

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	SCL frequency (f _{PCLK1} = 32 MHz, V _{DD} = VDD I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	ADC clock frequency
Table 54.	ADC characteristics
Table 55.	ADC accuracy
Table 56.	Maximum source impedance R _{AIN} max
Table 57.	DAC characteristics
Table 58.	Temperature sensor calibration values
Table 59.	Temperature sensor characteristics
Table 60.	Comparator 1 characteristics
Table 61.	Comparator 2 characteristics
Table 62.	LCD controller characteristics
Table 63.	LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 106
Table 64.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data 108
Table 65.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data 112
Table 66.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data
Table 67.	UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data
Table 68.	UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules 118
Table 69.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data
Table 70.	TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	Ordering information scheme
Table 73.	Document revision history

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B and STM32L152x6/8/B ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B and STM32L152x6/8/B datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038).

The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to STM32L15xx6/8/B-A covered by a separate datasheet.

3.1 Low power modes

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply:

- In Range 1 (V_{DD} range limited to 1.71-3.6 V), the CPU runs at up to 32 MHz (refer to Table 17 for consumption).
- In Range 2 (full V_{DD} range), the CPU runs at up to 16 MHz (refer to *Table 17* for consumption)
- In Range 3 (full V_{DD} range), the CPU runs at up to 4 MHz (generated only with the multispeed internal RC oscillator clock source). Refer to *Table 17* for consumption.

Seven low power modes are provided to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Sleep mode power consumption: refer to *Table 19*.

Low power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (65 kHz), execution from SRAM or Flash memory, and internal regulator in low power mode to minimize the regulator's operating current. In the Low power run mode, the clock frequency and the number of enabled peripherals are both limited.

Low power run mode consumption: refer to *Table 20: Current consumption in Low power run mode*.

Low power sleep mode

This mode is achieved by entering the Sleep mode with the internal voltage regulator in Low power mode to minimize the regulator's operating current. In the Low power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Low power sleep mode consumption: refer to *Table 21: Current consumption in Low power sleep mode*.

• Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and

3.15.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit down-counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.16.2 Universal synchronous/asynchronous receiver transmitter (USART)

All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. They support IrDA SIR ENDEC and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

3.16.3 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

3.16.4 Universal serial bus (USB)

The STM32L151x6/8/B and STM32L152x6/8/B devices embed a USB device peripheral compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	iBOOT0	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12)	(PC10)	(PA11)
с	PC13 WEUP2	(PE5)	(PE0)	VDD_B	(PB5)			(PD2)	(PD0)	PC11)	(PH2)	(PA10)
D	PC14) 0\$C32_IN		ŃSS_B							(PA9)	(PA8)	(PC9)
E	PC15) OSC32_C	VLCD	NSS_¥							(PC8)	(PC7)	(PC6)
F	PHO) QSC2IN	a zzvi					1				WSS_P	wss_h
G	OSC_OL											NLOON
н	(PC0)	INRST								PD15)	PD14)	(PD13)
J	VSSA)	(PC1)	(PC2)							PD12)	PD11)	(PD10)
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	PB14)	(PB13)
L	(VRE#+	PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	/PE12	(PB10)	(PB11)	(PB12)
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/-\ (PE11)	(PE13	PE14	PE19
												ai17096f

Figure 3. STM32L15xVx UFBGA100 ballout

1. This figure shows the package top view.

STM32L151x6/8/B STM32L152x6/8/B

	1	2	3	4	5	6	7	8
A	, PC14-, 0, SC32_IN	, PC13-, WKUP2	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	, [/] Ρ́C15-`, OŚC32_ΟUT	- (VLCD)	(PB8)	воото	(PD2)	(PC11)	(PC10)	(PA12)
С	,∕₽́ĤÒ÷, OSC_IN∳	Vss_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	VSS_3	VSS_2	VSS_1	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'V _{DD_3} '	'V _{DD_2} '	VDD_1	(PC7)	(PC8)
F	(V _{SSA})	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	VREF+)	PA(0-WKU)P1	(PA3)	(PA6)	// PB1 /	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
								Al1609

