

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) .	. 28
		3.15.2	Basic timers (TIM6 and TIM7)	. 28
		3.15.3	SysTick timer	. 28
		3.15.4	Independent watchdog (IWDG)	. 28
		3.15.5	Window watchdog (WWDG)	. 29
	3.16	Commu	nication interfaces	29
		3.16.1	I ² C bus	. 29
		3.16.2	Universal synchronous/asynchronous receiver transmitter (USART)	. 29
		3.16.3	Serial peripheral interface (SPI)	. 29
		3.16.4	Universal serial bus (USB)	. 29
	3.17	CRC (cy	clic redundancy check) calculation unit	30
	3.18	Develop	oment support	30
4	Pin de	escripti	ons	31
5	Memo	ory map	ping	48
		,		
6	Electi	rical cha	aracteristics	49
	6.1	Parame	ter conditions	49
		6.1.1	Minimum and maximum values	. 49
		6.1.2	Typical values	. 49
		6.1.3	Typical curves	. 49
		6.1.4	Loading capacitor	. 49
		6.1.5	Pin input voltage	. 49
		6.1.6	Power supply scheme	. 50
		6.1.7	Optional LCD power supply scheme	
		6.1.8	Current consumption measurement	. 51
	6.2	Absolute	e maximum ratings	52
	6.3	Operatir	ng conditions	53
		6.3.1	General operating conditions	. 53
		6.3.2	Embedded reset and power control block characteristics	. 54
		6.3.3	Embedded internal reference voltage	. 56
		6.3.4	Supply current characteristics	. 57
		6.3.5	Wakeup time from Low power mode	. 69
		6.3.6	External clock source characteristics	. 70
		6.3.7	Internal clock source characteristics	. 75
		6.3.8	PLL characteristics	. 77

		6.3.9	Memory characteristics
		6.3.10	EMC characteristics
		6.3.11	Electrical sensitivity characteristics80
		6.3.12	I/O current injection characteristics81
		6.3.13	I/O port characteristics
		6.3.14	NRST pin characteristics
		6.3.15	TIM timer characteristics
		6.3.16	Communication interfaces
		6.3.17	12-bit ADC characteristics93
		6.3.18	DAC electrical specifications
		6.3.19	Temperature sensor characteristics
		6.3.20	Comparator
		6.3.21	LCD controller (STM32L152xx only) 104
7	Pack	kage info	ormation
	7.1		00 14 x 14 mm, 100-pin low-profile quad flat package ation
	7.2	LQFP6	4 10 x 10 mm, 64-pin low-profile quad flat package information.108
	7.3	LQFP4	8 7 x 7 mm, 48-pin low-profile quad flat package information 111
	7.4	UFQFF	PN48 7 x 7 mm, 0.5 mm pitch, package information
	7.5		A100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch d array package information117
	7.6		A64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball and the second sec
	7.7	Therma	al characteristics
		7.7.1	Reference document
8	Orde	ering inf	ormation
9	Revi	sion his	story

HSE crystal oscillators are disabled. The voltage regulator is in the low power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 22: Typical and maximum current consumptions in Stop mode*.

Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 23*.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
V _{DD} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance			
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			

Table 3. Functionalities dep	pending on the operating	power supply range
------------------------------	--------------------------	--------------------

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
V _{DD} = 2.0 to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V	= 2.4 to 3.6 V Conversion time up to 1 Msps		Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 The CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock source**: three different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B and STM32L152x6/8/B devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode, see *Table 58: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 16: Embedded internal reference voltage*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

DocID17659 Rev 12

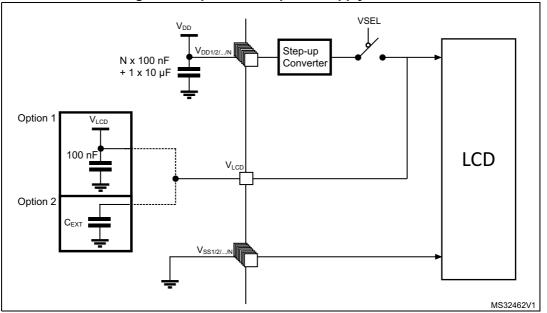
3.17 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.18 Development support

Serial wire JTAG debug port (SWJ-DP)


The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151x6/8/B and STM32L152x6/8/B device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

