

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rbh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	SCL frequency (f _{PCLK1} = 32 MHz, V _{DD} = VDD I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	ADC clock frequency
Table 54.	ADC characteristics
Table 55.	ADC accuracy
Table 56.	Maximum source impedance R _{AIN} max
Table 57.	DAC characteristics
Table 58.	Temperature sensor calibration values
Table 59.	Temperature sensor characteristics
Table 60.	Comparator 1 characteristics
Table 61.	Comparator 2 characteristics
Table 62.	LCD controller characteristics
Table 63.	LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 106
Table 64.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data 108
Table 65.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data 112
Table 66.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data
Table 67.	UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data
Table 68.	UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules 118
Table 69.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data
Table 70.	TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	Ordering information scheme
Table 73.	Document revision history

3 Functional overview

Figure 1 shows the block diagram.

Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram

1. AF = alternate function on I/O port pin.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See STM32[™] microcontroller system memory boot mode AN2606 for details.

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock source**: three different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	iBOOT0	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12)	(PC10)	(PA11)
с	PC13 WEUP2	(PE5)	(PE0)	VDD_B	(PB5)			(PD2)	(PD0)	PC11)	(PH2)	(PA10)
D	PC14) 0\$C32_IN		ŃSS_B							(PA9)	(PA8)	(PC9)
E	PC15) OSC32_C	VLCD	NSS_¥							(PC8)	(PC7)	(PC6)
F	PHO) QSC2IN	a zzvi					1				WSS_P	wss_h
G	OSC_OL											NLOON
н	(PC0)	INRST								PD15)	PD14)	(PD13)
J	VSSA)	(PC1)	(PC2)							PD12)	PD11)	(PD10)
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	PB14)	(PB13)
L	(VRE#+	PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	/PE12	(PB10)	(PB11)	(PB12)
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/-\ (PE11)	(PE13	PE14	PE19
												ai17096f

Figure 3. STM32L15xVx UFBGA100 ballout

1. This figure shows the package top view.

6.1.6 Power supply scheme

Figure 12. Power supply scheme

6.1.7 Optional LCD power supply scheme

Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 14. Current consumption measurement scheme

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Programmable voltage detector	Falling edge	1.8	1.85	1.88	
V PVD0	threshold 0	Rising edge	1.88	1.94	1.99	
V	DVD throshold 1	Falling edge	1.98	2.04	2.09	
VPVD1		Rising edge	2.08	2.14	2.18	
V	DVD throshold 2	Falling edge	2.20	2.24	2.28	
VPVD2		Rising edge	2.28	2.34	2.38	
V	DVD throshold 2	Falling edge	2.39	2.44	2.48	V
VPVD3		Rising edge	2.47	2.54	2.58	v
V	DVD throshold 4	Falling edge	2.57	2.64	2.69	
VPVD4		Rising edge	2.68	2.74	2.79	
M	D)/D throohold 5	Falling edge	2.77	2.83	2.88	
VPVD5		Rising edge	2.87	2.94	2.99	
V	DVD throshold 6	Falling edge	2.97	3.05	3.09	
VPVD6		Rising edge	3.08	3.15	3.20	
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 14. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "T" in Ordering information scheme for more details.

Symbol	Parameter		Conditions		Тур	Max (1)	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	T_A = -40 °C to 25 °C	4.4	-	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	17.5	25	
			f _{HCLK} = 32 kHz Flash ON	T _A = 85 °C	22	27	
		All		T _A = 105 °C	31	39	
I _{DD} (LP Sleep)		OFF, V _{DD}	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18	26	
		from 1.65 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	23	28	
		10 J.0 V	Flash ON	T _A = 105 °C	31	40	
	Supply current in Low power sleep mode		MSI clock, 131 kHz	T _A = -40 °C to 25 °C	22	30	
				T _A = 55 °C	24	32	- μΑ
			Flash ON	T _A = 85 °C	26	34	
				T _A = 105 °C	34	45	
		TIMO and	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	17.5	25	
				T _A = 85 °C	22	27	
				T _A = 105 °C	31	39	
		USART1	MSI clock, 65 kHz	T _A = -40 °C to 25 °C	18	26	
		enabled, Flash ON		T _A = 85 °C	23	28	
		V _{DD} from		T _A = 105 °C	31	40	
		1.65 V to		T _A = -40 °C to 25 °C	22	30	
		0.0 V	MSI clock, 131 kHz	T _A = 55 °C	24	32	
			f _{HCLK} = 131 kHz	T _A = 85 °C	26	34	
				T _A = 105 °C	34	45	
I _{DD} Max (LP Sleep)	Max allowed current in Low power Sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

