USART2_RTS     | -      | -     | -                          | -      | -      | TIMx_IC1 | EVE |
| PD5                | -      | -     | -        | -          | -       | -          | -          | USART2_TX      | -      | -     | -                          | -      | -      | TIMx_IC2 | EVE |
| PD6                | -      | -     | -        | -          | -       | -          | -          | USART2_RX      | -      | -     | -                          | -      | -      | TIMx_IC3 | EVE |
| PD7                | -      | -     | -        | TIM9_CH2   | -       | -          | -          | USART2_CK      | -      | -     | -                          | -      | -      | TIMx_IC4 | EVE |
| PD8                | -      | -     | -        | -          | -       | -          | -          | USART3_TX      | -      | -     | -                          | -      | -      | TIMx_IC1 | EVE |
| PD9                | -      | -     | -        | -          | -       | -          | -          | USART3_RX      | -      | -     | -                          | -      | -      | TIMx_IC2 | EVE |
| PD10               | -      | -     | -        | -          | -       | -          | -          | USART3_CK      | -      | -     | -                          | -      | -      | TIMx_IC3 | EVE |
| PD11               | -      | -     | -        | -          | -       | -          | -          | USART3_CTS     | -      | -     | -                          | -      | -      | TIMx_IC4 | EVE |
| PD12               | -      | -     | TIM4_CH1 | -          | -       | -          | -          | USART3_RTS     | -      | -     | -                          | -      | -      | TIMx_IC1 | EVE |

#### Table 9. Alternate function input/output (continued)

DocID17659 Rev 12

45/133

STM32L151x6/8/B STM32L152x6/8/B

Pin descriptions

46/133

DocID17659 Rev 12

5

|                |             | Digital alternate function number |          |            |        |           |            |            |       |       |        |        |        |          |          |
|----------------|-------------|-----------------------------------|----------|------------|--------|-----------|------------|------------|-------|-------|--------|--------|--------|----------|----------|
| <b>D</b>       | AFIO0       | AFIO1                             | AFIO2    | AFIO3      | AFIO4  | AFIO5     | AFOI6      | AFIO7      | AFIO8 | AFIO9 | AFIO11 | AFIO12 | AFIO13 | AFIO14   | AFIO15   |
| Port name      |             |                                   |          |            |        | Α         | lternate f | unction    |       |       | •      | •      | •      |          |          |
|                | SYSTEM      | TIM2                              | TIM3/4   | TIM9/10/11 | I2C1/2 | SPI1/2    | N/A        | USART1/2/3 | N/A   | N/A   | LCD    | N/A    | N/A    | RI       | SYSTEM   |
| PD13           | -           | -                                 | TIM4_CH2 | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC2 | EVENTOUT |
| PD14           | -           | -                                 | TIM4_CH3 | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC3 | EVENTOUT |
| PD15           | -           | -                                 | TIM4_CH4 | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC4 | EVENTOUT |
| PE0            | -           | -                                 | TIM4_ETR | TIM10_CH1  | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC1 | EVENTOUT |
| PE1            | -           | -                                 |          | TIM11_CH1  | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC2 | EVENTOUT |
| PE2            | TRACEC<br>K | -                                 | TIM3_ETR | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC3 | EVENTOUT |
| PE3            | TRACED<br>0 | -                                 | TIM3_CH1 | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC4 | EVENTOUT |
| PE4            | TRACED<br>1 | -                                 | TIM3_CH2 | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC1 | EVENTOUT |
| PE5            | TRACED<br>2 | -                                 | -        | TIM9_CH1*  | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC2 | EVENTOUT |
| PE6            | TRACED<br>3 | -                                 | -        | TIM9_CH2*  | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC3 | EVENTOUT |
| PE7            | -           | -                                 | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC4 | EVENTOUT |
| PE8            | -           | -                                 | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC1 | EVENTOUT |
| PE9            | -           | TIM2_CH1_ETR                      | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC2 | EVENTOUT |
| PE10           | -           | TIM2_CH2                          | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC3 | EVENTOUT |
| PE11           | -           | TIM2_CH3                          | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | TIMx_IC4 | EVENTOUT |
| PE12           | -           | TIM2_CH4                          | -        | -          | -      | SPI1_NSS  | -          | -          | -     | -     | -      | -      | -      | TIMx_IC1 | EVENTOUT |
| PE13           | -           | -                                 | -        | -          | -      | SPI1_SCK  | -          | -          | -     | -     | -      | -      | -      | TIMx_IC2 | EVENTOUT |
| PE14           | -           | -                                 | -        | -          | -      | SPI1_MISO | -          | -          | -     | -     | -      | -      | -      | TIMx_IC3 | EVENTOUT |
| PE15           | -           | -                                 | -        | -          | -      | SPI1_MOSI | -          | -          | -     | -     | -      | -      | -      | TIMx_IC4 | EVENTOUT |
| PH0-<br>OSC_IN | -           | -                                 | -        | -          | -      | -         | -          | -          | -     | -     | -      | -      | -      | -        | -        |

