

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151cbt6d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.9	Memory characteristics			
		6.3.10	EMC characteristics			
		6.3.11	Electrical sensitivity characteristics80			
		6.3.12	I/O current injection characteristics81			
		6.3.13	I/O port characteristics			
		6.3.14	NRST pin characteristics			
		6.3.15	TIM timer characteristics			
		6.3.16	Communication interfaces			
		6.3.17	12-bit ADC characteristics93			
		6.3.18	DAC electrical specifications			
		6.3.19	Temperature sensor characteristics			
		6.3.20	Comparator			
		6.3.21	LCD controller (STM32L152xx only) 104			
7	Pack	kage info	ormation			
	7.1		00 14 x 14 mm, 100-pin low-profile quad flat package ation			
	7.2	LQFP6	4 10 x 10 mm, 64-pin low-profile quad flat package information.108			
	7.3	LQFP4	8 7 x 7 mm, 48-pin low-profile quad flat package information 111			
	7.4	UFQFF	PN48 7 x 7 mm, 0.5 mm pitch, package information			
	7.5	UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information				
	7.6		A64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball and the second sec			
	7.7	Therma	al characteristics			
		7.7.1	Reference document			
8	Orde	ering inf	ormation			
9	Revi	sion his	story			

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B and STM32L152x6/8/B ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B and STM32L152x6/8/B datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038).

The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to STM32L15xx6/8/B-A covered by a separate datasheet.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
V _{DD} = 2.0 to 2.4 V Conversion time up to 500 Ksps		Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V Conversion time up to 1 Msps		Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 The CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

		Pin	S						Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
35	26	F5	M5	18	PB0	I/O	TC	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ VREF_OUT
36	27	G5	M6	19	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
37	28	G6	L6	20	PB2	I/O	FT	PB2/BOOT1	BOOT1	-
38	-	-	M7	-	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP
39	-	-	L7	-	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP
40	-	-	M8	-	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP
41	-	-	L8	-	PE10	I/O	тс	PE10	TIM2_CH2	ADC_IN25/ COMP1_INP
42	-	-	M9	-	PE11	I/O	FT	PE11	TIM2_CH3	-
43	-	-	L9	-	PE12	I/O	FT	PE12	TIM2_CH4/SPI1_NSS	-
44	-	-	M10	-	PE13	I/O	FT	PE13	SPI1_SCK	-
45	-	-	M11	-	PE14	I/O	FT	PE14	SPI1_MISO	-
46	-	-	M12	-	PE15	I/O	FT	PE15	SPI1_MOSI	-
47	29	G7	L10	21	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX/ TIM2_CH3/LCD_SEG10	-
48	30	H7	L11	22	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX/ TIM2_CH4/LCD_SEG11	-
49	31	D6	F12	23	V _{SS_1}	S	-	V _{SS_1}	-	-
50	32	E6	G12	24	V _{DD_1}	S	-	V _{DD_1}	-	-
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/TIM10_CH1	ADC_IN18/ COMP1_INP
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/USART3_CTS/ LCD_SEG13/ TIM9_CH1	ADC_IN19/ COMP1_INP

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)

		Pins	5						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8/ NJTRST	COMP2_INP	
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP	
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX		
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN	
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0			
95	61	B3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/TIM10_CH1	-	
96	62	A3	B3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/TIM11_CH1	-	
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36/ TIM10_CH1	-	
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/TIM11_CH1	-	
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-	
100	64	E4	C4	48	V_{DD_3}	S	-	V _{DD_3}	-	-	

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)	Table 8. STM32L151x6/8/B	3 and STM32L152x6/8/B	pin definitions	(continued)
--	--------------------------	-----------------------	-----------------	-------------

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

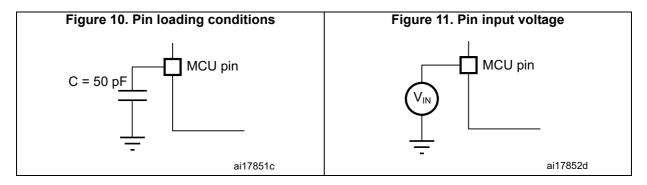
Please refer to device ErrataSheet for possible latest changes of electrical characteristics.