Figure 5. STM32L15xRx TFBGA64 ballout

1. This figure shows the package top view.

		Pin	5						Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
1	-	-	B2	-	PE2	I/O	FT	PE2	TRACECLK/LCD_SEG38/ TIM3_ETR	-
2	-	-	A1	-	PE3	I/O	FT	PE3	TRACED0/LCD_SEG39/ TIM3_CH1	-
3	-	-	B1	-	PE4	I/O	FT	PE4	TRACED1/TIM3_CH2	-
4	-	-	C2	-	PE5	I/O	FT	PE5	TRACED2/TIM9_CH1	-
5	-	-	D2	-	PE6-WKUP3	I/O	FT	PE6	TRACED3/TIM9_CH2	WKUP3
6	1	B2	E2	1	V _{LCD} ⁽³⁾	S		V _{LCD}	-	-
7	2	A2	C1	2	PC13- WKUP2	I/O	FT	PC13	-	RTC_TAMP1/ RTC_TS/ RTC_OUT/ WKUP2
8	3	A1	D1	3	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN
9	4	B1	E1	4	PC15- OSC32_OUT (4)	I/O	тс	PC15	-	OSC32_OUT
10	-	-	F2	-	V_{SS_5}	S	-	V_{SS_5}	-	-
11	-	-	G2	-	V_{DD_5}	S	-	V_{DD_5}	-	-
12	5	C1	F1	5	PH0- OSC_IN ⁽⁵⁾	I/O	тс	PH0	-	OSC_IN
13	6	D1	G1	6	PH1- OSC_OUT	I/O	тс	PH1	-	OSC_OUT
14	7	E1	H2	7	NRST	I/O	RST	NRST	-	-
15	8	E3	H1	-	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ /COMP1_INP
16	9	E2	J2	-	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP
17	10	F2	J3	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP
18	11	_(6)	K2	-	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP

Table 8	. STM32L1	51x6/8/B a	and STM32	2L152x6/8/B	pin	definitions
---------	-----------	------------	-----------	-------------	-----	-------------

Table 9. Alternate function input/output Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15 AFIO7 Port name Alternate function TIM3/4 SPI1/2 SYSTEM TIM2 TIM9/10/11 I2C1/2 N/A **USART1/2/3** N/A N/A LCD N/A N/A RI SYSTEM BOOTO BOOT0 ----_ -_ _ ---_ _ -NRST NRST --------------PA0-WKUP1 TIM2 CH1 ETR USART2 CTS TIMx IC1 EVENTOUT -----------PA1 -TIM2 CH2 -USART2 RTS -[SEG0] -TIMx IC2 EVENTOUT ------PA2 TIM2 CH3 TIM9 CH1 USART2_TX [SEG1] TIMx_IC3 EVENTOUT ---_ -----PA3 TIMx_IC4 EVENTOUT TIM2_CH4 -TIM9 CH2 --USART2_RX -[SEG2] -----TIMx_IC1 EVENTOUT PA4 SPI1 NSS USART2 CK --------TIMx_IC2 EVENTOUT PA5 TIM2 CH1 ETR SPI1 SCK ----------PA6 ТІМЗ СН1 TIM10 CH1 SPI1 MISO [SEG3] TIMx_IC3 EVENTOUT ---------TIMx_IC4 EVENTOUT PA7 TIM3_CH2 TIM11 CH1 SPI1_MOSI -[SEG4] --------TIMx_IC1 EVENTOUT PA8 MCO --USART1_CK -[COM0] -------PA9 USART1_TX [COM1] TIMx_IC2 EVENTOUT -----------TIMx_IC3 EVENTOUT PA10 USART1_RX -[COM2] ----------PA11 SPI1 MISO USART1_CTS TIMx_IC4 EVENTOUT -----------PA12 SPI1_MOSI USART1_RTS -TIMx_IC1 EVENTOUT ----------JTMS-PA13 TIMx IC2 EVENTOUT -------SWDIO JTCK-TIMx_IC3 EVENTOUT PA14 ---------SWCLK JTDI TIMx IC4 EVENTOUT PA15 TIM2 CH1 ETR SPI1 NSS SEG17 _ . _ ------PB0 ТІМЗ СНЗ [SEG5] EVENTOUT -----. ------PB1 TIM3 CH4 [SEG6] EVENTOUT ------------PB2 BOOT1 EVENTOUT -------------SPI1 SCK PB3 JTDO TIM2 CH2 [SEG7] EVENTOUT _ . _ -------PB4 NJTRST TIM3 CH1 SPI1 MISO [SEG8] EVENTOUT ------. ---