#### Table 9. Alternate function input/output (continued)

# 5 Memory mapping

The memory map is shown in *Figure 9*.



Figure 9 Momon



| Symbol                     | Parameter                               | Cons               | f                                                    | Typ     | Max <sup>(1)</sup> |       |       | 11:0:14 |      |
|----------------------------|-----------------------------------------|--------------------|------------------------------------------------------|---------|--------------------|-------|-------|---------|------|
| Symbol                     | Parameter                               | Conc               | ntions                                               | HCLK    | тур                | 55 °C | 85 °C | 105 °C  | Unit |
| I <sub>DD</sub><br>(Sleep) | Supply<br>current in<br>Sleep           | MSI clock, 65 kHz  |                                                      | 65 kHz  | 40                 | 70    | 70    | 80      |      |
|                            |                                         | MSI clock, 524 kHz | Range 3,<br>V <sub>CORE</sub> =1.2V<br>VOS[1:0] = 11 | 524 kHz | 60                 | 90    | 90    | 100     |      |
|                            | mode,<br>code<br>executed<br>from Flash | MSI clock, 4.2 MHz |                                                      | 4.2 MHz | 210                | 250   | 250   | 260     | μA   |

 Table 19. Current consumption in Sleep mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC\_CR register)

3. Tested in production



#### **Output driving current**

The GPIOs (general purpose input/outputs) can sink or source up to  $\pm 8$  mA, and sink or source up to  $\pm 20$  mA (with the non-standard V<sub>OL</sub>/V<sub>OH</sub> specifications given in *Table 43*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V<sub>DD</sub>, plus the maximum Run consumption of the MCU sourced on V<sub>DD</sub>, cannot exceed the absolute maximum rating I<sub>VDDΣ</sub> (see *Table 11*).
- The sum of the currents sunk by all the I/Os on V<sub>SS</sub> plus the maximum Run consumption of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute maximum rating  $I_{VSS\Sigma}$  (see *Table 11*).

#### **Output voltage levels**

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13*. All I/Os are CMOS and TTL compliant.

| Symbol                            | Parameter                                | Conditions                       | Min                   | Мах  | Unit |
|-----------------------------------|------------------------------------------|----------------------------------|-----------------------|------|------|
| V <sub>OL</sub> <sup>(1)(2)</sup> | Output low level voltage for an I/O pin  | I <sub>IO</sub> = 8 mA           | -                     | 0.4  |      |
| V <sub>OH</sub> <sup>(3)(2)</sup> | Output high level voltage for an I/O pin | 2.7 V < V <sub>DD</sub> < 3.6 V  | 2.4                   | -    |      |
| V <sub>OL</sub> <sup>(1)(4)</sup> | Output low level voltage for an I/O pin  | I <sub>IO</sub> = 4 mA           | -                     | 0.45 | V    |
| V <sub>OH</sub> <sup>(3)(4)</sup> | Output high level voltage for an I/O pin | 1.65 V < V <sub>DD</sub> < 2.7 V | V <sub>DD</sub> -0.45 | -    | v    |
| V <sub>OL</sub> <sup>(1)(4)</sup> | Output low level voltage for an I/O pin  | I <sub>IO</sub> = 20 mA          | -                     | 1.3  |      |
| V <sub>OH</sub> (3)(4)            | Output high level voltage for an I/O pin | 2.7 V < V <sub>DD</sub> < 3.6 V  | V <sub>DD</sub> -1.3  | -    |      |

#### Table 43. Output voltage characteristics

1. The I<sub>IO</sub> current sunk by the device must always respect the absolute maximum rating specified in *Table 11* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.