6.1.7 Optional LCD power supply scheme

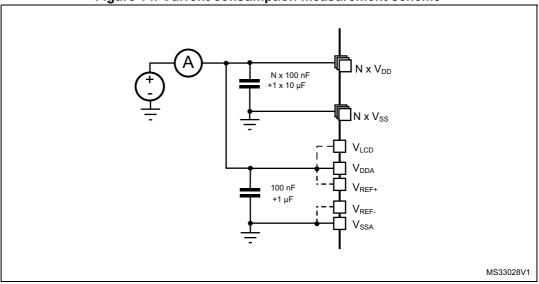


Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 14. Current consumption measurement scheme

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Programmable voltage detector	Falling edge	1.8	1.85	1.88	
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99	
V	PVD threshold 1	Falling edge	1.98	2.04	2.09	
V _{PVD1}		Rising edge	2.08	2.14	2.18	
V	PVD threshold 2	Falling edge	2.20	2.24	2.28	
V _{PVD2}		Rising edge	2.28	2.34	2.38	
V	PVD threshold 3	Falling edge	2.39	2.44	2.48	V
V _{PVD3}		Rising edge	2.47	2.54	2.58	v
M	PVD threshold 4	Falling edge	2.57	2.64	2.69	
V _{PVD4}		Rising edge	2.68	2.74	2.79	
V	PVD threshold 5	Falling edge	2.77	2.83	2.88	
V_{PVD5}		Rising edge	2.87	2.94	2.99	
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	
V _{PVD6}		Rising edge	3.08	3.15	3.20	
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 14. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "T" in Ordering information scheme for more details.

0h.al	Demonster	0			Turn	Max ⁽¹⁾			11
Symbol	Parameter	Conditions		^f HCLK	Тур	55 °C	85 °C	105 °C	Unit
			Range 3,	1 MHz	80	140	140	140	
			V _{CORE} =1.2 V	2 MHz	150	210	210	210	
			VOS[1:0] = 11	4 MHz	280	330	330	330 ⁽³⁾	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	280	400	400	400	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	450	550	550	550	
	Supply current in	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	900	1050	1050	1050	
	Sleep	,	Range 1,	8 MHz	550	650	650	650	
	mode, code		V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	
	executed		VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	μA
	from RAM, Flash switched OFF	HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		MSI clock, 65 kHz	Range 3,	65 kHz	30	50	50	60	
I _{DD} (Sleep)		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	50	70	70	80	
(Sleep)		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	200	240	240	250	
		$f_{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽²⁾	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	80	140	140	140	
				2 MHz	150	210	210	210	
				4 MHz	290	350	350	350	
			Range 2, V _{CORE} =1.5 V	4 MHz	300	400	400	400	
	Supply			8 MHz	500	600	600	600	
	current in		VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
	Sleep mode,		Range 1,	8 MHz	550	650	650	650	μA
	code		V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	
	executed from Flash		VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	

Table 19. Current consumption in Sleep mode

Symbol	Parameter		Conditions		Тур	Max (1)	Unit
				T_A = -40 °C to 25 °C	9	12	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	17.5	24	
		All peripherals	HOLK 02 KHZ	T _A = 105 °C	31	46	
I _{DD (LP} Run)		OFF, code		$T_A = -40 \text{ °C to } 25 \text{ °C}$	14	17	
		executed from RAM,	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	22	29	
		Flash switched	HOLK	T _A = 105 °C	35	51	
		OFF, V _{DD}		$T_A = -40 \text{ °C to } 25 \text{ °C}$	37	42	
		from 1.65 V to 3.6 V	MSI clock, 131 kHz	T _A = 55 °C	37	42	μΑ
	Supply current in Low power run mode	10 3.0 V	f _{HCLK} = 131 kHz	T _A = 85 °C	37	42	
				T _A = 105 °C	48	65	
		All peripherals OFF, code executed	MSI clock, 65 kHz f _{HCLK} = 32 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	24	32	
				T _A = 85 °C	33	42	
				T _A = 105 °C	48	64	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	31	40	
				T _A = 85 °C	40	48	
		from Flash, V _{DD} from		T _A = 105 °C	54	70	
		1.65 V to		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	48	58	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	54	63	
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	65	
				T _A = 105 °C	70	90	
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 20. Current consumption in Low power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.