43/133

Pin descriptions

46/133

DocID17659 Rev 12

5

						Digital al	ternate fu	inction number							
D	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFIO8	AFIO9	AFIO11	AFIO12	AFIO13	AFIO14	AFIO15
Port name						Α	lternate f	unction			•	•	•		
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE0	-	-	TIM4_ETR	TIM10_CH1	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE1	-	-		TIM11_CH1	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE2	TRACEC K	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE3	TRACED 0	-	TIM3_CH1	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE4	TRACED 1	-	TIM3_CH2	-	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE5	TRACED 2	-	-	TIM9_CH1*	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE6	TRACED 3	-	-	TIM9_CH2*	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE7	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE8	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE9	-	TIM2_CH1_ETR	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE10	-	TIM2_CH2	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE11	-	TIM2_CH3	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PE12	-	TIM2_CH4	-	-	-	SPI1_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTOUT
PE13	-	-	-	-	-	SPI1_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PE14	-	-	-	-	-	SPI1_MISO	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PE15	-	-	-	-	-	SPI1_MOSI	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PH0- OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 9. Alternate function input/output (continued)

Symbol	Ratings	Value	Unit	
T _{STG}	Storage temperature range	-65 to +150	°C	
TJ	Maximum junction temperature	150	°C	

Table 12. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	v	
		BOR detector disabled, after power on	1.65	3.6		
V (1)	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
VDDA` ′	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6	v	
	Input voltage on FT pins ⁽³⁾	2.0 V ≤V _{DD} ≤ 3.6 V	-0.3	5.5		
VIN		$1.65 \text{ V} \le \text{V}_{\text{DD}} \le 2.0 \text{ V}$	-0.3	5.25	V	
	Input voltage on BOOT0 pin		0	5.5		
	Input voltage on any other pin		-0.3	V _{DD} +0.3		
P_D	Power dissipation at $T_A = 85 \ ^{\circ}C^{(4)}$	BGA100 package	-	339	mW	
Тл	Tomporaturo rango	Maximum power dissipation	-40	85	°C	
IA		Low power dissipation ⁽⁵⁾	-40	105		
TJ	Junction temperature range	-40 °C ≤T _A ≤105°C	-40	105	°C	

Table 13. General operating conditions

1. When the ADC is used, refer to Table 54: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

3. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 12: Thermal characteristics on page 53).

In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max (see *Table 12: Thermal characteristics on page 53*).

Symbol	Parameter	Cons	f _{HCLK}	Тур		Unit			
		Conc			55 °C	85 °C	105 °C	Unit	
	Supply current in Sleep	MSI clock, 65 kHz		65 kHz	40	70	70	80	
		MSI clock, 524 kHz	Range 3.	524 kHz	60	90	90	100	
I _{DD} (Sleep)	mode, code executed from Flash	MSI clock, 4.2 MHz	V _{CORE} =1.2V VOS[1:0] = 11	4.2 MHz	210	250	250	260	μA

 Table 19. Current consumption in Sleep mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Tested in production

