



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                     |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 32MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB                    |
| Peripherals                | Brown-out Detect/Reset, Cap Sense, DMA, I <sup>2</sup> S, POR, PWM, WDT |
| Number of I/O              | 37                                                                      |
| Program Memory Size        | 64KB (64K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 4K x 8                                                                  |
| RAM Size                   | 10K × 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                             |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 48-LQFP                                                                 |
| Supplier Device Package    | 48-LQFP (7x7)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c8t6   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|   |      | 6.3.9     | Memory characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      | 6.3.10    | EMC characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |      | 6.3.11    | Electrical sensitivity characteristics80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      | 6.3.12    | I/O current injection characteristics81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |      | 6.3.13    | I/O port characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      | 6.3.14    | NRST pin characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      | 6.3.15    | TIM timer characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |      | 6.3.16    | Communication interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      | 6.3.17    | 12-bit ADC characteristics93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | 6.3.18    | DAC electrical specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 6.3.19    | Temperature sensor characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |      | 6.3.20    | Comparator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |      | 6.3.21    | LCD controller (STM32L152xx only) 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7 | Pack | kage info | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 7.1  |           | 00 14 x 14 mm, 100-pin low-profile quad flat package<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 7.2  | LQFP6     | 4 10 x 10 mm, 64-pin low-profile quad flat package information.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 7.3  | LQFP4     | 8 7 x 7 mm, 48-pin low-profile quad flat package information 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 7.4  | UFQFF     | PN48 7 x 7 mm, 0.5 mm pitch, package information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 7.5  |           | A100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch<br>d array package information117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 7.6  |           | A64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball and the second sec |
|   | 7.7  | Therma    | al characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |      | 7.7.1     | Reference document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8 | Orde | ering inf | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9 | Revi | sion his  | story                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



HSE crystal oscillators are disabled. The voltage regulator is in the low power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8  $\mu$ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 22: Typical and maximum current consumptions in Stop mode*.

Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire  $V_{CORE}$  domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC\_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire  $V_{CORE}$  domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC\_CSR).

The device exits Standby mode in 60  $\mu$ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 23*.

*Note:* The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

|                                                | Functionalitie                    | Functionalities depending on the operating power supply range |                                   |                            |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------|---------------------------------------------------------------|-----------------------------------|----------------------------|--|--|--|--|--|--|--|
| Operating power<br>supply range                | DAC and ADC operation             | USB                                                           | Dynamic voltage<br>scaling range  | I/O operation              |  |  |  |  |  |  |  |
| V <sub>DD</sub> = 1.65 to 1.71 V               | Not functional                    | Not functional                                                | Range 2 or<br>Range 3             | Degraded speed performance |  |  |  |  |  |  |  |
| V <sub>DD</sub> = 1.71 to 1.8 V <sup>(1)</sup> | Not functional                    | Not functional                                                | Range 1,<br>Range 2 or<br>Range 3 | Degraded speed performance |  |  |  |  |  |  |  |
| $V_{DD}$ = 1.8 to 2.0 V <sup>(1)</sup>         | Conversion time<br>up to 500 Ksps | Not functional                                                | Range 1,<br>Range 2 or<br>Range 3 | Degraded speed performance |  |  |  |  |  |  |  |

| Table 3. Functionalities dep | pending on the operating | power supply range |
|------------------------------|--------------------------|--------------------|
|------------------------------|--------------------------|--------------------|



|                                              |                       |                      | Low-         | Low-           |   | Stop                                  | 5     | Standby                                  |  |  |
|----------------------------------------------|-----------------------|----------------------|--------------|----------------|---|---------------------------------------|-------|------------------------------------------|--|--|
| lps                                          | Run/Active            | Sleep                | power<br>Run | power<br>Sleep |   | Wakeup<br>capability                  |       | Wakeup<br>capability                     |  |  |
| DAC                                          | Y                     | Y                    | Y            | Y              | Y | -                                     | -     | -                                        |  |  |
| Temperature<br>sensor                        | Y                     | Y                    | Y            | Y              | Y | -                                     | -     | -                                        |  |  |
| Comparators                                  | Y                     | Y                    | Y            | Y              | Y | Y                                     | -     | -                                        |  |  |
| 16-bit and 32-bit<br>Timers                  | Y                     | Y                    | Y            | Y              | - | -                                     | -     | -                                        |  |  |
| IWDG                                         | Y                     | Y                    | Y            | Y              | Y | Y                                     | Y     | Y                                        |  |  |
| WWDG                                         | Y                     | Y                    | Y            | Y              | - | -                                     | -     | -                                        |  |  |
| Touch sensing                                | Y                     | -                    | -            | -              | - | -                                     | -     | -                                        |  |  |
| Systick Timer                                | Y                     | Y                    | Y            | Y              | - | -                                     | -     | -                                        |  |  |
| GPIOs                                        | Y                     | Y                    | Y            | Y              | Y | Y                                     | -     | 3 Pins                                   |  |  |
| Wakeup time to<br>Run mode                   | 0 µs                  | 0.36 µs              | 3 µs         | 32 µs          |   | < 8 µs                                | 50 µs |                                          |  |  |
|                                              |                       |                      |              |                |   | 5 µA (No<br>) V <sub>DD</sub> =1.8V   |       | IA (No RTC)<br>/ <sub>DD</sub> =1.8V     |  |  |
| Consumption<br>V <sub>DD</sub> =1.8V to 3.6V | Down to<br>214 µA/MHz | Down to<br>50 µA/MHz | Down to      | Down to        |   | 4 μΑ (with<br>) V <sub>DD</sub> =1.8V |       | 1 μA (with RTC)<br>V <sub>DD</sub> =1.8V |  |  |
| (Typ)                                        | (from Flash)          | (from Flash)         | 9 µA         | 4.4 µA         |   | 5 µA (No<br>) V <sub>DD</sub> =3.0V   |       | 0.3 μA (No RTC)<br>V <sub>DD</sub> =3.0V |  |  |
|                                              |                       |                      |              |                |   | δ μΑ (with<br>) V <sub>DD</sub> =3.0V |       | 3 µA (with<br>≎) V <sub>DD</sub> =3.0V   |  |  |

| Table 5. Working mode-dependent functionalities | (from Run/active down to standby) (continued) |
|-------------------------------------------------|-----------------------------------------------|
|                                                 |                                               |

