

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B and STM32L152x6/8/B ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B and STM32L152x6/8/B datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038).

The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to STM32L15xx6/8/B-A covered by a separate datasheet.

2 Description

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at 32 MHz frequency (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 16 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151x6/8/B and STM32L152x6/8/B devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB. The STM32L151x6/8/B and STM32L152x6/8/B devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application.

They also include a real-time clock and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151x6/8/B devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. It is available in the -40 to +85 °C temperature range, extended to 105°C in low power dissipation state. A comprehensive set of power-saving modes allows the design of low-power applications.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation			
V _{DD} = 2.0 to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 The CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock source**: three different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

				Table 9.	Alterna	te functio	n inpu	t/output (co	ntinue	ed)					
						Digital al	ternate fu	inction number							
Port name	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFIO8	AFIO9	AFIO11	AFIO12	AFIO13	AFIO14	AFIC
Port name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYS
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVEN
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVEN.
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVEN
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVEN
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVEN
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVEN
PD1	-	-	-	-	-	SPI2_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVEN
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31/ SEG43	-	-	TIMx_IC3	EVEN
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	-	-	-	-	TIMx_IC4	EVEN
PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS	-	-	-	-	-	TIMx_IC1	EVEN
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	-	TIMx_IC2	EVEN
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	-	TIMx_IC3	EVEN
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	-	-	-	-	TIMx_IC4	EVEN
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	-	TIMx_IC1	EVEN
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	-	TIMx_IC2	EVEN
PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	-	-	TIMx_IC3	EVEN
PD11	-	-	-	-	-	-	-	USART3_CTS	-	-	-	-	-	TIMx_IC4	EVEN
PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	-	-	-	-	-	TIMx_IC1	EVEN

Table 9. Alternate function input/output (continued)

45/133

STM32L151x6/8/B STM32L152x6/8/B

Pin descriptions

5 Memory mapping

The memory map is shown in *Figure 9*.

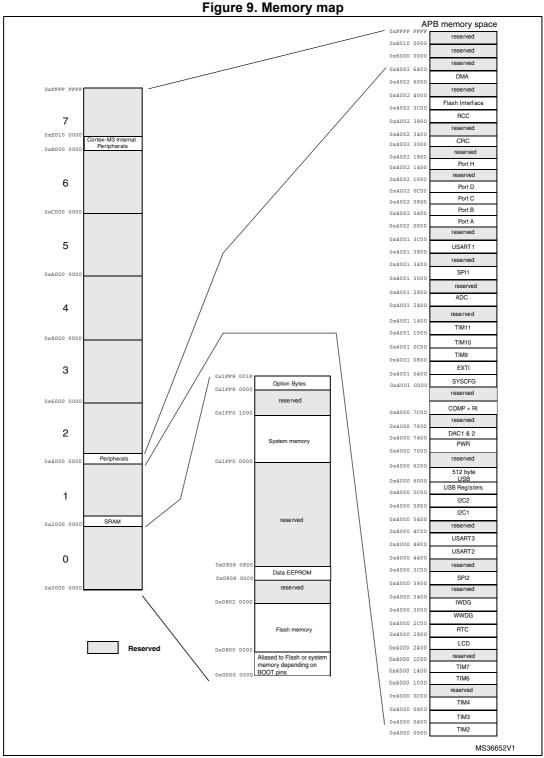


Figure 9 Momon

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

Symbol	Parameter Conditions		Min	Тур	Мах	Unit	
	V rice time rate	BOR detector enabled	0	-	~		
t _{VDD} ⁽¹⁾	V _{DD} rise time rate	BOR detector disabled	0	-	1000		
^I VDD ⁽¹⁾) (fall time rate	BOR detector enabled	20	-	~	µs/V	
	V _{DD} fall time rate	BOR detector disabled	0	-	1000		
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3		
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms	
V	Power on/power down reset	Falling edge	1	1.5	1.65	v	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	v	
N/	Drown out react threshold 0	Falling edge	1.67	1.7	7 1.74		
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8		
N/	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97		
V _{BOR1}	Brown-out reset threshold T	Rising edge	1.96	2.03	2.07		
M	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	v	
V _{BOR2}		Rising edge	2.31	2.41	2.44	v	
N/	Drown out react threshold 2	Falling edge	2.45	2.55	2.60		
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7		
M	Brown-out reset threshold 4	Falling edge	2.68	2.8	2.85		
V _{BOR4}		Rising edge	2.78	2.9	2.95		

Table 14. Embedded reset and power control block characteristics

6.3.3 Embedded internal reference voltage

The parameters given in the following table are based on characterization results, unless otherwise specified.

Table 15. Embedded internal reference voltage calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 0078-0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +105 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REF} value $^{(2)}$	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +105 °C	-	25	100	ppm/°C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾⁽⁴⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current ⁽⁵⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 16. Embedded internal reference voltage

1. Tested in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. Shortest sampling time can be determined in the application by multiple iterations.

