

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151r8h6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Ultra-low-power device continuum

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices are fully pin-to-pin and software compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture and features.

They are all based on STMicroelectronics ultra-low leakage process.

Note: The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx devices. Please refer to the STM32F and STM8L documentation for more information on these devices.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM[®] Cortex[®]-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xx and STM32L1xxxx families use a common architecture:

- Same power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xx devices)
- Architecture optimized to reach ultra-low consumption both in low power modes and Run mode
- Fast startup strategy from low power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 384 Kbytes

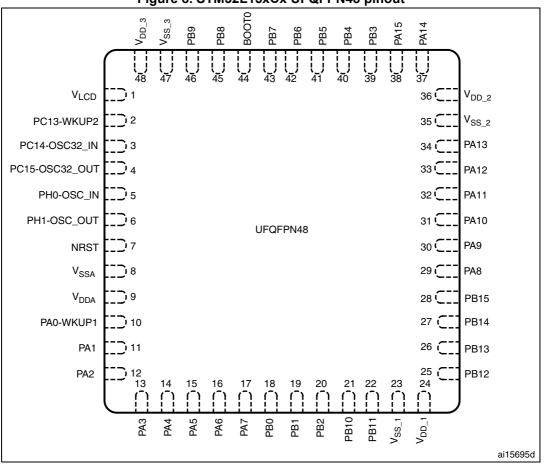


Figure 8. STM32L15xCx UFQFPN48 pinout

1. This figure shows the package top view.

		Pins		. 01					B/B pin definitions (conti Pins functions	
			>							
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
19	12	F1	J1	8	V _{SSA}	S	-	V _{SSA}	-	-
20	-	-	K1	-	V _{REF-}	S	-	V _{REF-}	-	-
21	-	G1 (6)	L1	-	V _{REF+}	S	-	V _{REF+}	-	-
22	13	H1	M1	9	V _{DDA}	S	-	V _{DDA}	-	-
23	14	G2	L2	10	PA0-WKUP1	I/O	FT	PA0	USART2_CTS/ TIM2_CH1_ETR	WKUP1/ ADC_IN0/ COMP1_INP
24	15	H2	M2	11	PA1	I/O	FT	PA1	USART2_RTS/ TIM2_CH2/LCD_SEG0	ADC_IN1/ COMP1_INP
25	16	F3	K3	12	PA2	I/O	FT	PA2	USART2_TX/TIM2_CH3/ TIM9_CH1/LCD_SEG1	ADC_IN2/ COMP1_INP
26	17	G3	L3	13	PA3	I/O	тс	PA3	USART2_RX/TIM2_CH4/ TIM9_CH2/LCD_SEG2	ADC_IN3/ COMP1_INP
27	18	C2	E3	-	V _{SS_4}	S	-	V _{SS_4}	-	-
28	19	D2	H3	-	V _{DD_4}	S	-	V _{DD_4}	-	-
29	20	H3	М3	14	PA4	I/O	тс	PA4	SPI1_NSS/USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP
30	21	F4	K4	15	PA5	I/O	тс	PA5	SPI1_SCK/ TIM2_CH1_ETR	ADC_IN5/ DAC_OUT2/ COMP1_INP
31	22	G4	L4	16	PA6	I/O	FT	PA6	SPI1_MISO/TIM3_CH1/ LCD_SEG3/TIM10_CH1	ADC_IN6 /COMP1_INP
32	23	H4	M4	17	PA7	I/O	FT	PA7	SPI1_MOSI//TIM3_CH2/ LCD_SEG4/TIM11_CH1	ADC_IN7/ COMP1_INP
33	24	H5	K5	-	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
34	25	H6	L5	-	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)

		Pin							Pins functions	,
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
53	35	F8	K11	27	PB14	I/O	FT	- PB14 USART3_RTS/ LCD_SEG14//TIM9_CH2		ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	PD8 USART3_TX/ LCD_SEG28	
56	-	-	K8	-	PD9	I/O	FT	PD9 USART3_RX/ LCD_SEG29		-
57	-	-	J12	-	PD10	I/O	FT	PD10	PD10 USART3_CK/ LCD_SEG30	
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-
67	41	D7	D11	29	PA8	I/O	FT	PA8 USART1_CK/MCO/ LCD_COM0		-
68	42	C7	D10	30	PA9	I/O	FT	PA9 USART1_TX/LCD_COM1		-
69	43	C6	C12	31	PA10	I/O	FT	PA10	USART1_RX/LCD_COM2	-
70	44	C8	B12	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM