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

# 3.2 ARM<sup>®</sup> Cortex<sup>®</sup>-M3 core with MPU

The ARM<sup>®</sup> Cortex<sup>®</sup>-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM<sup>®</sup> Cortex<sup>®</sup>-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151x6/8/B and STM32L152x6/8/B devices are compatible with all ARM tools and software.



This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- external triggers for conversion
- input reference voltage V<sub>REF+</sub>

Eight DAC trigger inputs are used in the STM32L151x6/8/B and STM32L152x6/8/B devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

# 3.12 Ultra-low-power comparators and reference voltage

The STM32L151x6/8/B and STM32L152x6/8/B devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- one comparator with fixed threshold
- one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
  - DAC output
  - External I/O
  - Internal reference voltage (V<sub>REFINT</sub>) or V<sub>REFINT</sub> submultiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low power / low current output buffer (driving current capability of 1  $\mu$ A typical).

# 3.13 Routing interface

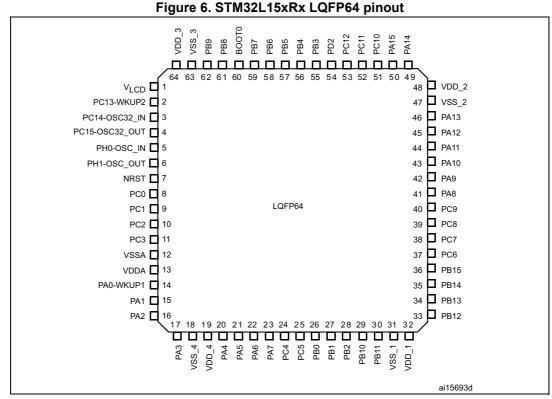
This interface controls the internal routing of I/Os to TIM2, TIM3, TIM4 and to the comparator and reference voltage output.

# 3.14 Touch sensing

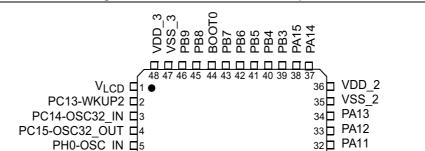
The STM32L151x6/8/B and STM32L152x6/8/B devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 20 capacitive sensing channels distributed over 10 analog I/O groups. Only software capacitive sensing acquisition mode is supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven




# 4 Pin descriptions

|   | 1                  | 2                   | 3            | 4      | 5                       | 6     | 7     | 8      | 9             | 10           | 11     | 12           |          |
|---|--------------------|---------------------|--------------|--------|-------------------------|-------|-------|--------|---------------|--------------|--------|--------------|----------|
|   | <i>(</i>           | <i>(</i> <b>-</b> ) | <i>(</i> , ) | (~)    | <i>(</i> <sup>-</sup> ) | /TN   |       | (-)    | /~~           | (-)          | /T.\   | <i>(</i> -`` |          |
| Α | (PE3)              | (PE1)               | (PB8)        | iBOOT0 | (PD7)                   | (PD5) | (PB4) | (PB3)  | (PA15)        | (PA14)       | (PA13) | (PA12)       |          |
| в | (PE4)              | (PE2)               | (PB9)        | (PB7)  | (PB6)                   | (PD6) | (PD4) | (PD3)  | (PD1)         | PC12)        | (PC10) | (PA11)       |          |
| с | PC13<br>WKUP2      | (PE5)               | (PEO)        | VDD_B  | (PB5)                   |       |       | (PD2)  | (PDO)         | PC11)        | (PH2)  | (PA10)       |          |
| D | PC14)<br>0\$C32_IN | PE6)<br>WUKP3       | NSS_B        |        |                         |       |       |        |               | (PA9)        | (PA8)  | (PC9)        |          |
| Е | PC15)<br>OSC32_C   | VLCD                | ŃSS_¥        |        |                         |       |       |        |               | (PC8)        | (PC7)  | (PC6)        |          |
| F | PHO)<br>QSC_IN     | alesvi              |              |        |                         |       | 1     |        |               |              | WSS_P  | ŃSS_N        |          |
| G | PH1)               |                     |              |        |                         |       | + -   |        |               |              |        |              |          |
| н | (PC0)              | NRST                |              |        |                         |       |       |        |               | PD15)        | PD14)  | (PD13)       |          |
| J | VSSA)              | (PC1)               | (PC2)        |        |                         |       |       |        |               | PD12)        | PD11)  | (PD10)       |          |
| к | VREF               | (PC3)               | (PA2)        | (PA5)  | (PC4)                   |       |       | (PD9)  | (PD8)         | (PB15)       | (PB14) | (PB13)       |          |
| L | 、<br>(VRE俳+        | (PA0)<br>WKUP1      | (PA3)        | (PA6)  | (PC5)                   | (PB2) | (PE8) | (PE10) | /=\<br>(PE12) | (PB10)       | (PB11) | (PB12)       |          |
| М | NDDA               | (PA1)               | (PA4)        | (PA7)  | (PB0)                   | (PB1) | (PE7) | (PE9)  | (PE11)        | /~\<br>(PE13 | (PE14  | PE13         |          |
|   |                    |                     |              |        |                         |       |       |        |               |              |        |              |          |
|   |                    |                     |              |        |                         |       |       |        |               |              |        |              | ai17096f |


Figure 3. STM32L15xVx UFBGA100 ballout

1. This figure shows the package top view.





1. This figure shows the package top view.



LQFP48

31 PA10

30 PA9

29 PA8

28 PB15

27 PB14

26 PB13 25 PB12

Figure 7. STM32L15xCx LQFP48 pinout

This figure shows the package top view.