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.6$ V (for the 1.65 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.9	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1.1	1.8	
		independent watchdog)	T _A = 55 °C	1.42	2.5	
I _{DD} (Standby with RTC)			T _A = 85 °C	1.87	3	Αų
	Supply current in Standby mode with RTC enabled		T _A = 105 °C	2.78	5	
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	1	-	
		RTC clocked by LSE (no independent watchdog) ⁽³⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.33	2.9	
			T _A = 55 °C	1.59	3.4	
			T _A = 85 °C	2.01	4.3	
			T _A = 105 °C	3.27	6.3	
		Independent watchdog and LSI enabled	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.1	1.6	
I _{DD}	Supply current in Standby		$T_A = -40 \degree C$ to 25 $\degree C$	0.3	0.55	-
(Standby)	mode with RTC disabled	Independent watchdog	T _A = 55 °C	0.5	0.8	
		and LSI OFF	T _A = 85 °C	1	1.7	
			T _A = 105 °C	2.5	4 ⁽⁴⁾	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	

Table 23. Typical and maximum current consumption	s in Standby mode
Table 25. Typical and maximum current consumption	5 III Stanuby moue

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.


 Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

4. Tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	34.	RAM	and	hardware	reaisters
	• • •			indiana io	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V	
	Programming / erasing time for	Erasing	-	3.28	3.94		
t _{prog}	byte / word / double word / half- page	Programming	-	3.28	3.94	ms	
	Average current during whole program/erase operation	T - 25 °C V - 3 6 V	-	300	-	μA	
I _{DD}	Maximum current (peak) during program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA	

Table 35. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 36. Flash memory, data EEPROM endurance and data retention

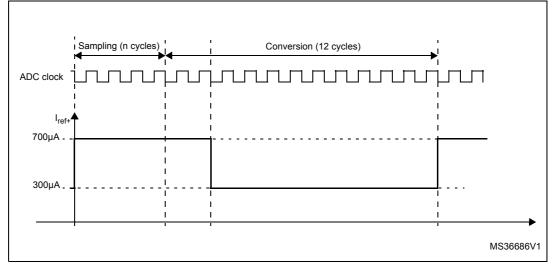
Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
NCYC ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	10	-	-	kovolos
	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-	
	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	INET = '03' C	30	-	-	voars
	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	I	-	years
	Data retention (EEPROM data memory) after 300 kcycles at T _A = 105 °C	11121 - 103 C	10	-	-	

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

STM32L151x6/8/B STM32L152x6/8/B

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤ V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{\text{DDA}} = V_{\text{REF}+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	57.5	62	-	dB
THD	Total harmonic distortion	1 kHz ≤ F _{input} ≤ 100 kHz	-74	-75	-	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	2.4 V ≤ V _{DDA} ≤ 3.6 V	-	2	4	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	4	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 V \le V_{DDA} \le 2.4 V$	-	1	1.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1	1.5	


1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Table 56. Maximum source impedance $R_{AIN} \max^{(1)}$

Ts (µs)	Multiplexe	d channels	Direct o	Ts (cycles) f _{ADC} = 16 MHz ⁽²⁾	
	2.4 V < V _{DDA} < 3.6 V 1.8 V < V _{DDA} < 2.4 V		2.4 V < V _{DDA} < 3.3 V		ADC
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