46/133

DocID17659 Rev 12

5

		Digital alternate function number													
B . 4	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFIO8	AFIO9	AFIO11	AFIO12	AFIO13	AFIO14	AFIO15
Port name	Alternate function														
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE0	-	-	TIM4_ETR	TIM10_CH1	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE1	-	-		TIM11_CH1	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE2	TRACEC K	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE3	TRACED 0	-	TIM3_CH1	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE4	TRACED 1	-	TIM3_CH2	-	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE5	TRACED 2	-	-	TIM9_CH1*	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE6	TRACED 3	-	-	TIM9_CH2*	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE7	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE8	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE9	-	TIM2_CH1_ETR	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE10	-	TIM2_CH2	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE11	-	TIM2_CH3	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE12	-	TIM2_CH4	-	-	-	SPI1_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE13	-	-	-	-	-	SPI1_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE14	-	-	-	-	-	SPI1_MISO	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE15	-	-	-	-	-	SPI1_MOSI	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PH0- OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 9. Alternate function input/output (continued)

5 Memory mapping

The memory map is shown in *Figure 9*.

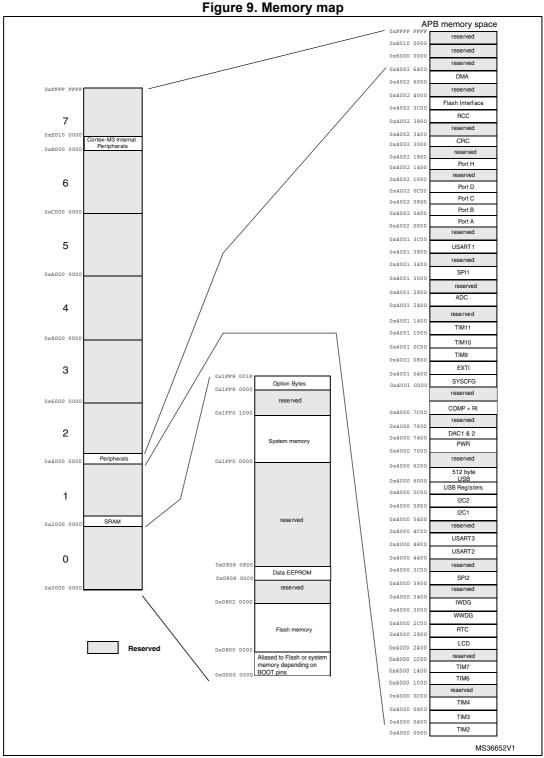
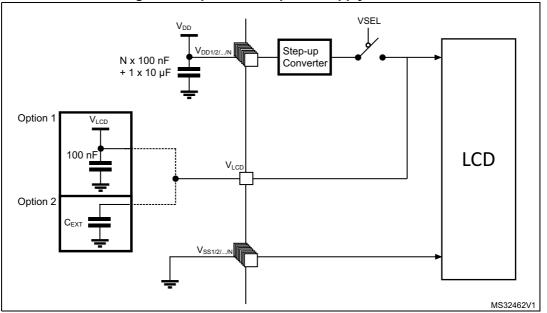



Figure 9 Momon

6.1.7 Optional LCD power supply scheme

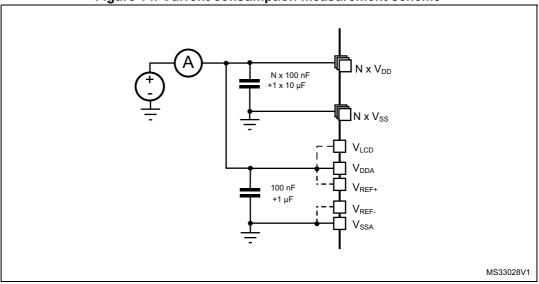


Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 10: Voltage characteristics*, *Table 11: Current characteristics*, and *Table 12: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant pin	V _{SS} –0.3	V _{DD} +4.0	V
VIN V	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all different ground $pins^{(3)}$	-	50	
V _{REF+} –V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	- 0.4	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6	.3.11	-

Table 10. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to Table 11 for maximum allowed injected current values.