PH1-OSC\_OUT

NRST 7

VSSA 🔤 🛚

VDDA

PA1 11 PA2 12

PA0-WKUP1 10



ai15694d

|         |        | Pins    | 5        |                    |                   |                         |               |                                                  | Pins functions                                 |                         |
|---------|--------|---------|----------|--------------------|-------------------|-------------------------|---------------|--------------------------------------------------|------------------------------------------------|-------------------------|
| LQFP100 | LQFP64 | TFBGA64 | UFBGA100 | LQFP48 or UFQFPN48 | Pin name          | Pin type <sup>(1)</sup> | I/O structure | Main<br>function <sup>(2)</sup><br>(after reset) | Alternate functions                            | Additional<br>functions |
| 90      | 56     | A4      | A7       | 40                 | PB4               | I/O                     | FT            | NJTRST                                           | TIM3_CH1/PB4/<br>SPI1_MISO/LCD_SEG8/<br>NJTRST | COMP2_INP               |
| 91      | 57     | C4      | C5       | 41                 | PB5               | I/O                     | FT            | PB5                                              | I2C1_SMBA/TIM3_CH2/<br>SPI1_MOSI/LCD_SEG9      | COMP2_INP               |
| 92      | 58     | D3      | B5       | 42                 | PB6               | I/O                     | FT            | PB6                                              | I2C1_SCL/TIM4_CH1/<br>USART1_TX                |                         |
| 93      | 59     | C3      | B4       | 43                 | PB7               | I/O                     | FT            | PB7                                              | I2C1_SDA/TIM4_CH2/<br>USART1_RX                | PVD_IN                  |
| 94      | 60     | B4      | A4       | 44                 | BOOT0             | Ι                       | В             | BOOT0                                            | -                                              | -                       |
| 95      | 61     | B3      | A3       | 45                 | PB8               | I/O                     | FT            | PB8                                              | TIM4_CH3/I2C1_SCL/<br>LCD_SEG16/TIM10_CH1      | -                       |
| 96      | 62     | A3      | B3       | 46                 | PB9               | I/O                     | FT            | PB9                                              | TIM4_CH4/I2C1_SDA/<br>LCD_COM3/TIM11_CH1       | -                       |
| 97      | -      | -       | C3       | -                  | PE0               | I/O                     | FT            | PE0                                              | TIM4_ETR/LCD_SEG36/<br>TIM10_CH1               | -                       |
| 98      | -      | -       | A2       | -                  | PE1               | I/O                     | FT            | PE1                                              | LCD_SEG37/TIM11_CH1                            | -                       |
| 99      | 63     | D4      | D3       | 47                 | V <sub>SS_3</sub> | S                       | -             | V <sub>SS_3</sub>                                | -                                              | -                       |
| 100     | 64     | E4      | C4       | 48                 | $V_{DD_3}$        | S                       | -             | V <sub>DD_3</sub>                                | -                                              | -                       |

| Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued) | Table 8. STM32L151x6/8/B | 3 and STM32L152x6/8/B | pin definitions | (continued) |
|--------------------------------------------------------------------------|--------------------------|-----------------------|-----------------|-------------|
|--------------------------------------------------------------------------|--------------------------|-----------------------|-----------------|-------------|

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to V<sub>DD</sub>.

4. The PC14 and PC15 I/Os are only configured as OSC32\_IN/OSC32\_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC\_CSR register). The LSE oscillator pins OSC32\_IN/OSC32\_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32\_IN/OSC32\_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC\_IN/OSC\_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC\_CR register). The HSE oscillator pins OSC\_IN/OSC\_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V<sub>REF+</sub> functionality is provided instead.



|                 |        |                                   |        | Table 9.   | Alternat | e functio | n input | /output (co | ntinue | ed)   |        |        |        |        |        |
|-----------------|--------|-----------------------------------|--------|------------|----------|-----------|---------|-------------|--------|-------|--------|--------|--------|--------|--------|
|                 |        | Digital alternate function number |        |            |          |           |         |             |        |       |        |        |        |        |        |
| Port name       | AFIO0  | AFIO1                             | AFIO2  | AFIO3      | AFIO4    | AFIO5     | AFOI6   | AFIO7       | AFIO8  | AFIO9 | AFIO11 | AFIO12 | AFIO13 | AFIO14 | AFIO15 |
| Fort name       |        | Alternate function                |        |            |          |           |         |             |        |       |        |        |        |        |        |
|                 | SYSTEM | TIM2                              | TIM3/4 | TIM9/10/11 | I2C1/2   | SPI1/2    | N/A     | USART1/2/3  | N/A    | N/A   | LCD    | N/A    | N/A    | RI     | SYSTEM |
| PH1-<br>OSC_OUT | -      | -                                 | -      | -          | -        | -         | -       | -           | -      | -     | -      | -      | -      | -      | -      |
| PH2             | -      | -                                 | -      | -          | -        | -         | -       | -           | -      | -     | -      | -      | -      | -      | -      |