Symbol	Parameter	Conditions				Max (1)	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	4.4	-	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	17.5	25	
			f _{HCLK} = 32 kHz	T _A = 85 °C	22	27	
		All	Flash ON	T _A = 105 °C	31	39	
I _{DD} (LP Sleep)		peripherals OFF, V _{DD}	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18	26	
		from 1.65 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	23	28	
		to 3.6 V	Flash ON	T _A = 105 °C	31	40	
				T_A = -40 °C to 25 °C	22	30	
	Supply current in Low power sleep mode		MSI clock, 131 kHz f _{HCLK} = 131 kHz, Flash ON	T _A = 55 °C	24	32	μΑ
				T _A = 85 °C	26	34	
				T _A = 105 °C	34	45	
		TIM9 and USART1 enabled, Flash ON, V _{DD} from 1.65 V to 3.6 V	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	17.5	25	
				T _A = 85 °C	22	27	
			HOLK OZ KIZ	T _A = 105 °C	31	39	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	T_A = -40 °C to 25 °C	18	26	
				T _A = 85 °C	23	28	
				T _A = 105 °C	31	40	
				T_A = -40 °C to 25 °C	22	30	
		5.0 V	MSI clock, 131 kHz	T _A = 55 °C	24	32	
			f _{HCLK} = 131 kHz	T _A = 85 °C	26	34	
				T _A = 105 °C	34	45	
I _{DD} Max (LP Sleep)	Max allowed current in Low power Sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.9	-	μΑ
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.1	1.8	
		independent watchdog)	T _A = 55 °C	1.42	2.5	
			T _A = 85 °C	1.87	3	
I _{DD}	Supply current in Standby		T _A = 105 °C	2.78	5	
(Standby with RTC)	mode with RTC enabled	RTC clocked by LSE (no independent watchdog) ⁽³⁾	T _A = -40 °C to 25 °C V _{DD} = 1.8 V	1	-	
			$T_A = -40 \degree C$ to 25 $\degree C$	1.33	2.9	
			T _A = 55 °C	1.59	3.4	
			T _A = 85 °C	2.01	4.3	
			3.27	6.3		
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.1	1.6	
I _{DD}	Supply current in Standby mode with RTC disabled		$T_A = -40 \degree C$ to 25 $\degree C$	0.3	0.55	
(Standby)		Independent watchdog	T _A = 55 °C	0.5	0.8	1
		and LSI OFF $T_A = 85 \text{ °C}$		1	1.7	
			T _A = 105 °C	2.5	4 ⁽⁴⁾	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	

Table 23. Typical and maximum current cons	umptions in Standby mode
Table 23. Typical and maximum current cons	

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

 Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

4. Tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C						
Peripheral		Range 1, V_CORE=1.8 V VOS[1:0] = 01Range 2, V_CORE=1.5 V VOS[1:0] = 10Range 3, V_CORE=1.2 V VOS[1:0] = 11Low power sleep and run		Unit		
	GPIOA	5	4.5	3.5	4	
	GPIOB	5	4.5	3.5	4.5	
	GPIOC	5	4.5	3.5	4.5	
	GPIOD	5	4.5	3.5	4.5	
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz
	GPIOH	4	4	3	3.5	(f _{HCLK})
	CRC	1	0.5	0.5	0.5	
	FLASH	13	11.5	9	18.5	
	DMA1	12	10	8	10.5	
All enabled		166	138	106	130	
I _{DD (RTC)}						
I _{DD (LCD)}						
I _{DD (ADC)} ⁽³⁾						
I _{DD (DAC)} ⁽⁴⁾						
IDD (COMP1)			μA			
	Slow mode					
I _{DD (COMP2)}	Fast mode					
I _{DD (PVD / BOR)} ⁽⁵⁾						
I _{DD (IWDG)}						

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

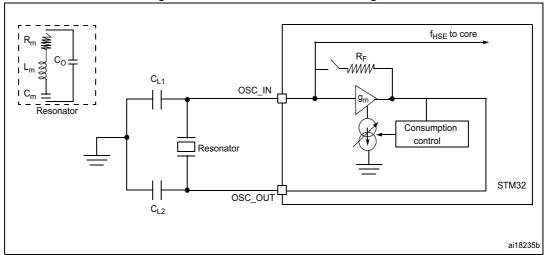


Figure 17. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter Conditions		Min	Тур	Мах	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	-	-	1.2	-	MΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA
		V _{DD} = 1.8 V	-	450	-	
I _{DD (LSE)}	LSE oscillator current consumption	V _{DD} = 3.0 V	-	600	-	nA
		V _{DD} = 3.6V	-	750	-	
9 _m	Oscillator transconductance	-	3	-	-	µA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	s

