

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)	. 28
		3.15.2	Basic timers (TIM6 and TIM7)	. 28
		3.15.3	SysTick timer	. 28
		3.15.4	Independent watchdog (IWDG)	. 28
		3.15.5	Window watchdog (WWDG)	. 29
	3.16	Commu	nication interfaces	29
		3.16.1	I ² C bus	. 29
		3.16.2	Universal synchronous/asynchronous receiver transmitter (USART) .	. 29
		3.16.3	Serial peripheral interface (SPI)	. 29
		3.16.4	Universal serial bus (USB)	. 29
	3.17	CRC (cy	clic redundancy check) calculation unit	30
	3.18	Develop	ment support	30
4	Pin de	escriptio	ons	31
5	Memo	orv map	ping	48
-				
6	Electr	ical cha	aracteristics	49
	6.1	Parame	ter conditions	49
		6.1.1	Minimum and maximum values	. 49
		6.1.2	Typical values	. 49
		6.1.3	Typical curves	. 49
		6.1.4	Loading capacitor	. 49
		6.1.5	Pin input voltage	. 49
		6.1.6	Power supply scheme	. 50
		6.1.7	Optional LCD power supply scheme	. 51
		6.1.8	Current consumption measurement	. 51
	6.2	Absolute	e maximum ratings	52
	6.3	Operatir	ng conditions	53
		6.3.1	General operating conditions	. 53
		6.3.2	Embedded reset and power control block characteristics	. 54
		6.3.3	Embedded internal reference voltage	. 56
		6.3.4	Supply current characteristics	. 57
		6.3.5	Wakeup time from Low power mode	. 69
		6.3.6	External clock source characteristics	. 70
		6.3.7	Internal clock source characteristics	. 75
		6.3.8	PLL characteristics	. 77

List of figures

Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram	13
Figure 2. Clock tree	22
Figure 3. STM32L15xVx UFBGA100 ballout	31
Figure 4. STM32L15xVx LQFP100 pinout	32
Figure 5. STM32L15xRx TFBGA64 ballout	33
Figure 6. STM32L15xRx LQFP64 pinout.	34
Figure 7. STM32L15xCx LQFP48 pinout	34
Figure 8. STM32L15xCx UFQFPN48 pinout	35
Figure 9. Memory map	48
Figure 10. Pin loading conditions	
Figure 11. Pin input voltage	
Figure 12 Power supply scheme	50
Figure 13 Optional I CD power supply scheme	51
Figure 14 Current consumption measurement scheme	51
Figure 15 High-speed external clock source AC timing diagram	70
Figure 16 Low-speed external clock source AC timing diagram	71
Figure 17 HSE oscillator circuit diagram	
Figure 17. The Oscillator Circuit diagram	73
Figure 10. Typical application with a 52.766 Kinz crystal	
Figure 19. I/O AC characteristics definition	
Figure 20. Recommended NRST pill protection \dots	00
Figure 22. TO bus AC waveloints and measurement circuit	00
Figure 22. SPI timing diagram - slave mode and CPHA = $0 \dots \dots \dots \dots \dots \dots$	
Figure 23. SPI timing diagram - slave mode and CPHA = 1^{17}	
Figure 24. SPI timing diagram - master mode ¹⁷	91
Figure 25. USB timings: definition of data signal rise and fall time	
Figure 26. ADC accuracy characteristics.	96
Figure 27. Typical connection diagram using the ADC	96
Figure 28. Maximum dynamic current consumption on V _{REF+} supply pin during ADC	
conversion	97
Figure 29. Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	98
Figure 30. Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	98
Figure 31. 12-bit buffered /non-buffered DAC	101
Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline	105
Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footp	orint 107
Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example	107
Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline	108
Figure 36. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprir	nt 109
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example	110
Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline	111
Figure 39. LQFP48 7 x 7 mm, 48-pin low-profile quad flat recommended footprint.	112
Figure 40. LQFP48 7 x 7 mm, 48-pin low-profile guad flat package top view example	113
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline	114
Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint	115
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example	116
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch. package outline	117
Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint	118
Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example.	
Figure 47 TEBCA64.5 x 5 mm 0.5 mm pitch package outline	120

Figure 48.	TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint	121
Figure 49.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example	122
Figure 50.	Thermal resistance	124

3 Functional overview

Figure 1 shows the block diagram.

Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram

1. AF = alternate function on I/O port pin.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

		Pin	s						Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14//TIM9_CH2	ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-
56	-	_	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	_	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-
67	41	D7	D11	29	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-
68	42	C7	D10	30	PA9	I/O	FT	PA9	USART1_TX/LCD_COM1	-
69	43	C6	C12	31	PA10	I/O	FT	PA10	USART1_RX/LCD_COM2	-
70	44	C8	B12	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM

				Table 9.	Alternat	e functio	n input	t/output (co	ntinue	ed)					
Denterene		Digital alternate function number													
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFIO8	AFIO9	AFIO11	AFIO12	AFIO13	AFIO14	AFIO15
Fort name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PH1- OSC_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

577

Symbol	Doromotor	ter Conditions		f _{HCLK}	Тур	Max ⁽¹⁾			llait
	Falameter	Conc	55 °C			85 °C	105 °C	Unit	
	Supply current in Sleep	MSI clock, 65 kHz		65 kHz	40	70	70	80	
		MSI clock, 524 kHz	Range 3.	524 kHz	60	90	90	100	
I _{DD} (Sleep)	mode, code executed from Flash	MSI clock, 4.2 MHz	V _{CORE} =1.2V VOS[1:0] = 11	4.2 MHz	210	250	250	260	μA

 Table 19. Current consumption in Sleep mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Tested in production

- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if a resonator is chosen with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Figure 18. Typical application with a 32.768 kHz crystal