5. To guarantee less than 1% VREF_OUT deviation.

	Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C					
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	GPIOA	5	4.5	3.5	4	
	GPIOB	5	4.5	3.5	4.5	
	GPIOC	5	4.5	3.5	4.5	
	GPIOD	5	4.5	3.5	4.5	
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz
	GPIOH	4	4	3	3.5	(f _{HCLK})
	CRC	1	0.5	0.5	0.5	
	FLASH	13	11.5	9	18.5	
	DMA1	12	10	8	10.5	
All enabled		166	138	106	130	
I _{DD (RTC)}						
I _{DD (LCD)}						
I _{DD (ADC)} ⁽³⁾						
I _{DD (DAC)} ⁽⁴⁾						
I _{DD (COMP1)}			μA			
Slow mode						
I _{DD (COMP2)}	Fast mode					
I _{DD (PVD / BOR)} ⁽⁵⁾						
I _{DD (IWDG)}			0.1	25		

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

6.3.5 Wakeup time from Low power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.36	-	
t	Wakeup from Low power sleep mode	f _{HCLK} = 262 kHz Flash enabled	32	-	
twusleep_lp	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	34	-	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 1 and 2	8.2	9.3	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 3	7.8	11.2	μs
t _{WUSTOP}	Wakeup from Stop mode, regulator in low power mode			12	
		f _{HCLK} = f _{MSI} = 1.05 MHz	15.5	20	
		f _{HCLK} = f _{MSI} = 524 kHz	29	35	
		f _{HCLK} = f _{MSI} = 262 kHz	53	63	
		f _{HCLK} = f _{MSI} = 131 kHz	105	118	
		f _{HCLK} = MSI = 65 kHz	210	237	
twustdby	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	50	103	
	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.5	3.2	ms

 Table 25. Low-power mode wakeup timings

1. Guaranteed by characterization results, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-		200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	3	mA
	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	mA
IDD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	mA
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	1	-	ms

Table 28.	HSE	oscillator	characteristics ⁽¹⁾⁽²⁾
-----------	-----	------------	-----------------------------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

				Max vs			
Symbol	Parameter	Conditions	Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
		V _{DD} = 3.3 V,	0.1 to 30 MHz	3	-6	-5	
S _{EMI} Peak level	$T_A = 25 \ ^\circ C$,	30 to 130 MHz	18	4	-7	dBµV	
	Peak level	LQFP100 package compliant with IEC	130 MHz to 1GHz	15	5	-7	
		61967-2	SAE EMI Level	2.5	2	1	-

Table 38. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to JESD22-C101	All	111	500	v

Table 39. ESD absolute maximum ratings

1. Guaranteed by characterization results.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under conditions summarized in *Table 13*. All I/Os are CMOS and TTL compliant.

Table 42. I/O Static characteristics									
Symbol	Parameter	Conc	litions	Min	Тур	Мах	Unit		
V _{IL}	Input low level voltage	-	-	-	-	0.3V _{DD} ⁽¹⁾			
V	Input high lovel veltage	Standard I/O		0.7.\/	-	-			
VIH	Input high level voltage	FT	· I/O	0.7 V _{DD}	-	-	V		
V.	I/O Schmitt trigger voltage	Stand	ard I/O	-	10% V _{DD} ⁽³⁾	-			
V _{hys}	hysteresis ⁽²⁾	$\begin{tabular}{ c c c c } \hline FT I/O & \\ \hline V_{SS} \leq V_{IN} \leq V_{DD} & \\ \hline I/Os with LCD & \\ \hline V_{SS} \leq V_{IN} \leq V_{DD} & \\ \hline \end{tabular}$		-	5% V _{DD} ⁽⁴⁾	-			
				-	-	±50			
I _{lkg}	Input leakage current ⁽⁵⁾	V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches		-		±50			
		$V_{SS} \leq V_{IN} \leq V_{DD}$ I/Os with analog switches and LCD $V_{SS} \leq V_{IN} \leq V_{DD}$ I/Os with USB		-	-	±50	nA		
				-	-	TBD			
		FT I/O V _{DD} ≤V _{IN} ≤5V		-	-	TBD			
		V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os		-	-	±50			
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾⁽¹⁾	$V_{IN} = V_{SS}$		30	45	60	kΩ		
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	V _{IN} =	= V _{DD}	30	45	60	kΩ		
C _{IO}	I/O pin capacitance	-	-	-	5	-	pF		

	Table 42.	I/O	static	characteristics
--	-----------	-----	--------	-----------------

1. Tested in production

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization.