Table 29. LSE oscillator characteristics	s (f _{LSE} = 32.768 kHz) ⁽¹⁾
--	--

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

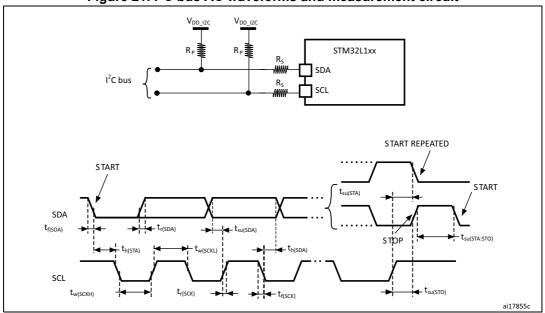


Figure 21. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistors
- 2. R_P = pull-up resistors
- 3. $V_{DD_{12C}}$ = I2C bus supply
- 4. Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.

6 (kH=)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x801B
300	0x8024
200	0x8035
100	0x00A0
50	0x0140
20	0x0320

Table 48. SCL frequency $(f_{PCLK1} = 32 \text{ MHz}, V_{DD} = V_{DD_12C} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 54* are guaranteed by design.

Symbol	Parameter	Conditions			Min	Max	Unit
f _{ADC}	ADC clock frequency	Voltage Range 1 & 2		$V_{REF+} = V_{DDA}$	0.480	16	MHz
				$V_{REF+} < V_{DDA}$ $V_{REF+} > 2.4 V$		8	
				V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V		4	
				$V_{REF+} = V_{DDA}$		8	
				$V_{REF+} < V_{DDA}$		4	
			Voltage Range 3			4	

Table 53. ADC clock frequency

Table 54. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{DDA}	Power supply	-	1.8	-	3.6	V		
V _{REF+}	Positive reference voltage	2.4 V ⊴V _{DDA} ≤3.6 V V _{REF+} must be below or equal to V _{DDA}	1.8 ⁽¹⁾	-	V _{DDA}	v		
V_{REF-}	Negative reference voltage	-	-	V_{SSA}	-	V		
I _{VDDA}	Current on the V _{DDA} input pin	-	-	1000	1450	μA		
. (2)	Current on the V _{REF} input pin	Peak	-	400	700	μA		
I _{VREF} ⁽²⁾		Average	-	400	450	μA		
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V_{REF} +	V		
	12 hit compling rate	Direct channels	0.03	-	1	Mana		
	12-bit sampling rate	Multiplexed channels	0.03	-	0.76	- Msps		
	10 bit compling rate	Direct channels	0.03	-	1.07	Msps		
f _S	10-bit sampling rate	Multiplexed channels	0.03	-	0.8	ivisps		
		Direct channels	0.03	-	1.23	Mana		
	8-bit sampling rate	Multiplexed channels	0.03	-	0.89	Msps		
	6-bit sampling rate	Direct channels	0.03	-	1.45	Msps		
		Multiplexed channels	0.03	-	1	ivisps		

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 14 x 14 mm, 100-pin low-profile quad flat package information

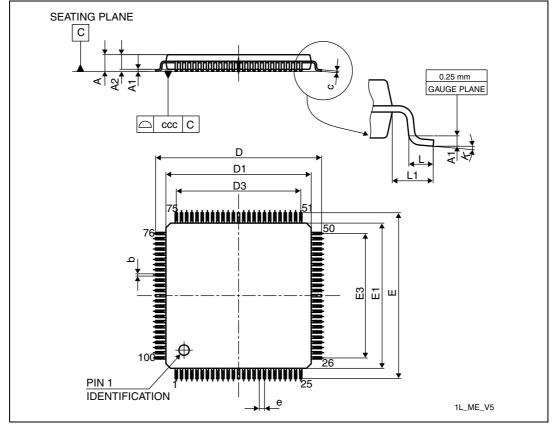


Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID17659 Rev 12