

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151cbu6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram	13
Figure 2. Clock tree	22
Figure 3. STM32L15xVx UFBGA100 ballout	31
Figure 4. STM32L15xVx LQFP100 pinout	32
Figure 5. STM32L15xRx TFBGA64 ballout	33
Figure 6. STM32L15xRx LQFP64 pinout.	34
Figure 7. STM32L15xCx LQFP48 pinout	34
Figure 8. STM32L15xCx UFQFPN48 pinout	35
Figure 9. Memory map	48
Figure 10. Pin loading conditions	
Figure 11. Pin input voltage	
Figure 12 Power supply scheme	50
Figure 13 Optional I CD power supply scheme	51
Figure 14 Current consumption measurement scheme	51
Figure 15 High-speed external clock source AC timing diagram	70
Figure 16 Low-speed external clock source AC timing diagram	71
Figure 17 HSE oscillator circuit diagram	
Figure 17. The Oscillator Circuit diagram	73
Figure 10. Typical application with a 52.766 Kinz crystal	
Figure 19. I/O AC characteristics definition	
Figure 20. Recommended NRST pill protection \dots	00
Figure 22. TO bus AC waveloints and measurement circuit	00
Figure 22. SPI timing diagram - slave mode and CPHA = $0 \dots \dots \dots \dots \dots \dots$	
Figure 23. SPI timing diagram - slave mode and CPHA = 1^{17}	
Figure 24. SPI timing diagram - master mode ¹⁷	91
Figure 25. USB timings: definition of data signal rise and fall time	92
Figure 26. ADC accuracy characteristics.	96
Figure 27. Typical connection diagram using the ADC	96
Figure 28. Maximum dynamic current consumption on V _{REF+} supply pin during ADC	
conversion	97
Figure 29. Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	98
Figure 30. Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	98
Figure 31. 12-bit buffered /non-buffered DAC	101
Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline	105
Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footp	orint 107
Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example	107
Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline	108
Figure 36. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprir	nt 109
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example	110
Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline	111
Figure 39. LQFP48 7 x 7 mm, 48-pin low-profile quad flat recommended footprint.	112
Figure 40. LQFP48 7 x 7 mm, 48-pin low-profile guad flat package top view example	113
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline	114
Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint	115
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example	116
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch. package outline	117
Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint	118
Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example.	
Figure 47 TEBCA64.5 x 5 mm 0.5 mm pitch package outline	120

3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)

There are six synchronizable general-purpose timers embedded in the STM32L151x6/8/B and STM32L152x6/8/B devices (see *Table 6* for differences).

TIM2, TIM3, TIM4

These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload up-counter and a 16-bit prescaler. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.15.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit down-counter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.15.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.15.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit down-counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.16.2 Universal synchronous/asynchronous receiver transmitter (USART)

All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. They support IrDA SIR ENDEC and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

3.16.3 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

3.16.4 Universal serial bus (USB)

The STM32L151x6/8/B and STM32L152x6/8/B devices embed a USB device peripheral compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	iBOOT0	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12)	(PC10)	(PA11)
с	PC13 WEUP2	(PE5)	(PE0)	VDD_B	(PB5)			(PD2)	(PD0)	PC11)	(PH2)	(PA10)
D	PC14) 0\$C32_IN		ŃSS_B							(PA9)	(PA8)	(PC9)
E	PC15) OSC32_C	VLCD	NSS_¥							(PC8)	(PC7)	(PC6)
F	PHO) QSC2IN	a zzvi					1				WSS_P	wss_h
G	OSC_OL											NLOON
н	(PC0)	INRST								PD15)	PD14)	(PD13)
J	VSSA)	(PC1)	(PC2)							PD12)	PD11)	(PD10)
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	PB14)	(PB13)
L	(VRE#+	PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	/PE12	(PB10)	(PB11)	(PB12)
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/-\ (PE11)	(PE13	PE14	PE19
												ai17096f