577

## 6.1.6 Power supply scheme

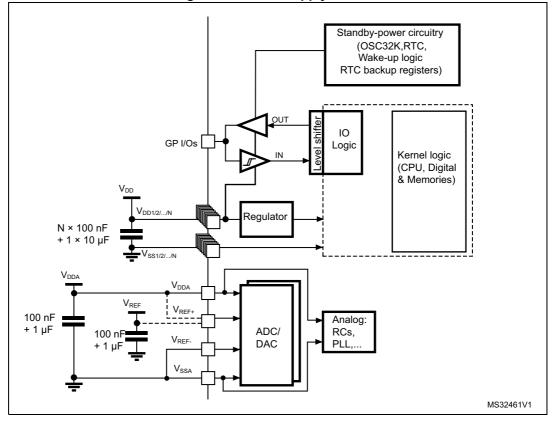



Figure 12. Power supply scheme



| 0h.al                      | Demonster                             | 0                                                              |                                                       |         | <b>T</b> |       | Max <sup>(1</sup> | )                  | Unit |
|----------------------------|---------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------|----------|-------|-------------------|--------------------|------|
| Symbol                     | Parameter                             | Cond                                                           | f <sub>HCLK</sub>                                     | Тур     | 55 °C    | 85 °C | 105 °C            | Unit               |      |
|                            |                                       |                                                                | Range 3,                                              | 1 MHz   | 80       | 140   | 140               | 140                |      |
|                            |                                       |                                                                | V <sub>CORE</sub> =1.2 V<br>VOS[1:0] = 11             | 2 MHz   | 150      | 210   | 210               | 210                |      |
|                            |                                       |                                                                |                                                       | 4 MHz   | 280      | 330   | 330               | 330 <sup>(3)</sup> |      |
|                            |                                       | f <sub>HSE</sub> = f <sub>HCLK</sub> up to<br>16 MHz included, | Range 2,                                              | 4 MHz   | 280      | 400   | 400               | 400                |      |
|                            |                                       | $f_{HSE} = f_{HCLK}/2$                                         | V <sub>CORE</sub> =1.5 V                              | 8 MHz   | 450      | 550   | 550               | 550                |      |
|                            | Supply                                | above 16 MHz (PLL ON) <sup>(2)</sup>                           | VOS[1:0] = 10                                         | 16 MHz  | 900      | 1050  | 1050              | 1050               |      |
|                            | current in<br>Sleep<br>mode,<br>code  | ,                                                              | Range 1,                                              | 8 MHz   | 550      | 650   | 650               | 650                |      |
|                            |                                       |                                                                | V <sub>CORE</sub> =1.8 V                              | 16 MHz  | 1050     | 1200  | 1200              | 1200               |      |
|                            | executed                              |                                                                | VOS[1:0] = 01                                         | 32 MHz  | 2300     | 2500  | 2500              | 2500               | μA   |
|                            | from RAM,<br>Flash<br>switched<br>OFF | HSI clock source<br>(16 MHz)                                   | Range 2,<br>V <sub>CORE</sub> =1.5 V<br>VOS[1:0] = 10 | 16 MHz  | 1000     | 1100  | 1100              | 1100               |      |
|                            |                                       |                                                                | Range 1,<br>V <sub>CORE</sub> =1.8 V<br>VOS[1:0] = 01 | 32 MHz  | 2300     | 2500  | 2500              | 2500               |      |
|                            |                                       | MSI clock, 65 kHz                                              | Range 3,                                              | 65 kHz  | 30       | 50    | 50                | 60                 |      |
| I <sub>DD</sub><br>(Sleep) |                                       | MSI clock, 524 kHz                                             | V <sub>CORE</sub> =1.2 V                              | 524 kHz | 50       | 70    | 70                | 80                 |      |
| (Sleep)                    |                                       | MSI clock, 4.2 MHz                                             | VOS[1:0] = 11                                         | 4.2 MHz | 200      | 240   | 240               | 250                |      |
|                            |                                       |                                                                | Range 3,                                              | 1 MHz   | 80       | 140   | 140               | 140                |      |
|                            |                                       |                                                                | V <sub>CORE</sub> =1.2 V<br>VOS[1:0] = 11             | 2 MHz   | 150      | 210   | 210               | 210                |      |
|                            |                                       |                                                                |                                                       | 4 MHz   | 290      | 350   | 350               | 350                |      |
|                            |                                       | f <sub>HSE</sub> = f <sub>HCLK</sub> up to<br>16 MHz included, | Range 2,                                              | 4 MHz   | 300      | 400   | 400               | 400                |      |
|                            | Supply                                | $f_{HSE} = f_{HCLK}/2$                                         | V <sub>CORE</sub> =1.5 V                              | 8 MHz   | 500      | 600   | 600               | 600                |      |
|                            | current in                            | above 16 MHz (PLL ON) <sup>(2)</sup>                           | VOS[1:0] = 10                                         | 16 MHz  | 1000     | 1100  | 1100              | 1100               | 1    |
|                            | Sleep<br>mode,                        |                                                                | Range 1,                                              | 8 MHz   | 550      | 650   | 650               | 650                | μA   |
|                            | code                                  |                                                                | V <sub>CORE</sub> =1.8 V                              | 16 MHz  | 1050     | 1200  | 1200              | 1200               | μΑ   |
|                            | executed<br>from Flash                |                                                                | VOS[1:0] = 01                                         | 32 MHz  | 2300     | 2500  | 2500              | 2500               |      |
|                            |                                       | HSI clock source                                               | Range 2,<br>V <sub>CORE</sub> =1.5 V<br>VOS[1:0] = 10 | 16 MHz  | 1000     | 1100  | 1100              | 1100               |      |
|                            |                                       | (16 MHz)                                                       | Range 1,<br>V <sub>CORE</sub> =1.8 V<br>VOS[1:0] = 01 | 32 MHz  | 2300     | 2500  | 2500              | 2500               |      |