3. With a minimum of 200 mV. Based on characterization results.

4. With a minimum of 100 mV. Based on characterization results.

5. The max. value may be exceeded if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 44*, respectively.

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kHz
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KUZ
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	115
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	
f _{max(IO)out}			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	MHz
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns
t _{r(IO)out}			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250	115
	E	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MHz
10	rmax(IO)out	max(IO)out Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	115
	E	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
44	F _{max(IO)out} Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8		
11	t _{f(IO)out} Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5		
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 44.	I/O AC	characteristics ⁽¹⁾
-----------	--------	--------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151x6/8/B and STM32L152x6/8/B reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

STM32L151x6/8/B STM32L152x6/8/B

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤ V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{\text{DDA}} = V_{\text{REF}+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	$T_{A} = -40 \text{ to } 105 \degree \text{C}$ $1 \text{ kHz} \le F_{\text{input}} \le 100 \text{ kHz}$	57.5	62	-	dB
THD	Total harmonic distortion		-74	-75	-	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	2.4 V ≤ V _{DDA} ≤ 3.6 V	-	2	4	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	4	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 V \le V_{DDA} \le 2.4 V$	-	1	1.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1	1.5	

1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
dOffeet/dT ⁽¹⁾	Offset error temperature	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	µV/°C
dOffset/dT ⁽¹⁾ Offset error temperature coefficient (code 0x800)		$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	0	20	50	μν/ Ο
Gain ⁽¹⁾	Gain error ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / - 0.5%	%
Gain	Gain enor	No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70
dCoin/dT ⁽¹⁾	Gain error temperature	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-10	-2	0	μV/°C
	coefficient	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	-40	-8	0	μν/ Ο
TUE ⁽¹⁾	Total unadjusted error	$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	LSB
		No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	8	12	LOD
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps
t _{wakeup}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB

Table 57. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x800) and the ideal value = V/2.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} - 0.2$) V when buffer is ON.

7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

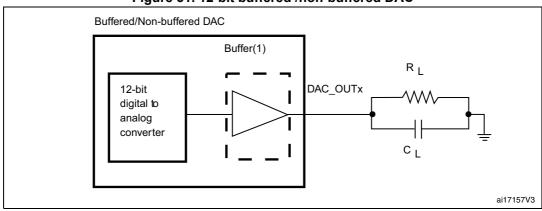


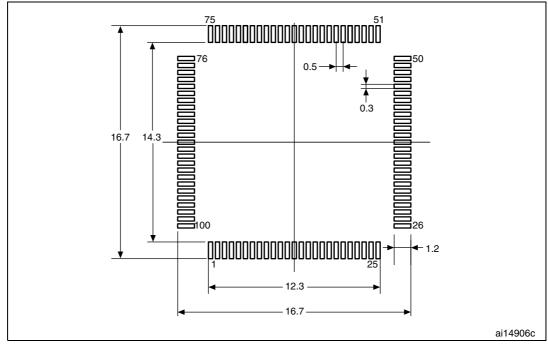
Figure 31. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A-0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3 V	0x1FF8 007E-0x1FF8 007F

Table 58. Temperature sensor calibration values


Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP100 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

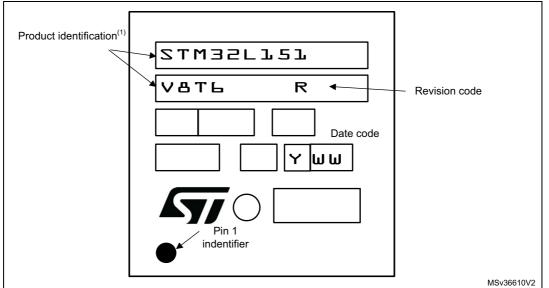


Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

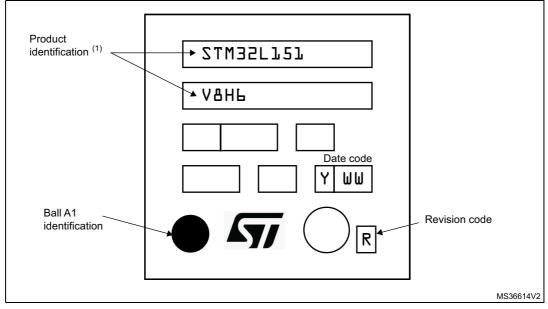


Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

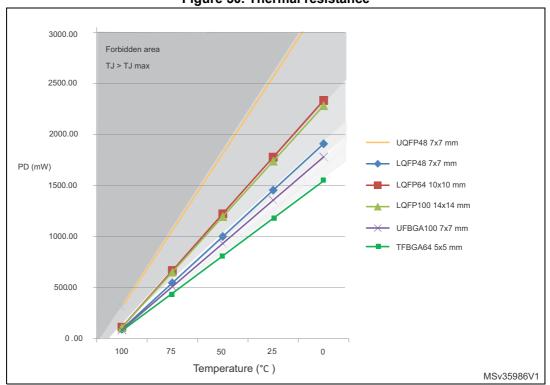


Figure 50. Thermal resistance

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