Figure 3. STM32L15xVx UFBGA100 ballout

1. This figure shows the package top view.

Figure 4. STM32L15xVx LQFP100 pinout

1. This figure shows the package top view.

		Pin	s						Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8/ NJTRST	COMP2_INP
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0	-	-
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/TIM10_CH1	-
96	62	A3	B3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/TIM11_CH1	-
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36/ TIM10_CH1	-
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/TIM11_CH1	-
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-
100	64	E4	C4	48	V_{DD_3}	s	-	V _{DD_3}	-	-

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

6.1.7 Optional LCD power supply scheme

Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 14. Current consumption measurement scheme

Symbol	Parameter		Тур	Max (1)	Unit		
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	9	12	
		A 11		T _A = 85 °C	17.5	24	
		All peripherals	HOLK OF MIL	T _A = 105 °C	31	46	
		OFF, code		T_A = -40 °C to 25 °C	14	17	
		from RAM,	MSI CIOCK, 65 KHZ	T _A = 85 °C	22	29	
		Flash		T _A = 105 °C	35	51	
		OFF, V _{DD}		T_A = -40 °C to 25 °C	37	42	
		from 1.65 V to 3.6 V	MSI clock, 131 kHz	T _A = 55 °C	37	42	
I _{DD (LP}	Supply current in Low power run mode	10 0.0 V	f _{HCLK} = 131 kHz	T _A = 85 °C	37	42	
				T _A = 105 °C	48	65	
Run)		All	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	24	32	
				T _A = 85 °C	33	42	μA
				T _A = 105 °C	48	64	
		peripherals		T_A = -40 °C to 25 °C	31	40	
		executed	$f_{\text{HOLK}} = 65 \text{ kHz}$	T _A = 85 °C	40	48	
		from Flash,		T _A = 105 °C	54	70	
		1.65 V to		T_A = -40 °C to 25 °C	48	58	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	54	63	
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	65	
				T _A = 105 °C	70	90	
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 20. Current consumption in Low power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.

Symbol	Parameter	Conditions	Тур (1)	Max (1)(2)	Unit	
	Supply current	Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.1	2.2	
	in Stop mode		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.5	0.9	uА
(Stop)	(RTC disabled)	Regulator in LP mode, LSI, HSI	T _A = 55°C	1.9	5	per c
		watchdog)	T _A = 85°C	3.7	8	
			T _A = 105°C	8.9	20 ⁽⁶⁾	
	RMS (root	MSI = 4.2 MHz		2	-	
	mean square)	MSI = 1.05 MHz		1.45	-	
I _{DD (WU} from Stop)	during wakeup time when exiting from Stop mode	MSI = 65 kHz ⁽⁷⁾	$v_{DD} = 3.0 V$ $T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	1.45	-	mA

 Table 22. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Tested in production

7. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time of the wakeup period, the current is similar to the Run mode current.

Peripheral		Туріса	l consumption,	V _{DD} = 3.0 V, T _A	= 25 °C	
		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	TIM2	13	10.5	8	10.5	
	TIM3	14	12	9	12	
	TIM4	12.5	10.5	8	11	
	TIM6	5.5	4.5	3.5	4.5	
	TIM7	5.5	5	3.5	4.5	
	LCD	5.5	5	3.5	5	
	WWDG	4	3.5	2.5	3.5	
	SPI2	5.5	5	4	5	µA/MHz
APDI	USART2	9	8	5.5	8.5	(f _{HCLK})
	USART3	10.5	9	6	8	
	I2C1	8.5	7	5.5	7.5	
	I2C2	8.5	7	5.5	6.5	
	USB	12.5	10	6.5	10	
	PWR	4.5	4	3	3.5	
	DAC	9	7.5	6	7	
	COMP	4.5	4	3.5	4.5	
	SYSCFG & RI	3	2.5	2	2.5	
	TIM9	9	7.5	6	7	
	TIM10	6.5	5.5	4.5	5.5	
APB2	TIM11	7	6	4.5	5.5	μΑ/MHz (fμοικ)
	ADC ⁽²⁾	11.5	9.5	8	9	VIICEN/
	SPI1	5	4.5	3	4	
	USART1	9	7.5	6	7.5	