2. Tested in production.

3. The I<sub>IO</sub> current sourced by the device must always respect the absolute maximum rating specified in *Table 11* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VDD</sub>.

4. Guaranteed by characterization results.



#### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 44*, respectively.

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 13*.

| OSPEEDRx<br>[1:0] bit<br>value <sup>(1)</sup> | Symbol                | Parameter                                                       | Conditions                                                           | Min | Max <sup>(2)</sup> | Unit  |  |
|-----------------------------------------------|-----------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-----|--------------------|-------|--|
|                                               | f in the second       | Maximum frequency <sup>(3)</sup>                                | $\rm C_L$ = 50 pF, $\rm V_{DD}$ = 2.7 V to 3.6 V                     | -   | 400                | kH7   |  |
| 00                                            | 'max(IO)out           | Maximum nequency                                                | $C_{L} = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 2.7 \text{ V}$ - |     | 400                | KI IZ |  |
| 00                                            | t <sub>f(IO)out</sub> | Output rise and fall time                                       | $C_L$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                             | -   | 625                | ns    |  |
|                                               | t <sub>r(IO)out</sub> |                                                                 | $C_L$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                            | -   | 625                | 115   |  |
|                                               | f (IO) (              | Maximum frequency <sup>(3)</sup>                                | $C_L$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                             | -   | 2                  | MHz   |  |
| 01                                            | 'max(IO)out           | Maximum nequency                                                | $C_L$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                            | -   | 1                  | WHZ   |  |
| 01                                            | t <sub>f(IO)out</sub> | Output rise and fall time.                                      | $C_L$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                             | -   | 125                | ns    |  |
|                                               | t <sub>r(IO)out</sub> |                                                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                          | -   | 250                |       |  |
|                                               | F                     | Maximum frequency <sup>(3)</sup>                                | $C_{L}$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                           | -   | 10                 | — MHz |  |
| 10                                            | max(IO)out            |                                                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                          | -   | 2                  |       |  |
| 10                                            | t <sub>f(IO)out</sub> | Output rise and fall time                                       | $C_{L}$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                           | -   | 25                 | 200   |  |
|                                               | t <sub>r(IO)out</sub> |                                                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                          | -   | 125                | 115   |  |
|                                               | F                     | Maximum frequency $^{(3)}$                                      | $C_{L}$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                           | -   | 50                 |       |  |
| 11                                            | rmax(IO)out           |                                                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                          | -   | 8                  |       |  |
| 11                                            | t <sub>f(IO)out</sub> | Output rise and fall time                                       | $C_{L}$ = 30 pF, $V_{DD}$ = 2.7 V to 3.6 V                           | -   | 5                  |       |  |
|                                               | t <sub>r(IO)out</sub> |                                                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 1.65 V to 2.7 V                          | -   | 30                 |       |  |
| -                                             | t <sub>EXTIpw</sub>   | Pulse width of external signals detected by the EXTI controller | -                                                                    | 8   | -                  | ns    |  |

| Table 44. I/O AC | characteristics <sup>(1)</sup> |
|------------------|--------------------------------|
|------------------|--------------------------------|

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151x6/8/B and STM32L152x6/8/B reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

