

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Size32-Bit Single-CoreSpeed32/HzConnectivityI*C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I*S, POR, PWM, WDTNumber of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8Nutage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountHendel64-LQFP	Details	
Core Size32-Bit Single-CoreSpeed32/HzConnectivityI*C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I*S, POR, PWM, WDTNumber of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Product Status	Not For New Designs
Speed32MHzConnectivityPC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator Type-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPGer (Last)64-LQFP	Core Processor	ARM® Cortex®-M3
ProductivityPC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Core Size	32-Bit Single-Core
PeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Speed	32MHz
Number of I/O51Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size4K × 8RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Number of I/O	51
EEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Program Memory Size	128KB (128K x 8)
RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	EEPROM Size	4K x 8
Data ConvertersA/D 20x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	RAM Size	16K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Data Converters	A/D 20x12b; D/A 2x12b
Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Oscillator Type	Internal
Package / Case 64-LQFP Supplier Device Package 64-LQFP (10x10)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 64-LQFP (10x10)	Mounting Type	Surface Mount
	Package / Case	64-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rbt6tr	Supplier Device Package	64-LQFP (10x10)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rbt6tr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

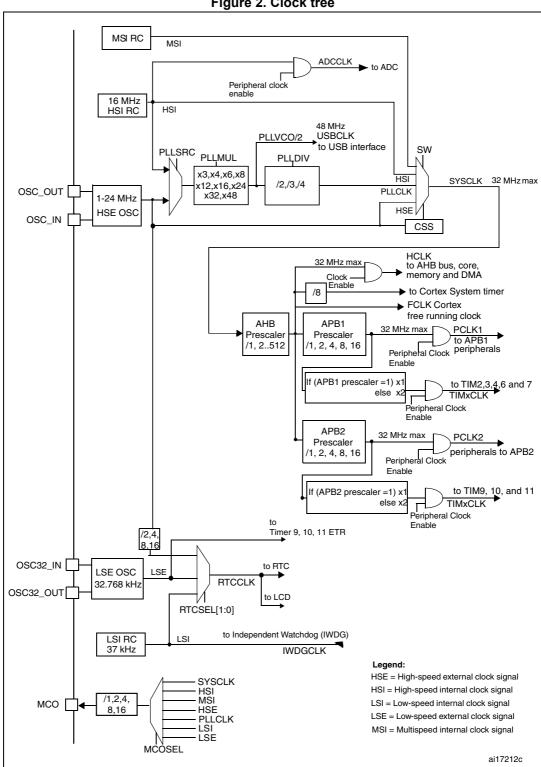


Figure 2. Clock tree

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B and STM32L152x6/8/B devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode, see *Table 58: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 16: Embedded internal reference voltage*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

DocID17659 Rev 12

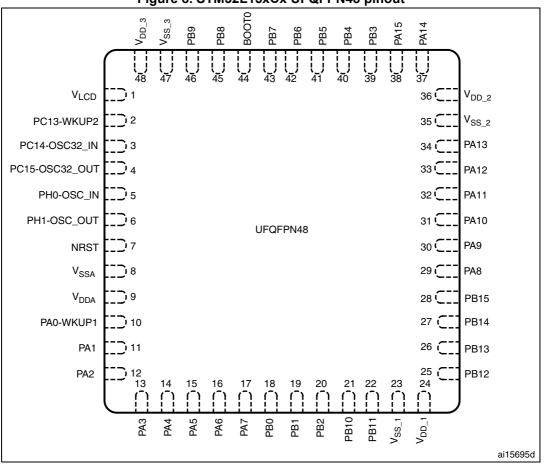
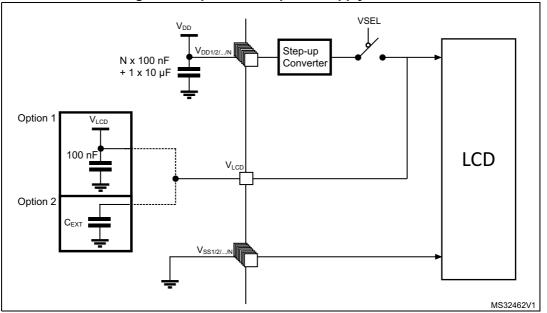