3. Include VREF- pin.

Table 11. Current characteristics

Symbol	Ratings	Max.	Unit
Ι _{VDDΣ}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	80	
$I_{VSS\Sigma}$	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	80	
I	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/O and control pin	- 25	
ı (2)	Injected current on five-volt tolerant I/O ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	mA

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.

3. Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN} <V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
Τ _J	Maximum junction temperature	150	°C

Table 12. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
VDDA` ′	Analog operating voltage (ADC or DAC used) Must be the same voltage as V _{DD} ⁽²⁾		1.8	3.6	v	
	Input voltage on FT pins ⁽³⁾	2.0 V ≤V _{DD} ≤ 3.6 V	-0.3	5.5		
V _{IN}		$1.65 \text{ V} \le \text{V}_{\text{DD}} \le 2.0 \text{ V}$	-0.3	5.25	V	
	Input voltage on BOOT0 pin Input voltage on any other pin		0 0.3	5.5 V _{DD} +0.3		
P _D	Power dissipation at $T_A = 85 \ ^{\circ}C^{(4)}$	BGA100 package	-	339	mW	
Та	Tomporatura ranga	Maximum power dissipation		85	°C	
IA	Temperature range	Low power dissipation ⁽⁵⁾	105	U		
TJ	Junction temperature range	-40 °C ≤T _A ≤105°C	-40	105	°C	

Table 13. General operating conditions

1. When the ADC is used, refer to Table 54: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

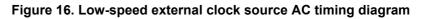
3. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

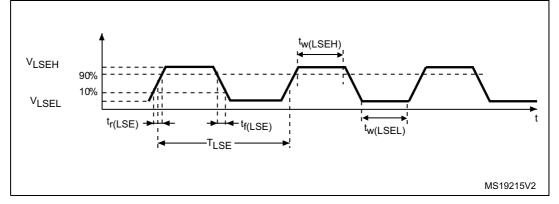
 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 12: Thermal characteristics on page 53).

In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max (see *Table 12: Thermal characteristics on page 53*).

0h.al	Demonster	0			T		Max ⁽¹)	11
Symbol	Parameter	arameter Conditions		f _{HCLK}	Тур	55 °C	85 °C	105 °C	Unit
			Range 3,	1 MHz	80	140	140	140	
			V _{CORE} =1.2 V	2 MHz	150	210	210	210	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	VOS[1:0] = 11	4 MHz	280	330	330	330 ⁽³⁾	
			Range 2,	4 MHz	280	400	400	400	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	450	550	550	550	
	Supply current in Sleep	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	900	1050	1050	1050	
		,	Range 1,	8 MHz	550	650	650	650	
	mode, code		V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	
	executed		VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	μA
	from RAM, Flash switched OFF		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		MSI clock, 65 kHz	Range 3, V _{CORE} =1.2 V	65 kHz	30	50	50	60	
I _{DD} (Sleep)		MSI clock, 524 kHz		524 kHz	50	70	70	80	
(Sleep)		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	200	240	240	250	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	80	140	140	140	
				2 MHz	150	210	210	210	
				4 MHz	290	350	350	350	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	300	400	400	400	
	Supply	$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	500	600	600	600	
	current in	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
	Sleep mode,		Range 1,	8 MHz	550	650	650	650	μA
	code		V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	μ
	executed from Flash		VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	

Table 19. Current consumption in Sleep mode


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μΑ

Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

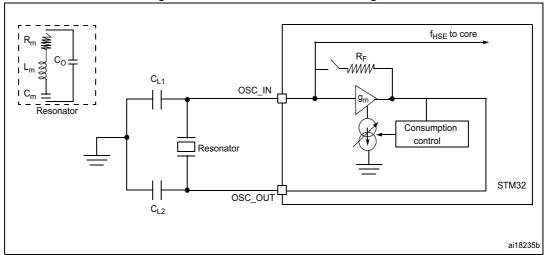


Figure 17. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz	
R _F	Feedback resistor	-	-	1.2	-	MΩ	
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF	
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA	
		V _{DD} = 1.8 V	-	450	-		
I _{DD (LSE)}	LSE oscillator current consumption	V _{DD} = 3.0 V	-	600	-	nA	
		V _{DD} = 3.6V	-	750	-		
9 _m	Oscillator transconductance	-	3	-	-	µA/V	
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	s	