6.3.16 Communication interfaces

I²C interface characteristics

The STM32L151x6/8/B and STM32L152x6/8/B product line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 47*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard r	node l ² C ⁽¹⁾	Fast mode	Unit	
Symbol	Falameter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	116
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	20 + 0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	SDA and SCL fall time -		-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table	47.	I ² C	characteristics
-------	-----	------------------	-----------------

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-		
		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-		
t _S	Sampling time ⁽⁵⁾	Direct channels 1.8 V ≤V _{DDA} ≤2.4 V	0.56	-	-	μs	
		Multiplexed channels 1.8 V ≤V _{DDA} ≤2.4 V	1	-	-		
		-	4	-	384	1/f _{ADC}	
		f _{ADC} = 16 MHz	1	-	24.75	μs	
t _{CONV}	Total conversion time (including sampling time)	-	4 to 384 phase) approxi	1/f _{ADC}			
C	Internal sample and hold	Direct channels	-	16	-	ъĘ	
CADC	capacitor	Multiplexed channels	-	10	-	יא	
ferrie	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}	
TRIG	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}	
ferrie	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}	
'TRIG	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}	
R _{AIN}	Signal source impedance ⁽⁵⁾	-	-	-	50	κΩ	
t	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns	
Чаt	latency	-	3.5	-	4.5	1/f _{ADC}	
t	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns	
Чаtr	latency	-	2.5	-	3.5	1/f _{ADC}	
t _{STAB}	Power-up time	-	-	-	3.5	μs	

Table 54. ADC characteristics (continued)

The V_{REF+} input can be grounded iif neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through $\mathsf{V}_{\mathsf{REF}}$ is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μ A), only during sampling time + 2 first conversion pulses.

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

3. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} must be tied to ground.

5. See Table 56: Maximum source impedance RAIN max for $\mathsf{R}_{\mathsf{AIN}}$ limitation.

STM32L151x6/8/B STM32L152x6/8/B

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	$-2.4 V \le V_{\text{REF}+} \le 3.6 V$	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	57.5	62	-	dB
THD	Total harmonic distortion	1 kHz ≤ F _{input} ≤ 100 kHz	-74	-75	-	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	2	4	
EG	Gain error	$1.8 V \le V_{\text{REF}+} \le 2.4 V$	-	4	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	$1.8 \text{ V} \le \text{V}_{\text{REF+}} \le 2.4 \text{ V}$ face = 4 MHz Rain = 50 O	-	1.5	2	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1	1.5	1

Table 55.	ADC	accuracy ⁽¹⁾⁽²⁾
-----------	-----	----------------------------

1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Figure 29. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF^+} and V_{REF^-} inputs are available only on 100-pin packages.

1. $V_{\mathsf{REF}\text{+}}$ and $V_{\mathsf{REF}\text{-}}$ inputs are available only on 100-pin packages.

Figure 31. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A-0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3 V	0x1FF8 007E-0x1FF8 007F

Table 58. Temperature sensor calibration values

Table 53. Temperature sensor characteristics	Table 59.	Temperature sensor	^r characteristics
--	-----------	--------------------	------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Тур	Min	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient BGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	
0	ΘJAThermal resistance junction-ambient TFBGA64 - 5 x 5 mm65Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch45		°C/M
OJA			0/11
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	16	

Table 71. Thermal characteristics

Figure 50. Thermal resistance

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

9 Revision history

Date	Revision	Changes
02-Jul-2010	1	Initial release.
01-Oct-2010	2	Removed 5 V tolerance (FT) from PA3, PB0 and PC3 in <i>Table 8:</i> <i>STM32L15xx6/8/B pin definitions</i> Updated <i>Table 14: Embedded reset and power control block</i> <i>characteristics</i> Updated <i>Table 16: Embedded internal reference voltage</i> Added <i>Table 53: ADC clock frequency</i> Updated <i>Table 54: ADC characteristics</i>
16-Dec-2010	3	Modified consumptions on page 1 and in Section 3.1: Low power modes LED_SEG8 removed on PB6. Updated Section 6: Electrical characteristics VFQFPN48 replaced by UFQFPN48
25-Feb-2011	4	 Section 3.3.2: Power supply supervisor: updated note. Table 8: STM32L15xx6/8/B pin definitions: modified main function (after reset) and alternate function for OSC_IN and OSC_OUT pins; modified footnote 5; added footnote to OSC32_IN and OSC32_OUT pins; C1 and D1 removed on PD0 and PD1 pins (TFBGA64 column). Section 3.11: DAC (digital-to-analog converter): updated bullet list. Table 10: Voltage characteristics on page 52: updated footnote 3 regarding I_{INJ(PIN)}. Table 11: Current characteristics on page 52: updated footnote 4 regarding positive and negative injection. Table 14: Embedded reset and power control block characteristics on page 54: updated typ and max values for T_{RSTTEMPO} (V_{DD} rising, BOR enabled). Table 17: Current consumption in Run mode, code with data processing running from Flash on page 58: removed values for HSI clock source (16 MHz), Range 3. Table 18: Current consumption in Sleep mode on page 60 removed values for HSI clock source (16 MHz), Range 3. Table 19: Current consumption in Sleep mode on page 60 removed values for HSI clock source (16 MHz), Range 3. Table 20: Current consumption in Low power run mode on page 62: updated parameter and max value of I_{DD} Max (LP Run). Table 21: Current consumption in Low power sleep mode on page 62: updated symbol, parameter, and max value of I_{DD} Max (LP Sleep). Table 22: Typical and maximum current consumptions in Stop mode on page 64 updated values for I_{DD} (Stop with RTC) - RTC clocked by LSE external clock (32.768 kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog).

Table 73. Document revision history