Figure 8. STM32L15xCx UFQFPN48 pinout

1. This figure shows the package top view.

6.1.7 Optional LCD power supply scheme

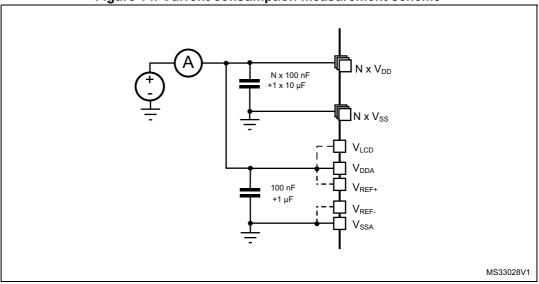


Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 14. Current consumption measurement scheme

Symbol	Parameter	Cond	itions	f _{HCLK} Тур		Max ⁽¹⁾				
Symbol	Falailletei	Cond	itions f _{HCLK}		тур	55 °C	85 °C	105 °C	Unit	
			Range 3,	1 MHz	200	300	300	300		
			V _{CORE} =1.2 V	2 MHz	380	500	500	500	μA	
		f _{HSE} = f _{HCLK}	VOS[1:0] = 11	4 MHz	720	860	860	860 ⁽³⁾		
		up to 16 MHz,	Range 2,	4 MHz	0.9	1	1	1		
		included f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL ON) ⁽²⁾	V _{CORE} =1.5 V	8 MHz	1.65	2	2	2		
			bove 16 MHz 003[1.0] = 10 16	16 MHz	3.2	3.7	3.7	3.7		
	Supply current		Range 1, V _{CORE} =1.8 V 1 VOSI1:01 = 01	8 MHz	2	2.5	2.5	2.5		
I _{DD (Run}	in Run mode, code executed			V _{CORE} =1.8 V	16 MHz	4	4.5	4.5	4.5	
from	from RAM,			32 MHz	7.7	8.5	8.5	8.5	mA	
RAM)	MSI clock, 65 kHz	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.3	3.8	3.8	3.8		
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	7.8	9.2	9.2	9.2		
		MSI clock, 65 kHz	Range 3,	65 kHz	40	60	60	80		
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	110	140	140	160	μA	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	700	800	800	820		

Table 18. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

3. Tested in production.

		Typica		V _{DD} = 3.0 V, T _A	= 25 °C	
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	TIM2	13	10.5	8	10.5	
	TIM3	14	12	9	12	
	TIM4	12.5	10.5	8	11	
	TIM6	5.5	4.5	3.5	4.5	
	TIM7	5.5	5	3.5	4.5	
	LCD	5.5	5	3.5	5	
	WWDG	4	3.5	2.5	3.5	
APB1	SPI2	5.5	5	4	5	µA/MHz
AFDI	USART2	9	8	5.5	8.5	(f _{HCLK})
	USART3	10.5	9	6	8	
	I2C1	8.5	7	5.5	7.5	
	12C2	8.5	7	5.5	6.5	
	USB	12.5	10	6.5	10	
	PWR	4.5	4	3	3.5	
	DAC	9	7.5	6	7	
	COMP	4.5	4	3.5	4.5	
	SYSCFG & RI	3	2.5	2	2.5	
	TIM9	9	7.5	6	7	
	TIM10	6.5	5.5	4.5	5.5	
APB2	TIM11	7	6	4.5	5.5	µA/MHz (f _{HCLK})
	ADC ⁽²⁾	11.5	9.5	8	9	VIIULK/
	SPI1	5	4.5	3	4	
	USART1	9	7.5	6	7.5	