## 6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 54* are guaranteed by design.

| Symbol           | Parameter              |                           | Conditions                     |                                               | Min      | Max | Unit |
|------------------|------------------------|---------------------------|--------------------------------|-----------------------------------------------|----------|-----|------|
|                  |                        |                           |                                | $V_{REF+} = V_{DDA}$                          |          | 16  |      |
| f <sub>ADC</sub> | ADC clock<br>frequency | Voltage<br>Range 1 &<br>2 | 2.4 V ≤V <sub>DDA</sub> ≤3.6 V | $V_{REF+} < V_{DDA}$<br>$V_{REF+} > 2.4 V$    |          | 8   |      |
|                  |                        |                           |                                | $V_{REF+} < V_{DDA}$<br>$V_{REF+} \leq 2.4 V$ | 0.480    | 4   | MHz  |
|                  |                        |                           | 18/1/ 01/                      | $V_{REF+} = V_{DDA}$                          |          | 8   |      |
|                  |                        |                           | 1.0 V SVDDA S.4 V              | $V_{REF+} < V_{DDA}$                          | <u> </u> | 4   |      |
|                  | -                      |                           | Voltage Range 3                |                                               |          | 4   |      |

Table 53. ADC clock frequency

### Table 54. ADC characteristics

| Symbol            | Parameter                               | Conditions Min                                                                                    |                    | Тур       | Max               | Unit     |  |
|-------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|-----------|-------------------|----------|--|
| V <sub>DDA</sub>  | Power supply                            | -                                                                                                 | 1.8                | -         | 3.6               | V        |  |
| V <sub>REF+</sub> | Positive reference voltage              | 2.4 V ≤V <sub>DDA</sub> ≤3.6 V<br>V <sub>REF+</sub> must be below<br>or equal to V <sub>DDA</sub> | 1.8 <sup>(1)</sup> | -         | V <sub>DDA</sub>  | V        |  |
| V <sub>REF-</sub> | Negative reference voltage              | -                                                                                                 | -                  | $V_{SSA}$ | -                 | V        |  |
| I <sub>VDDA</sub> | Current on the $V_{DDA}$ input pin      | -                                                                                                 | -                  | 1000      | 1450              | μA       |  |
| $I_{VREF}^{(2)}$  | Current on the V <sub>REF</sub> input   | Peak                                                                                              | -                  | 400       | 700               | μA       |  |
|                   | pin                                     | Average                                                                                           | -                  | 400       | 450               | μA       |  |
| V <sub>AIN</sub>  | Conversion voltage range <sup>(3)</sup> | -                                                                                                 | 0 <sup>(4)</sup>   | -         | V <sub>REF+</sub> | V        |  |
| fs                | 12 hit campling rate                    | Direct channels                                                                                   | 0.03               | -         | 1                 | Msps     |  |
|                   | 12-bit Sampling rate                    | Multiplexed channels                                                                              | 0.03               | -         | 0.76              |          |  |
|                   | 10 hit compling rate                    | Direct channels                                                                                   | 0.03               | -         | - 1.07            |          |  |
|                   | TO-bit Sampling Tate                    | Multiplexed channels                                                                              | 0.03               | -         | 0.8               | wsps     |  |
|                   |                                         | Direct channels                                                                                   | 0.03               | -         | 1.23              | Mana     |  |
|                   | o-bit sampling rate                     | Multiplexed channels                                                                              | 0.03               | -         | 0.89              | - ivisps |  |
|                   | 6 bit compling rate                     | Direct channels                                                                                   | 0.03               | -         | 1.45              | Mone     |  |
|                   | o-bit sampling rate                     | Multiplexed channels                                                                              | 0.03               | -         | 1                 | INISHS   |  |