Table 29. LSE oscillator characteristics	s (f _{LSE} = 32.768 kHz) ⁽¹⁾
--	--

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

Multi-speed internal (MSI) RC oscillator

	Table 32. MSI oscillator characteristics				
Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	65.5	-	
		MSI range 1	131	-	ku-
		MSI range 2	262	-	kHz
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C ≤T _A ≤85 °C	-	±3	-	%
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V ≤V _{DD} ≤3.6 V, T _A = 25 °C	-	2.5	%/V	
		MSI range 0	0.75	-	
	MSI oscillator power consumption	MSI range 1	1	-	
		MSI range 2	1.5	-	μA
I _{DD(MSI)} ⁽²⁾		MSI range 3	2.5	-	
		MSI range 4	4.5	-	
		MSI range 5	8	-	
		MSI range 6	15	-	
		MSI range 0	30	-	
		MSI range 1	20	-	
^t su(msi)		MSI range 2	15	-	1
		MSI range 3	10	-	
	MSI oscillator startup time	MSI range 4	6	-	- µs
		MSI range 5	5	-	
		MSI range 6, Voltage range 1 and 2	3.5	-	
		MSI range 6, Voltage range 3	5	-	

Table 32. MSI oscillator characteristics

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 13*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
_		Master mode	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz
		Slave transmitter	-	12 ⁽³⁾	
t _{r(SCK)} ⁽²⁾ t _{f(SCK)} ⁽²⁾	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3	
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-	
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾		Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-	

Table 49. SPI characteristics	ble 49. SPI characteristics	(1)
-------------------------------	-----------------------------	-----

1. The characteristics above are given for voltage Range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

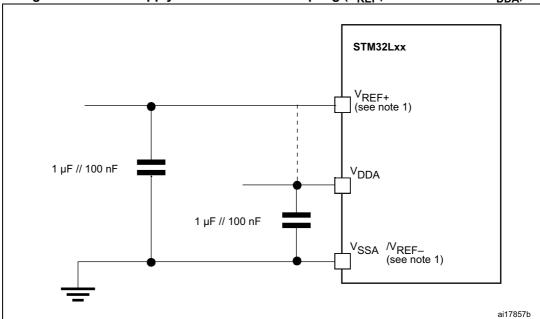
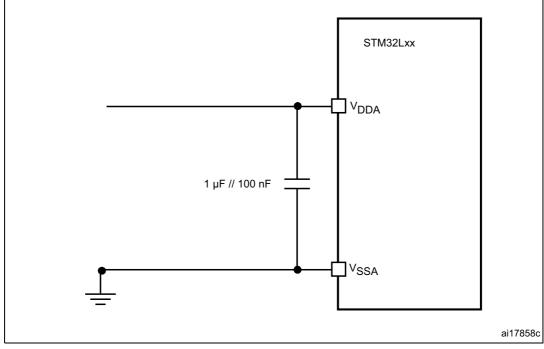



Figure 29. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF^+} and V_{REF^-} inputs are available only on 100-pin packages.

1. $V_{\mathsf{REF}\text{+}}$ and $V_{\mathsf{REF}\text{-}}$ inputs are available only on 100-pin packages.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
dOffset/dT ⁽¹⁾	Offset error temperature	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	
	coefficient (code 0x800)	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	0	20	50	µV/°C
Gain ⁽¹⁾	Gain error ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / - 0.5%	%
Gain	Gain enor	No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70
dGain/dT ⁽¹⁾	Gain error temperature	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer OFF	-10	-2	0	μV/°C
	coefficient	$V_{DDA} = 3.3V$, $T_A = 0$ to 50 ° C DAC output buffer ON	-40	-8	0	μν/ Ο
TUE ⁽¹⁾	Total unadjusted error	$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	
		No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF	-	8	12	LSB
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps
t _{wakeup}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB

Table 57. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x800) and the ideal value = V/2.

5. Difference between the value measured at Code (0x001) and the ideal value.

6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} - 0.2$) V when buffer is ON.