Table 24. Peripheral current consumption⁽¹⁾

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μΑ

Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-		200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	3	mA
	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	mA
^I DD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	1 IIIA
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 28. HS	SE oscillator	characteristics ⁽¹⁾⁽²⁾
--------------	---------------	-----------------------------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Figure 17. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	-	-	1.2	-	MΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA
		V _{DD} = 1.8 V	-	450	-	
I _{DD (LSE)}	LSE oscillator current	V _{DD} = 3.0 V	-	600	-	nA
		V _{DD} = 3.6V	-	750	-	
g _m	Oscillator transconductance	-	3	-	-	μA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	S

Table 29. LSE oscillator character	ristics (f _{LSE} = 32.768 kHz) ⁽¹⁾
------------------------------------	--

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

STM32L151x6/8/B STM32L152x6/8/B

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	$-2.4 V \le V_{\text{REF}+} \le 3.6 V$	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω T _A = -40 to 105 °C	57.5	62	-	
SNR	Signal-to-noise ratio		57.5	62	-	dB
THD	Total harmonic distortion	1 kHz ≤ F _{input} ≤ 100 kHz	-74	-75	-	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	2	4	
EG	Gain error	$1.8 V \le V_{REF+} \le 2.4 V$	-	4	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	$1.8 \text{ V} \le \text{V}_{\text{REF+}} \le 2.4 \text{ V}$ face = 4 MHz Rain = 50 O	-	1.5	2	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1	1.5	1

Table 55.	ADC	accuracy ⁽¹⁾⁽²⁾
-----------	-----	----------------------------

1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Figure 29. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF^+} and V_{REF^-} inputs are available only on 100-pin packages.

1. $V_{\mathsf{REF}\text{+}}$ and $V_{\mathsf{REF}\text{-}}$ inputs are available only on 100-pin packages.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-		1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}		1.8	-	3.6	V
V _{REF-}	Lower reference voltage		-	V _{SSA}			V
(4)	Current consumption on	No load, mic	No load, middle code (0x800)		130	220	μA
I _{DDVREF+} (1)	V _{REF+} supply V _{REF+} = 3.3 V	No load, wo	rst code (0x000)	-	220	350	μA
. (1)	Current consumption on	No load, mic	Idle code (0x800)	-	210	320	μΑ
I _{DDA} (1)	V _{DDA} supply V _{DDA} = 3.3 V	No load, wo	rst code (0xF1C)	-	320	520	μA
P	Pesistive load	DAC output	Connected to V_{SSA}	5	-	-	kO
	Resistive load	buffer ON	Connected to V_{DDA}	25	-	-	кΩ
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
V _{DAC_OUT}	Voltage on DAC_OUT output	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
		DAC output buffer OFF		0.5	-	V _{REF+} – 1LSB	mV
	Differential non linearity ⁽²⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	1.5	3	
DIVL		No R_{LOAD} , $C_{L} \le 50 \text{ pF}$ DAC output buffer OFF		-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	2	4	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	2	4	LSB
Offset ⁽¹⁾	Offset error at code 0x800 ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	±1.5	±5	

Table	57	DAC	characteristics
Iabic	51.	DAO	characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	μV/°C	
		$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	0	20	50		
a. (1)	Gain error ⁽⁶⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / - 0.5%	0/	
Gain		No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70	
(1)	Gain error temperature	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-10	-2	0		
	coefficient	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	-40	-8	0	μv/ C	
TUE ⁽¹⁾	Total unadjusted error	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	LSB	
		No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	8	12		
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
twakeup	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 57. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x800) and the ideal value = V/2.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} - 0.2$) V when buffer is ON.