		Туріса	I consumption,	V _{DD} = 3.0 V, T _A	= 25 °C	
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	GPIOA	5	4.5	3.5	4	
	GPIOB	5	4.5	3.5	4.5	
	GPIOC	5	4.5	3.5	4.5	
	GPIOD	5	4.5	3.5	4.5	
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz
GPIOH CRC		4	4	3	3.5	(f _{HCLK})
		1	0.5	0.5	0.5	
	FLASH	13	11.5	9	18.5	
	DMA1	12	10	8	10.5	
All enabled		166	138	106	130	
I _{DD (RTC)}			0.	47		
I _{DD (LCD)}						
I _{DD (ADC)} ⁽³⁾						
I _{DD (DAC)} ⁽⁴⁾						
I _{DD (COMP1)}			0.	16		μA
1	Slow mode		2	2		
'DD (COMP2)	Fast mode					
I _{DD (PVD / BOR)} (5	5)					
I _{DD (IWDG)}			0.	25		

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.13*. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f	User external clock source	CSS is on or PLL is used	1	Q	30	Mu-
'HSE_ext	frequency	CSS is off, PLL not used	0	0	52	
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	19
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	_	±1	μA

Table 26. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V	
t	Comparator startup time	Fast mode	-	15	20		
START		Slow mode	-	20	25		
+	Propagation dolay ⁽²⁾ in alow mode	1. V ≤V _{DDA} ≤2.7 V	-	1.8	3.5		
^L d slow	Fropagation delay. 7 in slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs	
+	Propagation dolay ⁽²⁾ in fact mode	1. V ≤V _{DDA} ≤2.7 V	-	0.8	2		
^L d fast	Fropagation delay and last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{C}$ $V = V_{REFINT},$ $3/4 V_{REFINT},$ $1/2 V_{REFINT},$ $1/4 V_{REFINT}$	-	15	100	ppm /°C	
laguar	Current consumption ⁽³⁾	Fast mode	-	3.5	5		
ICOMP2		Slow mode	-	- 0.5 2		μA	

Table 61. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

6.3.21 LCD controller (STM32L152xx only)

The STM32L152xx embeds a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit
V_{LCD}	LCD external voltage	-	-	3.6	
V_{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-	
V _{LCD2}	LCD internal reference voltage 2	-	2.86	-	
V _{LCD3}	LCD internal reference voltage 3	-	2.98	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.12	-	
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.55	-	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF
ı (1)	Supply current at V _{DD} = 2.2 V	-	3.3	-	
LCD,	Supply current at V _{DD} = 3.0 V	-	3.1	-	μA
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ
V ₄₄	Segment/Common highest level voltage	-	-	V _{LCD}	V
V ₃₄	Segment/Common 3/4 level voltage	-	$3/4 V_{LCD}$	-	
V ₂₃	Segment/Common 2/3 level voltage	-	$2/3 V_{LCD}$	-	
V ₁₂	Segment/Common 1/2 level voltage	-	$1/2 V_{LCD}$	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	V
V ₁₄	Segment/Common 1/4 level voltage	-	$1/4 V_{LCD}$	-	
V ₀	Segment/Common lowest level voltage	0	-	-	
ΔVxx ⁽³⁾	Segment/Common level voltage error T _A = -40 to 85 $^{\circ}$ C	-	-	±50	mV

	Table 62.	LCD	controller	characteristics
--	-----------	-----	------------	-----------------

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected

2. Guaranteed by design.

3. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 14 x 14 mm, 100-pin low-profile quad flat package information

Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 63. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Symbol	millimeters					
Symbol	Min	Тур	Max	Тур	Min	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 66. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