| Symbol            | Parameter                                          | Conditions                                             | Min                                                            | Тур | Max     | Unit               |
|-------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-----|---------|--------------------|
| t <sub>S</sub>    |                                                    | Direct channels<br>2.4 V ≤V <sub>DDA</sub> ≤3.6 V      | 0.25                                                           | -   | -       |                    |
|                   | Sampling time <sup>(5)</sup>                       | Multiplexed channels<br>2.4 V ≤V <sub>DDA</sub> ≤3.6 V | 0.56                                                           |     |         |                    |
|                   |                                                    | Direct channels<br>1.8 V ≤V <sub>DDA</sub> ≤2.4 V      | 0.56                                                           | -   | μ3<br>- |                    |
|                   |                                                    | Multiplexed channels<br>1.8 V ≤V <sub>DDA</sub> ≤2.4 V | 1                                                              | -   | -       |                    |
|                   |                                                    | -                                                      | 4                                                              | -   | 384     | 1/f <sub>ADC</sub> |
|                   |                                                    | f <sub>ADC</sub> = 16 MHz                              | 1                                                              | -   | 24.75   | μs                 |
| t <sub>CONV</sub> | Total conversion time<br>(including sampling time) | -                                                      | 4 to 384 (sampling<br>phase) +12 (successive<br>approximation) |     |         | 1/f <sub>ADC</sub> |
| 6                 | Internal sample and hold                           | Direct channels                                        | -                                                              | 16  | -       | pF                 |
| CADC              | capacitor                                          | Multiplexed channels                                   | -                                                              | 10  | -       |                    |
| £                 | External trigger frequency                         | 12-bit conversions                                     | -                                                              | -   | Tconv+1 | 1/f <sub>ADC</sub> |
| TRIG              | Regular sequencer                                  | 6/8/10-bit conversions                                 | -                                                              | -   | Tconv   | 1/f <sub>ADC</sub> |
| ferrie            | External trigger frequency                         | 12-bit conversions                                     | -                                                              | -   | Tconv+2 | 1/f <sub>ADC</sub> |
| <sup>I</sup> TRIG | Injected sequencer                                 | 6/8/10-bit conversions                                 | -                                                              | -   | Tconv+1 | 1/f <sub>ADC</sub> |
| R <sub>AIN</sub>  | Signal source impedance <sup>(5)</sup>             | -                                                      | -                                                              | -   | 50      | κΩ                 |
| t <sub>lat</sub>  | Injection trigger conversion                       | f <sub>ADC</sub> = 16 MHz                              | 219                                                            | -   | 281     | ns                 |
|                   | latency                                            | -                                                      | 3.5                                                            | -   | 4.5     | 1/f <sub>ADC</sub> |
| t <sub>latr</sub> | Regular trigger conversion                         | f <sub>ADC</sub> = 16 MHz                              | 156                                                            | -   | 219     | ns                 |
|                   | latency                                            | -                                                      | 2.5                                                            | -   | 3.5     | 1/f <sub>ADC</sub> |
| t <sub>STAB</sub> | Power-up time                                      | -                                                      | -                                                              | -   | 3.5     | μs                 |

Table 54. ADC characteristics (continued)

The V<sub>REF+</sub> input can be grounded iif neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through  $\mathsf{V}_{\mathsf{REF}}$  is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400  $\mu$ A), only during sampling time + 2 first conversion pulses.

So, peak consumption is 300+400 = 700  $\mu A$  and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450  $\mu A$  at 1Msps

3.  $V_{REF+}$  can be internally connected to  $V_{DDA}$  and  $V_{REF-}$  can be internally connected to  $V_{SSA}$ , depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V<sub>SSA</sub> must be tied to ground.

5. See Table 56: Maximum source impedance RAIN max for  $\mathsf{R}_{\mathsf{AIN}}$  limitation.







# Table 56. Maximum source impedance $R_{AIN} \max^{(1)}$

| Ts<br>(µs) | Multiplexed channels             |                                  | Direct o                         | Ts (cycles)<br>f <sub>ADC</sub> = 16 MHz <sup>(2)</sup> |     |
|------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------|-----|
|            | 2.4 V < V <sub>DDA</sub> < 3.6 V | 1.8 V < V <sub>DDA</sub> < 2.4 V | 2.4 V < V <sub>DDA</sub> < 3.3 V | 1.8 V < V <sub>DDA</sub> < 2.4 V                        | ADC |
| 0.25       | Not allowed                      | Not allowed                      | 0.7                              | Not allowed                                             | 4   |
| 0.5625     | 0.8                              | Not allowed                      | 2.0                              | 1.0                                                     | 9   |
| 1          | 2.0                              | 0.8                              | 4.0                              | 3.0                                                     | 16  |
| 1.5        | 3.0                              | 1.8                              | 6.0                              | 4.5                                                     | 24  |
| 3          | 6.8                              | 4.0                              | 15.0                             | 10.0                                                    | 48  |
| 6          | 15.0                             | 10.0                             | 30.0                             | 20.0                                                    | 96  |
| 12         | 32.0                             | 25.0                             | 50.0                             | 40.0                                                    | 192 |
| 24         | 50.0                             | 50.0                             | 50.0                             | 50.0                                                    | 384 |