Table 19. Current consumption in Sleep mode



| Symbol                                            | Parameter                                          |                                             | Conditions                                      |                                          | Тур  | Max<br>(1) | Unit |
|---------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------|------|------------|------|
|                                                   |                                                    |                                             |                                                 | $T_A$ = -40 °C to 25 °C                  | 9    | 12         |      |
|                                                   |                                                    | All<br>peripherals<br>OFF, code             | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 32 kHz | T <sub>A</sub> = 85 °C                   | 17.5 | 24         |      |
|                                                   |                                                    |                                             | HOLK 02 KHZ                                     | T <sub>A</sub> = 105 °C                  | 31   | 46         |      |
|                                                   |                                                    |                                             |                                                 | $T_A = -40 \text{ °C to } 25 \text{ °C}$ | 14   | 17         |      |
|                                                   | Supply                                             | executed<br>from RAM,                       | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 65 kHz | T <sub>A</sub> = 85 °C                   | 22   | 29         |      |
|                                                   |                                                    | Flash<br>switched                           |                                                 | T <sub>A</sub> = 105 °C                  | 35   | 51         |      |
|                                                   |                                                    | OFF, V <sub>DD</sub>                        |                                                 | $T_A$ = -40 °C to 25 °C                  | 37   | 42         |      |
|                                                   |                                                    | from 1.65 V<br>to 3.6 V                     | MSI clock, 131 kHz                              | T <sub>A</sub> = 55 °C                   | 37   | 42         |      |
| I <sub>DD (LP</sub><br>Run)                       |                                                    | 10 3.0 V                                    | f <sub>HCLK</sub> = 131 kHz                     | T <sub>A</sub> = 85 °C                   | 37   | 42         | μΑ   |
|                                                   | current in                                         |                                             |                                                 | T <sub>A</sub> = 105 °C                  | 48   | 65         |      |
|                                                   | Low power<br>run mode                              | All<br>peripherals<br>OFF, code<br>executed |                                                 | $T_A = -40 \degree C$ to 25 $\degree C$  | 24   | 32         |      |
|                                                   | Turrinoue                                          |                                             | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 32 kHz | T <sub>A</sub> = 85 °C                   | 33   | 42         |      |
|                                                   |                                                    |                                             | HOLK 02 KHZ                                     | T <sub>A</sub> = 105 °C                  | 48   | 64         |      |
|                                                   |                                                    |                                             |                                                 | $T_A = -40 \text{ °C to } 25 \text{ °C}$ | 31   | 40         |      |
|                                                   |                                                    |                                             | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 65 kHz | T <sub>A</sub> = 85 °C                   | 40   | 48         |      |
|                                                   |                                                    | from Flash,<br>V <sub>DD</sub> from         | HOLK OUT IN 12                                  | T <sub>A</sub> = 105 °C                  | 54   | 70         |      |
|                                                   |                                                    | 1.65 V to                                   |                                                 | $T_A = -40 \degree C$ to 25 $\degree C$  | 48   | 58         |      |
|                                                   |                                                    | 3.6 V                                       | MSI clock, 131 kHz                              | T <sub>A</sub> = 55 °C                   | 54   | 63         |      |
|                                                   |                                                    |                                             | f <sub>HCLK</sub> = 131 kHz                     | T <sub>A</sub> = 85 °C                   | 56   | 65         |      |
|                                                   |                                                    |                                             |                                                 | T <sub>A</sub> = 105 °C                  | 70   | 90         |      |
| I <sub>DD</sub> Max<br>(LP<br>Run) <sup>(2)</sup> | Max allowed<br>current in<br>Low power<br>run mode | V <sub>DD</sub> from<br>1.65 V to<br>3.6 V  | -                                               | -                                        | -    | 200        |      |

Table 20. Current consumption in Low power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.



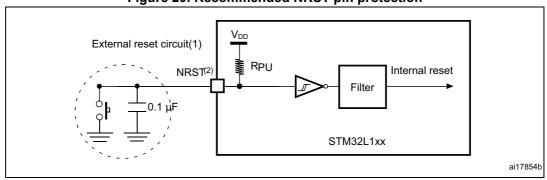



Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V<sub>IL(NRST)</sub> max level specified in Table 45. Otherwise the reset will not be taken into account by the device.