7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

6.3.21 LCD controller (STM32L152xx only)

The STM32L152xx embeds a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit	
V_{LCD}	LCD external voltage	-	-	3.6		
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-		
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-		
V _{LCD2}	LCD internal reference voltage 2	-	2.86	-		
V_{LCD3}	LCD internal reference voltage 3	-	2.98	-	V	
V _{LCD4}	LCD internal reference voltage 4	-	3.12	-		
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-	Ţ	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-		
V_{LCD7}	LCD internal reference voltage 7	-	3.55	-	Ţ	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF	
I _{LCD} ⁽¹⁾	Supply current at V _{DD} = 2.2 V	-	3.3	-		
	Supply current at V _{DD} = 3.0 V	-	3.1	-	μA	
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ	
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ	
V ₄₄	Segment/Common highest level voltage	-	-	V_{LCD}	V	
V ₃₄	Segment/Common 3/4 level voltage	-	3/4 V _{LCD}	-		
V ₂₃	Segment/Common 2/3 level voltage	-	2/3 V _{LCD}	-		
V ₁₂	Segment/Common 1/2 level voltage	-	1/2 V _{LCD}	-		
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	V	
V ₁₄	Segment/Common 1/4 level voltage	-	1/4 V _{LCD}	-	1	
V ₀	Segment/Common lowest level voltage	0	-	-	1	
$\Delta Vxx^{(3)}$	Segment/Common level voltage error T_A = -40 to 85 ° C	-	-	±50	mV	

	Table 62	. LCD	controller	characteristics
--	----------	-------	------------	-----------------

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected

2. Guaranteed by design.

3. Guaranteed by characterization results.

7.3 LQFP48 7 x 7 mm, 48-pin low-profile quad flat package information

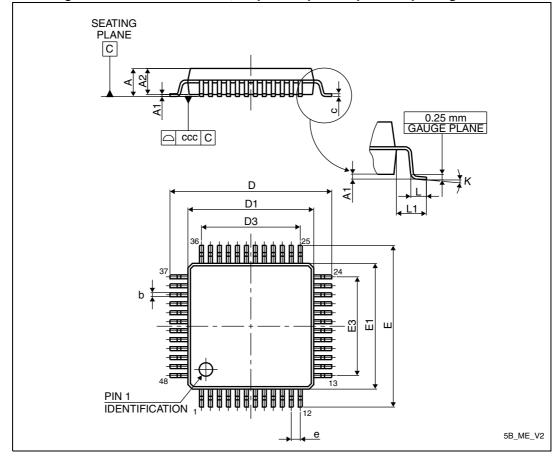


Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.

7.7 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient BGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	t 46	
0	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm	65	
Θ_{JA}	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient16UFQFPN48 - 7 x 7 mm / 0.5 mm pitch16		

Table 71. Thermal characteristics

Date	Revision	. Document revision history (continued) Changes
Date	Revision	-
12-Nov-2013	9	Changed voltage Range 1 minimum to 1.71 V and updated dynamic voltage scaling range in Table 3: Functionalities depending on the operating power supply range Updated LCD and ADC features and peripheral counts. Updated LCD and ADC features and peripheral counts. Updated Table 3: Functionalities depending on the operating power supply range. Updated Table 5: Working mode-dependent functionalities (from <i>Run/active down to standby</i>). Updated Table 5: STM32L15xV6 UFBGA100 ballout Added Table 7: Legend/abbreviations used in the pinout table. Updated Table 8: STM32L15xV6/ <i>B</i> pin definitions Updated Table 10: Pin loading conditions and Figure 11: Pin input voltage. Updated Figure 12: Power supply scheme. Replaced "Σ" by "o" in Section 6.1.1 and Section 6.1.2. Updated Table 10: Voltage characteristics. Updated Table 13: General operating conditions. Added Section 6.1.7: Optional LCD power supply scheme. Updated Table 16: Embedded internal reference voltage. Added this Note in Section 1: High-speed external clock generated from a crystal/ceramic resonator Updated Section : Functional susceptibility to I/O current injection. This Section 6.3.5: Wakeup time from Low power mode was previously a paragraph in Section 6.3.4: Supply current characteristics. Updated f _{15E} conditions in Table 17: Current consumption in Run mode, code with data processing running from Flash and Table 18: Current consumption in Run mode, code with data processing running from Flash and Table 18: Current consumptions in Standby mode. This Figure 15: High-speed external clock source AC timing diagram. Updated Table 28: Low-power mode wakeup timings tilte. Updated Table 28: Low-power mode wakeup timings tilte. Updated Table 28: HSE oscillator characteristics and Table 29: LSE oscillator characteristics. The taracteristics tilte. Updated Table 28: ESD absolute maximum ratings. Updated Table 28: HSE oscilla