7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
26-Oct-2012	7	Updated cover page. Updated Section 3.10: ADC (analog-to-digital converter) Updated Table 3: Functionalities depending on the operating power supply range, added Table 4: CPU frequency range depending on dynamic voltage scaling and Table 5: Working mode-dependent functionalities (from Run/active down to standby). Updated Table 27: Low-speed external user clock characteristicsAdded footnote 2. in Table 14: Embedded reset and power control block characteristics Updated Table 22: Typical and maximum current consumptions in Stop mode and Table 23: Typical and maximum current consumptions in Standby mode Updated footnote 4. in Table 22: Typical and maximum current consumptions in Stop mode Updated Table 44: I/O AC characteristics Updated Table 47: I2C characteristics Updated Table 49: SPI characteristics Updated Table 49: SPI characteristics Updated "non-robust" Table 54: ADC characteristics Updated "non-robust" Table 54: ADC characteristics Removed the note "position of 4.7 µf capacitor" in Section 6.1.6: Power supply scheme Updated Table 66: UFQFPN48 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch quad flat no-lead package mechanical data Updated Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data Added the resistance of TFBGA in Table 71: Thermal characteristics Added Figure 50: Thermal resistance
07-Feb-2013	8	Removed AHB1/AHB2 in <i>Figure 1: Ultralow power</i> <i>STM32L15xx6/8/B block diagram</i> Added IWDG and WWDG rows in <i>Table 5: Working mode-</i> <i>dependent functionalities (from Run/active down to standby).</i> Updated I _{DD} (Supply current during wakeup time from Standby mode) in <i>Table 23: Typical and maximum current consumptions in</i> <i>Standby mode</i> The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)" replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2)" in <i>Table 19: Current</i> <i>consumption in Sleep mode</i> Updated Stop mode current to 1.2 μA in <i>Ultra-low-power platform</i> Updated entire <i>Section 7: Package information</i> Removed alternate function "I2C2_SMBA" for GPIO pin "PH2" in <i>Table 8: STM32L15xx6/8/B pin definitions</i> Updated <i>Table 27: Low-speed external user clock characteristics</i> and definition of symbol "R _{AIN} " in <i>Table 54: ADC characteristics</i> Removed first sentence in <i>I2C interface characteristics</i>

Table 73. Document revision his	story (continued)
---------------------------------	-------------------

Date	Revision	Changes
30-Jan-2015	11	Updated DMIPS features in cover page and Section 2: Description. Updated Table 8: STM32L151x6/8/B and STM32L152x6/8/B pin definitions and Table 9: Alternate function input/output putting additional functions. Updated package top view marking in Section 7.1: Package mechanical data.
		Updated <i>Figure 9: Memory map</i> . Updated <i>Table 56: Maximum source impedance RAIN max</i> adding note 2. Updated <i>Table 72: Ordering information scheme</i> .
28-Apr-2016	12	Updated Table 72: Ordering information scheme. Updated Section 7: Package information structure: Paragraph titles and paragraph heading level. Updated Section 7: Package information for all package device markings, adding text for device orientation versus pin 1/ ball A1 identifier. Updated Figure 34: LQFP100 14 x 14 mm, 100-pin package top view example removing gate mark. Updated Table 64: LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. Updated Section 7.5: UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information adding Table 68: UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules and Figure 45: UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint. Updated Section 7.6: TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine- pitch ball grid array package information adding Table 70: TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules and changing Figure 48: TFBGA64, 5 x 5 mm, 0.5 mm pitch, thin fine- pitch ball grid array package information adding Table 70: TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules and changing Figure 48: TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint. Updated Table 16: Embedded internal reference voltage temperature coefficient at 100ppm/°C. Updated Table 61: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated Table 61: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated Table 61: Voltage characteristics adding note about V _{REF} - pin. Updated Table 5: Working mode-dependent functionalities putting "Y" in Standby mode.
		Removed note 1 below <i>Figure 2: Clock tree</i> . Updated <i>Table 57: DAC characteristics</i> resistive load.

Table 73. Document revision history (continued)