Symbol	Parameter	Conditions				Max (1)(2)	Unit
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.2	2.75	
			LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.4	4	
			OFF	T _A = 55°C	2.6	6	
				T _A = 85°C	4.8	10	
		RTC clocked by LSI.		T _A = 105°C	10.2	23	
		regulator in LP mode,		$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.3	6	
		HSI and HSE OFF (no independent	LCD ON	T _A = 55°C	4.5	8	
		watchdog)	duty) ⁽³⁾	T _A = 85°C	6.6	12	
				T _A = 105°C	13.6	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.7	10	
			LCD ON	T _A = 55°C	8.6	12	
			duty) ⁽⁴⁾	T _A = 85°C	10.7	16	-
				T _A = 105°C	19.8	40	
	Supply current			T_A = -40°C to 25°C	1.6	4	
I _{DD} (Stop	in Stop mode with RTC enabled		LCD	T _A = 55°C	2.7	6	μA
with RTC)			OFF	T _A = 85°C	4.8	10	
				T _A = 105°C	10.3	23	
		RTC clocked by LSE		$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.6	6	
		kHz), regulator in LP	LCD ON	T _A = 55°C	4.6	8	
		mode, HSI and HSE	duty) ⁽³⁾	T _A = 85°C	6.7	12	
		watchdog)		T _A = 105°C	10.9	23	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.6	10	
			LCD ON	T _A = 55°C	8.6	12	
			duty) ⁽⁴⁾	T _A = 85°C	10.7	16	-
				T _A = 105°C	19.8	40	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.45	-	
		(no independent watchdog) ⁽⁵⁾	LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0 \text{ V}$	1.9	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$ $V_{DD} = 3.6$ V	2.2	-	

Table 22. Typical and maximum current consumptions in Stop mode

		Туріса	I consumption,	V _{DD} = 3.0 V, T _A	= 25 °C	
Perip	oheral	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 1, Range 2, Range 3, Low power V _{CORE} =1.8 V V _{CORE} =1.5 V V _{CORE} =1.2 V Low power VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 Low power			
	GPIOA	5	4.5	3.5	4	
	GPIOB	5	4.5	3.5	4.5	
	GPIOC	5	4.5	3.5	4.5	
	GPIOD	5	4.5	3.5	4.5	
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz
	GPIOH	4	4	3	3.5	(f _{HCLK})
	CRC	1	0.5	0.5	0.5	
	FLASH	13	11.5	9	18.5	
	DMA1	12	10	8	10.5	
All enabled		166	138	106	130	
I _{DD (RTC)}						
I _{DD (LCD)}						
I _{DD (ADC)} ⁽³⁾			14	50		
I _{DD (DAC)} ⁽⁴⁾			34	40		
I _{DD (COMP1)}			0.	16		μA
1	Slow mode		2	2		
'DD (COMP2)	Fast mode					
I _{DD (PVD / BOR)} (5	5)					
I _{DD (IWDG)}			0.	25		1

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.13*. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f	User external clock source	CSS is on or PLL is used	1	Q	32	MHz
^I HSE_ext	frequency	CSS is off, PLL not used	0	0		
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	19
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	_	±1	μA

Table 26. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit		
Input leve	Input levels						
V _{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V		
V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-			
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V		
V _{SE} ⁽³⁾	Single ended receiver threshold	-	1.3	2.0			
Output levels							
V _{OL} ⁽⁴⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(5)}$	-	0.3	V		
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	V		

Table 51. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Tested in production.

5. R_L is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time

Table 52. US	B: full speed	electrical	characteristics
--------------	---------------	------------	-----------------

Driver characteristics ⁽¹⁾							
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage		1.3	2.0	V		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Тур	Min	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

7.3 LQFP48 7 x 7 mm, 48-pin low-profile quad flat package information

Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

8 Ordering information

Table 72. Ordering	information	on scheme		
Example:	STM32	L 151 C 8	T 6 7	
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
L = Low power				
Device subfamily				
151: Devices without LCD				
151: Devices with LCD				
132. Devices with ECD				
Pin count				
C = 48 pins				
R = 64 pins				
V = 100 pins				
Flash memory size				
6 = 32 Kbytes of Flash memory				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
Package				
H = BGA				
T = LQFP				
U = UFQFPN				
Temperature range				
6 = Industrial temperature range, -40 to 85 °C			1	
Options				
No character = V_{DD} range: 1.8 to 3.6 V and BOF	R enabled			•
T = V_{DD} range: 1.65 to 3.6 V and BOR disabled				
Packing				

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID17659 Rev 12