General PCB design guidelines

Power supply decoupling should be performed as shown in The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	С	onditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage		-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must V _{DDA}	always be below	1.8	-	3.6	V
V _{REF-}	Lower reference voltage		-	•	V _{SSA}		V
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	130	220	μA
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, wo	rst code (0x000)	-	220	350	μA
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, wo	rst code (0xF1C)	-	320	520	μA
RL	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ
		buffer ON Connected to V _{DDA}		25	-	-	N32
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
V _{DAC_OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
	output	DAC output buffer OFF		0.5	-	V _{REF+} – 1LSB	mV
DNL ⁽¹⁾	Differential non	C _L ≤ 50 pF, I DAC output	-	-	1.5	3	
DINE	linearity ⁽²⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	2	4	
IINE' '	integral non inteanty '	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	2	4	LSB
Offect ⁽¹⁾	Offset error at code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25	
Offset ⁽¹⁾	0x800 ⁽⁴⁾	No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF		-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R _{LOAD} , 0 DAC output		-	±1.5	±5	

Table	57.	DAC	characteristics

6.3.20 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
V _{DDA}	Analog supply voltage	-	1.65		3.6	V		
R _{400K}	R _{400K} value	-	-	400	-	kΩ		
R _{10K}	R _{10K} value	-	-	10	-	N22		
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V		
t _{START}	Comparator startup time	-	-	7	10			
td	Propagation delay ⁽²⁾	-	-	3	10	μs		
Voffset	Comparator offset	-	-	±3	±10	mV		
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h		
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA		

Table 60. Comparator 1 characteristics

1. Guaranteed by characterization results.

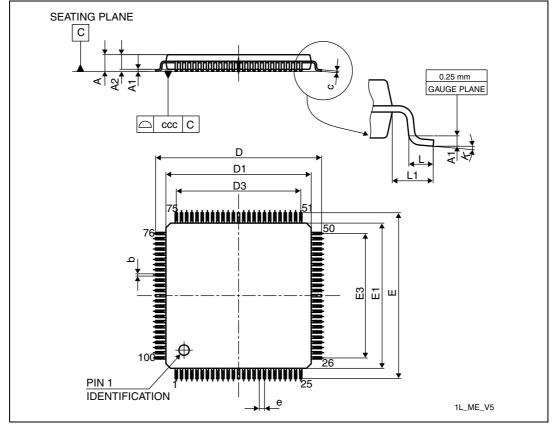
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

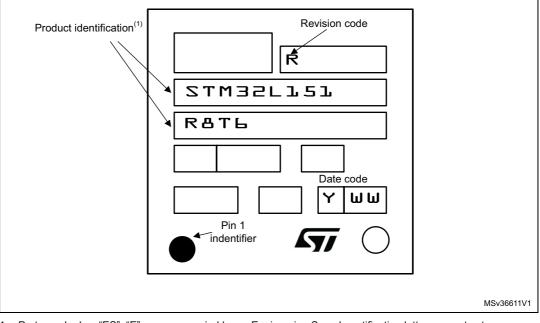
3. Comparator consumption only. Internal reference voltage not included.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 14 x 14 mm, 100-pin low-profile quad flat package information



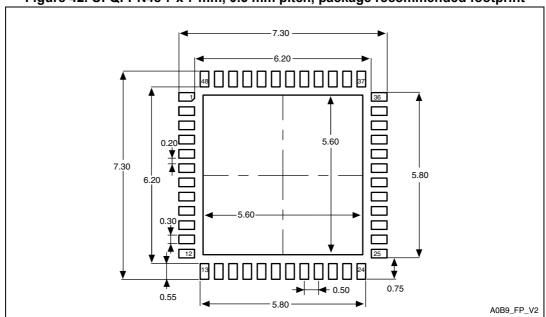

Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Querra ha a l	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 66. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

7.5 UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information

Z Seating plane A4 A3 A2 A1 A X E1 -A1 ball A1 ball identifier E index area F⊣ ⊢ e ŧ $\dot{\bullet}$ $\dot{\bullet$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ $\dot{\bullet}$ \dot А 000000000000 F 00000 00000 000 000 000 000 00 00 D1 D 00 00 000 000 000 000 е 00000 00000 00000000000000 Y 0000000000000 Μ 12 1 Øb (100 balls) TOP VIEW BOTTOM VIEW ⊕ Øeee® Z Y X Øfff ® Z A0C2_ME_V4

Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Gymbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	0.6	-	-	0.0236
A1	0.05	0.08	0.11	0.002	0.0031	0.0043
A2	0.4	0.45	0.5	0.0157	0.0177	0.0197
A3	0.08	0.13	0.18	0.0031	0.0051	0.0071
A4	0.27	0.32	0.37	0.0106	0.0126	0.0146
b	0.2	0.25	0.3	0.0079	0.0098	0.0118
D	6.95	7	7.05	0.2736	0.2756	0.2776
D1	5.45	5.5	5.55	0.2146	0.2165	0.2185
E	6.95	7	7.05	0.2736	0.2756	0.2776
E1	5.45	5.5	5.55	0.2146	0.2165	0.2185
е	-	0.5	-	-	0.0197	-
F	0.7	0.75	0.8	0.0276	0.0295	0.0315
ddd	-	-	0.1	-	-	0.0039

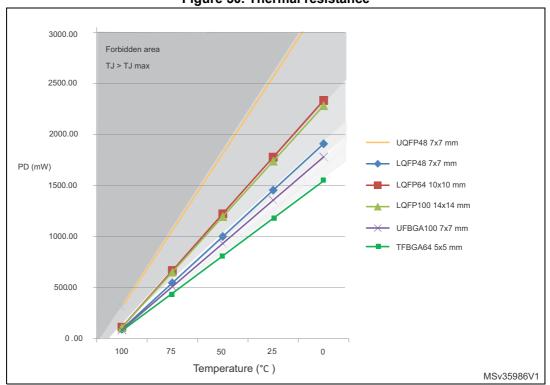


Figure 50. Thermal resistance

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Ordering information

Table 72. Ordering	information	on scheme		
Example:	STM32	L 151 C 8	T 6 7	
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
L = Low power				
Device subfamily				
151: Devices without LCD				
152: Devices with LCD				
132. Devices with ECD				
Pin count				
C = 48 pins				
R = 64 pins				
V = 100 pins				
Flash memory size				
6 = 32 Kbytes of Flash memory				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
Package				
H = BGA				
T = LQFP				
U = UFQFPN				
Temperature range				
6 = Industrial temperature range, -40 to 85 °C			1	
Options				
No character = V_{DD} range: 1.8 to 3.6 V and BOF	R enabled			•
T = V_{DD} range: 1.65 to 3.6 V and BOR disabled				
Packing				

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID17659 Rev 12

Date	Revision	Changes
12-Nov-2013	9 (continued)	Updated Table 54: ADC characteristics and Figure 27: Typical connection diagram using the ADC. Table 58: Temperature sensor calibration values was previously in Section 3.10.1: Temperature sensor. Updated Table 59: Temperature sensor characteristics. In Table 61: Comparator 2 characteristics, parameter dThreshold/dt, replaced any occurrence of "VREF+" by "V _{REFINT} "Updated Table 63: LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data, Table 64: LQFP64 10 x 10 mm 64-pin low-profile quad flat package mechanical data, Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. Updated Figure 33: LQFP100 recommended footprint. Updated Figure 46: TFBGA64 - 5.0x5.0x1.2 mm, 0.5 mm pitch, thin fine-pitch dall grid array package outline title. Remove minimum and typical values of A dimension in Table 67: UFBGA100 7 x 7 x 0.6 mm 0.5 mm pitch, ultra thin fine-pitch ball grid array package mechanical data Deleted second footnote in Figure 42: UFQFPN48 recommended footprint. Updated Section 8: Ordering information title and added first sentence. Changed BOR disabled option identifier in Table 72: Ordering information scheme.
22-Jul-2014	10	Updated <i>Figure 14</i> , <i>Figure 15</i> . Updated <i>Table 5</i> . Updated <i>Figure 6.3.4</i> . Updated note 5 inside <i>Table 54</i> . Updated Ro value inside <i>Table 54</i> .

Table 73.	Document revision history (continued)