1. Guaranteed by design.

2. Number of samples calculated for  $f_{ADC}$  = 16 MHz. For  $f_{ADC}$  = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

### General PCB design guidelines

Power supply decoupling should be performed as shown in The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.



# 7.2 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information



Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline

1. Drawing is not to scale.

| Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical |
|------------------------------------------------------------------------------|
| data                                                                         |

| Symbol | millimeters |        |       | inches <sup>(1)</sup> |        |        |  |
|--------|-------------|--------|-------|-----------------------|--------|--------|--|
|        | Min         | Тур    | Мах   | Тур                   | Min    | Мах    |  |
| А      | -           | -      | 1.600 | -                     | -      | 0.0630 |  |
| A1     | 0.050       | -      | 0.150 | 0.0020                | -      | 0.0059 |  |
| A2     | 1.350       | 1.400  | 1.450 | 0.0531                | 0.0551 | 0.0571 |  |
| b      | 0.170       | 0.220  | 0.270 | 0.0067                | 0.0087 | 0.0106 |  |
| С      | 0.090       | -      | 0.200 | 0.0035                | -      | 0.0079 |  |
| D      | -           | 12.000 | -     | -                     | 0.4724 | -      |  |
| D1     | -           | 10.000 | -     | -                     | 0.3937 | -      |  |
| D3     | -           | 7.500  | -     | -                     | 0.2953 | -      |  |
| E      | -           | 12.000 | -     | -                     | 0.4724 | -      |  |
| E1     | -           | 10.000 | -     | -                     | 0.3937 | -      |  |





Figure 50. Thermal resistance

## 7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.



# 8 Ordering information

| Table 72. Ordering                                  | information | on scheme |       |   |
|-----------------------------------------------------|-------------|-----------|-------|---|
| Example:                                            | STM32       | L 151 C 8 | T 6 7 |   |
| Device family                                       |             |           |       |   |
| STM32 = ARM-based 32-bit microcontroller            |             |           |       |   |
| Product type                                        |             |           |       |   |
| L = Low power                                       |             |           |       |   |
| Device subfamily                                    |             |           |       |   |
| 151: Devices without LCD                            |             |           |       |   |
| 151: Devices with LCD                               |             |           |       |   |
| 132. Devices with ECD                               |             |           |       |   |
| Pin count                                           |             |           |       |   |
| C = 48 pins                                         |             |           |       |   |
| R = 64 pins                                         |             |           |       |   |
| V = 100 pins                                        |             |           |       |   |
| Flash memory size                                   |             |           |       |   |
| 6 = 32 Kbytes of Flash memory                       |             |           |       |   |
| 8 = 64 Kbytes of Flash memory                       |             |           |       |   |
| B = 128 Kbytes of Flash memory                      |             |           |       |   |
| Package                                             |             |           |       |   |
| H = BGA                                             |             |           |       |   |
| T = LQFP                                            |             |           |       |   |
| U = UFQFPN                                          |             |           |       |   |
| Temperature range                                   |             |           |       |   |
| 6 = Industrial temperature range, -40 to 85 °C      |             |           | 1     |   |
| Options                                             |             |           |       |   |
| No character = $V_{DD}$ range: 1.8 to 3.6 V and BOF | R enabled   |           |       | • |
| T = $V_{DD}$ range: 1.65 to 3.6 V and BOR disabled  |             |           |       |   |
| Packing                                             |             |           |       |   |

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.



DocID17659 Rev 12

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved



DocID17659 Rev 12