## 6.3.15 TIM timer characteristics

The parameters given in Table 46 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

| Table 46. TIMX '7 characteristics |                                                                           |                               |        |                         |                      |
|-----------------------------------|---------------------------------------------------------------------------|-------------------------------|--------|-------------------------|----------------------|
| Symbol                            | Parameter                                                                 | Conditions                    | Min    | Max                     | Unit                 |
| t                                 | Timer resolution time                                                     | -                             | 1      | -                       | t <sub>TIMxCLK</sub> |
| <sup>t</sup> res(TIM)             |                                                                           | f <sub>TIMxCLK</sub> = 32 MHz | 31.25  | -                       | ns                   |
| f                                 | Timer external clock                                                      | -                             | 0      | f <sub>TIMxCLK</sub> /2 | MHz                  |
| f <sub>EXT</sub> freq             | requency on CH1 to CH4                                                    | f <sub>TIMxCLK</sub> = 32 MHz | 0      | 16                      | MHz                  |
| Res <sub>TIM</sub>                | Timer resolution                                                          | -                             | -      | 16                      | bit                  |
|                                   | 16-bit counter clock                                                      | -                             | 1      | 65536                   | t <sub>TIMxCLK</sub> |
| <sup>t</sup> COUNTER              | period when internal clock<br>is selected (timer's<br>prescaler disabled) | f <sub>TIMxCLK</sub> = 32 MHz | 0.0312 | 2048                    | μs                   |
| +                                 | Maximum possible count                                                    | -                             | -      | 65536 × 65536           | t <sub>TIMxCLK</sub> |
| t <sub>MAX_COUNT</sub>            |                                                                           | f <sub>TIMxCLK</sub> = 32 MHz | -      | 134.2                   | S                    |

Table 46. TIMx<sup>(1)</sup> characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.



## 6.3.16 Communication interfaces

## I<sup>2</sup>C interface characteristics

The STM32L151x6/8/B and STM32L152x6/8/B product line  $I^2C$  interface meets the requirements of the standard  $I^2C$  communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DD</sub> is disabled, but is still present.

The I<sup>2</sup>C characteristics are described in *Table 47*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

| Symbol                                     | Parameter                               | Standard r | node l <sup>2</sup> C <sup>(1)</sup> | Fast mode              | Unit               |      |  |
|--------------------------------------------|-----------------------------------------|------------|--------------------------------------|------------------------|--------------------|------|--|
| Symbol                                     | Falameter                               | Min        | Max                                  | Min                    | Max                | Unit |  |
| t <sub>w(SCLL)</sub>                       | SCL clock low time                      | 4.7        | -                                    | 1.3                    | -                  | 116  |  |
| t <sub>w(SCLH)</sub>                       | SCL clock high time                     | 4.0        | -                                    | 0.6                    | -                  | μs   |  |
| t <sub>su(SDA)</sub>                       | SDA setup time                          | 250        | -                                    | 100                    | -                  |      |  |
| t <sub>h(SDA)</sub>                        | SDA data hold time                      | 0          | -                                    | 0                      | 900 <sup>(3)</sup> |      |  |
| t <sub>r(SDA)</sub><br>t <sub>r(SCL)</sub> | SDA and SCL rise time                   | -          | 1000                                 | 20 + 0.1C <sub>b</sub> | 300                | ns   |  |
| t <sub>f(SDA)</sub><br>t <sub>f(SCL)</sub> | SDA and SCL fall time                   | -          | 300                                  | -                      | 300                | 300  |  |
| t <sub>h(STA)</sub>                        | Start condition hold time               | 4.0        | -                                    | 0.6                    | -                  |      |  |
| t <sub>su(STA)</sub>                       | Repeated Start condition setup time     | 4.7        | -                                    | 0.6                    | -                  | μs   |  |
| t <sub>su(STO)</sub>                       | Stop condition setup time               | 4.0        | -                                    | 0.6                    | -                  | μs   |  |
| t <sub>w(STO:STA)</sub>                    | Stop to Start condition time (bus free) | 4.7        | -                                    | 1.3                    | -                  | μs   |  |
| C <sub>b</sub>                             | Capacitive load for each bus line       | -          | 400                                  | -                      | 400                | pF   |  |

| Table 47. I <sup>2</sup> C | characteristics |
|----------------------------|-----------------|
|----------------------------|-----------------|

1. Guaranteed by design.

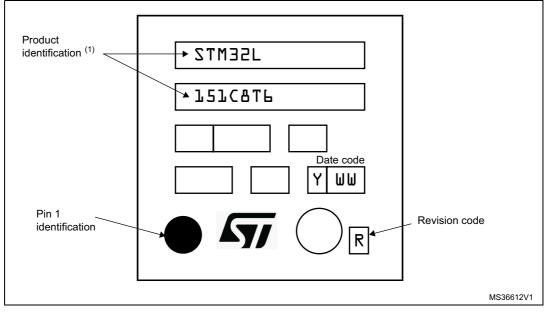
 f<sub>PCLK1</sub> must be at least 2 MHz to achieve standard mode I<sup>2</sup>C frequencies. It must be at least 4 MHz to achieve fast mode I<sup>2</sup>C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I<sup>2</sup>C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.