9 Revision history

Date	Revision	Changes	
02-Jul-2010	1	Initial release.	
01-Oct-2010	2	Removed 5 V tolerance (FT) from PA3, PB0 and PC3 in <i>Table 8:</i> <i>STM32L15xx6/8/B pin definitions</i> Updated <i>Table 14: Embedded reset and power control block</i> <i>characteristics</i> Updated <i>Table 16: Embedded internal reference voltage</i> Added <i>Table 53: ADC clock frequency</i> Updated <i>Table 54: ADC characteristics</i>	
16-Dec-2010	3	Modified consumptions on page 1 and in Section 3.1: Low power modes LED_SEG8 removed on PB6. Updated Section 6: Electrical characteristics VFQFPN48 replaced by UFQFPN48	
25-Feb-2011	4	 Section 3.3.2: Power supply supervisor: updated note. Table 8: STM32L15xx6/8/B pin definitions: modified main function (after reset) and alternate function for OSC_IN and OSC_OUT pins; modified footnote 5; added footnote to OSC32_IN and OSC32_OUT pins; C1 and D1 removed on PD0 and PD1 pins (TFBGA64 column). Section 3.11: DAC (digital-to-analog converter): updated bullet list. Table 10: Voltage characteristics on page 52: updated footnote 3 regarding I_{INJ(PIN)}. Table 11: Current characteristics on page 52: updated footnote 4 regarding positive and negative injection. Table 14: Embedded reset and power control block characteristics on page 54: updated typ and max values for T_{RSTTEMPO} (V_{DD} rising, BOR enabled). Table 17: Current consumption in Run mode, code with data processing running from Flash on page 58: removed values for HSI clock source (16 MHz), Range 3. Table 18: Current consumption in Sleep mode on page 60 removed values for HSI clock source (16 MHz), Range 3. Table 19: Current consumption in Sleep mode on page 60 removed values for HSI clock source (16 MHz), Range 3. Table 20: Current consumption in Low power run mode on page 62: updated parameter and max value of I_{DD} Max (LP Run). Table 21: Current consumption in Low power sleep mode on page 62: updated symbol, parameter, and max value of I_{DD} Max (LP Sleep). Table 22: Typical and maximum current consumptions in Stop mode on page 64 updated values for I_{DD} (Stop with RTC) - RTC clocked by LSE external clock (32.768 kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog). 	

Table 73. Document revision history

Date	Revision	Changes		
26-Oct-2012	7	Updated cover page. Updated Section 3.10: ADC (analog-to-digital converter) Updated Table 3: Functionalities depending on the operating power supply range, added Table 4: CPU frequency range depending on dynamic voltage scaling and Table 5: Working mode-dependent functionalities (from Run/active down to standby). Updated Table 27: Low-speed external user clock characteristicsAdded footnote 2. in Table 14: Embedded reset and power control block characteristics Updated Table 22: Typical and maximum current consumptions in Stop mode and Table 23: Typical and maximum current consumptions in Standby mode Updated footnote 4. in Table 22: Typical and maximum current consumptions in Stop mode Updated Table 44: I/O AC characteristics Updated Table 47: I2C characteristics Updated Table 49: SPI characteristics Updated Table 49: SPI characteristics Updated "non-robust" Table 54: ADC characteristics Updated "non-robust" Table 54: ADC characteristics Removed the note "position of 4.7 µf capacitor" in Section 6.1.6: Power supply scheme Updated Table 66: UFQFPN48 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch quad flat no-lead package mechanical data Updated Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data Added the resistance of TFBGA in Table 71: Thermal characteristics Added Figure 50: Thermal resistance		
07-Feb-2013	8	Removed AHB1/AHB2 in Figure 1: Ultralow power STM32L15xx6/8/B block diagram Added IWDG and WWDG rows in Table 5: Working mode- dependent functionalities (from Run/active down to standby). Updated I _{DD} (Supply current during wakeup time from Standby mode) in Table 23: Typical and maximum current consumptions in Standby mode The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)" replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2)" in Table 19: Current consumption in Sleep mode Updated Stop mode current to 1.2 μA in Ultra-low-power platform Updated entire Section 7: Package information Removed alternate function "I2C2_SMBA" for GPIO pin "PH2" in Table 8: STM32L15xx6/8/B pin definitions Updated Table 27: Low-speed external user clock characteristics and definition of symbol "R _{AIN} " in Table 54: ADC characteristics		

Table 73. Document revision his	story (continued)
---------------------------------	-------------------