# 6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.


| Symbol                              | Parameter                                             | С                                                                          | onditions                                | Min | Тур              | Мах                         | Unit |
|-------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|-----|------------------|-----------------------------|------|
| V <sub>DDA</sub>                    | Analog supply voltage                                 |                                                                            | -                                        | 1.8 | -                | 3.6                         | V    |
| V <sub>REF+</sub>                   | Reference supply voltage                              | V <sub>REF+</sub> must<br>V <sub>DDA</sub>                                 | always be below                          | 1.8 | -                | 3.6                         | V    |
| V <sub>REF-</sub>                   | Lower reference voltage                               |                                                                            | -                                        | •   | V <sub>SSA</sub> |                             | V    |
| . (1)                               | Current consumption on                                | No load, mic                                                               | dle code (0x800)                         | -   | 130              | 220                         | μA   |
| I <sub>DDVREF+</sub> <sup>(1)</sup> | V <sub>REF+</sub> supply<br>V <sub>REF+</sub> = 3.3 V | No load, wo                                                                | rst code (0x000)                         | -   | 220              | 350                         | μA   |
| . (1)                               | Current consumption on                                | No load, mic                                                               | dle code (0x800)                         | -   | 210              | 320                         | μA   |
| I <sub>DDA</sub> <sup>(1)</sup>     | V <sub>DDA</sub> supply<br>V <sub>DDA</sub> = 3.3 V   | No load, wo                                                                | rst code (0xF1C)                         | -   | 320              | 520                         | μA   |
| RL                                  | Resistive load                                        | DAC output                                                                 | Connected to $V_{SSA}$                   | 5   | -                | -                           | kΩ   |
|                                     |                                                       | buffer ON                                                                  | Connected to $\mathrm{V}_{\mathrm{DDA}}$ | 25  | -                | -                           | 122  |
| CL                                  | Capacitive load                                       | DAC output                                                                 | buffer ON                                | -   | -                | 50                          | pF   |
| R <sub>O</sub>                      | Output impedance                                      | DAC output                                                                 | buffer OFF                               | 12  | 16               | 20                          | kΩ   |
|                                     | Voltage on DAC_OUT                                    | DAC output buffer ON                                                       |                                          | 0.2 | -                | V <sub>DDA</sub> – 0.2      | v    |
|                                     | output                                                | DAC output buffer OFF                                                      |                                          | 0.5 | -                | V <sub>REF+</sub> –<br>1LSB | mV   |
| DNL <sup>(1)</sup>                  | Differential non                                      | C <sub>L</sub> ≤ 50 pF, I<br>DAC output                                    | -                                        | -   | 1.5              | 3                           |      |
| DINE                                | linearity <sup>(2)</sup>                              | No R <sub>LOAD</sub> , 0<br>DAC output                                     | -                                        | -   | 1.5              | 3                           |      |
| INL <sup>(1)</sup>                  | Integral non linearity <sup>(3)</sup>                 | $C_L \le 50 \text{ pF, I}$<br>DAC output                                   | -                                        | -   | 2                | 4                           |      |
| IINE' '                             | integral non inteanty '                               | No $R_{LOAD}$ , $C_L \le 50 \text{ pF}$<br>DAC output buffer OFF           |                                          | -   | 2                | 4                           | LSB  |
| Offset <sup>(1)</sup>               | Offset error at code                                  | $C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$<br>DAC output buffer ON |                                          | -   | ±10              | ±25                         |      |
|                                     | 0x800 <sup>(4)</sup>                                  | No $R_{LOAD}$ , $C_L \le 50 \text{ pF}$<br>DAC output buffer OFF           |                                          | -   | ±5               | ±8                          |      |
| Offset1 <sup>(1)</sup>              | Offset error at code<br>0x001 <sup>(5)</sup>          | No R <sub>LOAD</sub> , 0<br>DAC output                                     |                                          | -   | ±1.5             | ±5                          |      |

| Table | 57. | DAC | characteristics |
|-------|-----|-----|-----------------|

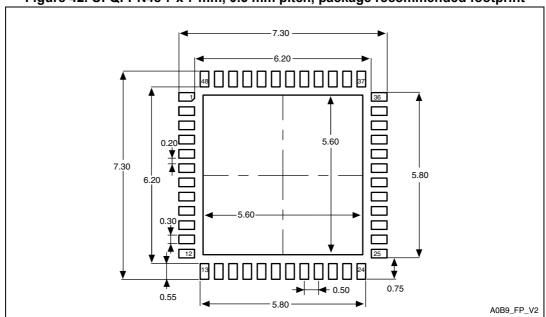


#### LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.






 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



| Symbol | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
|        | Min         | Тур   | Мах   | Min                   | Тур    | Max    |
| А      | 0.500       | 0.550 | 0.600 | 0.0197                | 0.0217 | 0.0236 |
| A1     | 0.000       | 0.020 | 0.050 | 0.0000                | 0.0008 | 0.0020 |
| D      | 6.900       | 7.000 | 7.100 | 0.2717                | 0.2756 | 0.2795 |
| E      | 6.900       | 7.000 | 7.100 | 0.2717                | 0.2756 | 0.2795 |
| D2     | 5.500       | 5.600 | 5.700 | 0.2165                | 0.2205 | 0.2244 |
| E2     | 5.500       | 5.600 | 5.700 | 0.2165                | 0.2205 | 0.2244 |
| L      | 0.300       | 0.400 | 0.500 | 0.0118                | 0.0157 | 0.0197 |
| Т      | -           | 0.152 | -     | -                     | 0.0060 | -      |
| b      | 0.200       | 0.250 | 0.300 | 0.0079                | 0.0098 | 0.0118 |
| е      | -           | 0.500 | -     | -                     | 0.0197 | -      |
| ddd    | -           | -     | 0.080 | -                     | -      | 0.0031 |

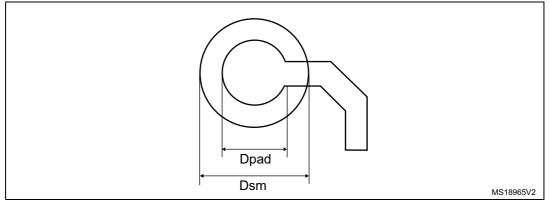
Table 66. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.



### Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.




| Symbol | millimeters |     |      | inches <sup>(1)</sup> |     |        |
|--------|-------------|-----|------|-----------------------|-----|--------|
| Symbol | Min         | Тур | Max  | Min                   | Тур | Мах    |
| eee    | -           | -   | 0.15 | -                     | -   | 0.0059 |
| fff    | -           | -   | 0.05 | -                     | -   | 0.002  |

#### Table 69. TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

#### Figure 48. TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint



#### Table 70. TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules

| Dimension    | Recommended values                                              |
|--------------|-----------------------------------------------------------------|
| Pitch        | 0.5                                                             |
| Dpad         | 0.27 mm                                                         |
| Dsm          | 0.35 mm typ. (depends on the soldermask registration tolerance) |
| Solder paste | 0.27 mm aperture diameter.                                      |



## **TFBGA64** device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

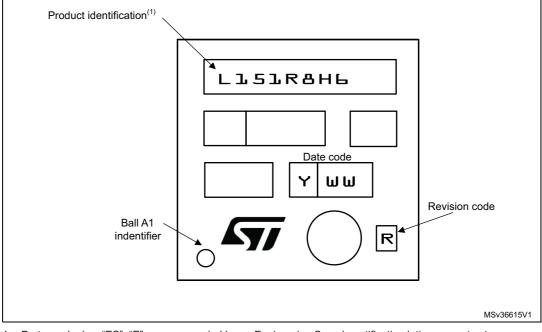



Figure 49. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



| Date        | Revision         | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12-Nov-2013 | 9<br>(continued) | Updated Table 54: ADC characteristics and Figure 27: Typical connection diagram using the ADC.<br>Table 58: Temperature sensor calibration values was previously in Section 3.10.1: Temperature sensor. Updated Table 59:<br>Temperature sensor characteristics.<br>In Table 61: Comparator 2 characteristics, parameter dThreshold/dt, replaced any occurrence of "VREF+" by "V <sub>REFINT</sub> "Updated Table 63: LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data, Table 64: LQFP64 10 x 10 mm 64-pin low-profile quad flat package mechanical data, Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data.<br>Updated Figure 33: LQFP100 recommended footprint.<br>Updated Figure 46: TFBGA64 - 5.0x5.0x1.2 mm, 0.5 mm pitch, thin fine-pitch dall grid array package outline title.<br>Remove minimum and typical values of A dimension in Table 67: UFBGA100 7 x 7 x 0.6 mm 0.5 mm pitch, ultra thin fine-pitch ball grid array package mechanical data<br>Deleted second footnote in Figure 42: UFQFPN48 recommended footprint.<br>Updated Section 8: Ordering information title and added first sentence.<br>Changed BOR disabled option identifier in Table 72: Ordering information scheme. |
| 22-Jul-2014 | 10               | Updated <i>Figure 14</i> , <i>Figure 15</i> .<br>Updated <i>Table 5</i> .<br>Updated <i>Figure 6.3.4</i> .<br>Updated note 5 inside <i>Table 54</i> .<br>Updated Ro value inside <i>Table 54</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Table 73. | Document revision history (continued) |
|-----------|---------------------------------------|
|           |                                       |



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30-Jan-2015 | 11       | Updated DMIPS features in cover page and Section 2: Description.<br>Updated Table 8: STM32L151x6/8/B and STM32L152x6/8/B pin<br>definitions and Table 9: Alternate function input/output putting<br>additional functions.<br>Updated package top view marking in Section 7.1: Package<br>mechanical data.<br>Updated Figure 9: Memory map.<br>Updated Table 56: Maximum source impedance RAIN max adding<br>note 2.<br>Updated Table 72: Ordering information scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28-Apr-2016 | 12       | Updated <i>Section 7: Package information</i> structure: Paragraph titles<br>and paragraph heading level.<br>Updated <i>Section 7: Package information</i> for all package device<br>markings, adding text for device orientation versus pin 1/ ball A1<br>identifier.<br>Updated <i>Figure 34: LQFP100 14 x 14 mm, 100-pin package top</i><br><i>view example</i> removing gate mark.<br>Updated <i>Table 64: LQFP64 10 x 10 mm, 64-pin low-profile quad flat</i><br><i>package mechanical data</i> .<br>Updated <i>Section 7.5: UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin</i><br><i>fine-pitch ball grid array package information</i> adding <i>Table 68:</i><br><i>UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design</i><br><i>rules</i> and <i>Figure 45: UFBGA100 7 x 7 mm, 0.5 mm pitch, package</i><br><i>recommended footprint</i> .<br>Updated Section 7.6: <i>TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-<br/>pitch ball grid array package information</i> adding <i>Table 70: TFBGA64<br/>5 x 5 mm, 0.5 mm pitch, recommended PCB design rules</i> and<br>changing <i>Figure 48: TFBGA64, 5 x 5 mm, 0.5 mm pitch,</i><br><i>recommended footprint</i> .<br>Updated <i>Table 16: Embedded internal reference voltage</i><br>temperature coefficient at 100ppm/°C.<br>Updated <i>Table 61: Comparator 2 characteristics</i> new maximum<br>threshold voltage temperature coefficient at 100ppm/°C.<br>Updated <i>Table 61: Comparator 2 characteristics</i> new maximum<br>threshold voltage temperature coefficient at 100ppm/°C.<br>Updated <i>Table 61: Comparator 2 characteristics</i> new maximum<br>threshold voltage temperature coefficient at 100ppm/°C.<br>Updated <i>Table 61: Comparator 2 characteristics</i> new maximum<br>threshold voltage temperature coefficient at 100ppm/°C.<br>Updated <i>Table 10: Voltage characteristics</i> adding note about V <sub>REF</sub> .<br>pin.<br>Updated <i>Table 5: Working mode-dependent functionalities</i> (from<br><i>Run/active down to standby</i> ) LSI and LSE functionalities putting "Y"<br>in Standby mode.<br>Removed note 1 below <i>Figure 2: Clock tree</i> .<br>Updated <i>Table 57: DAC characteristics</i> resistive load. |

Table 73. Document revision history (continued)