Table 24. Peripheral current consumption⁽¹⁾

		Туріса	l consumption,	V _{DD} = 3.0 V, T _A	= 25 °C	
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	GPIOA	5	4.5	3.5	4	
	GPIOB	5	4.5	3.5	4.5	
	GPIOC	5	4.5	3.5	4.5	
	GPIOD	5	4.5	3.5	4.5	
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz
	GPIOH	4	4	3	3.5	(f _{HCLK})
	CRC	1	0.5	0.5	0.5	
	FLASH	13	11.5	9	18.5	
	DMA1	12	10	8	10.5	
All enabled		166	138	106	130	
I _{DD (RTC)}						
I _{DD (LCD)}		3.1				
I _{DD (ADC)} ⁽³⁾			l			
I _{DD (DAC)} ⁽⁴⁾						
IDD (COMP1)			μA			
I _{DD (COMP2)} Slow mode Fast mode			2			
I _{DD (PVD / BOR)}	(5) 2.6					
I _{DD (IWDG)}			0.1	25		

Table 24. Peripheral current consumption⁽¹⁾ (continued)

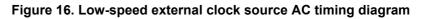
 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

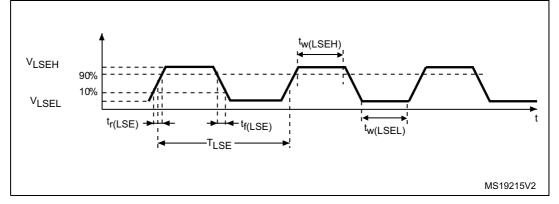
2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

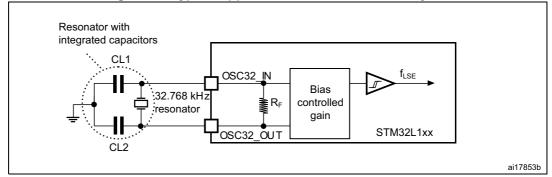

Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz		
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v		
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v		
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns		
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115		
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF		
DuCy _(LSE)	Duty cycle	-	45	-	55	%		
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA		

Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.


High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance $CL \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if a resonator is chosen with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Figure 18. Typical application with a 32.768 kHz crystal

6.3.16 Communication interfaces

I²C interface characteristics

The STM32L151x6/8/B and STM32L152x6/8/B product line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 47*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾		Fast mode	e I ² C ⁽¹⁾⁽²⁾	Unit
Symbol	Falameter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	116
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	20 + 0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
C _b	Capacitive load for each bus line	-	400	-	400	pF

Table 47. I ² C	characteristics
----------------------------	-----------------

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

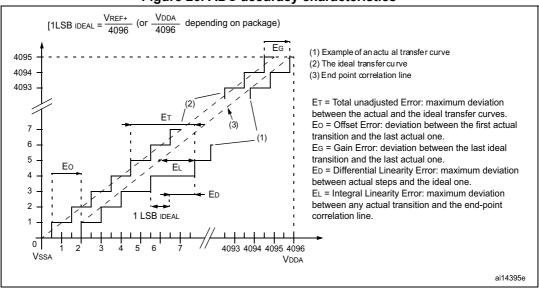
SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 13*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
_		Master mode	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz
		Slave transmitter	-	12 ⁽³⁾	
t _{r(SCK)} ⁽²⁾ t _{f(SCK)} ⁽²⁾	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3	
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-	
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold tires	Slave mode	17	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-	

Table 49. SPI characteristics	ble 49. SPI characteristics	(1)
-------------------------------	-----------------------------	-----


1. The characteristics above are given for voltage Range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

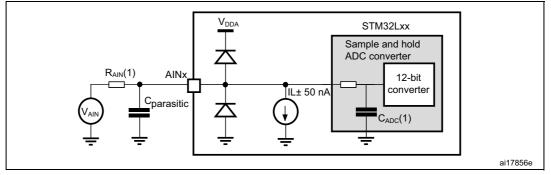

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Figure 26. ADC accuracy characteristics

Figure 27. Typical connection diagram using the ADC

- 1. Refer to Table 56: Maximum source impedance RAIN max for the value of R_{AIN} and Table 54: ADC characteristics for the value of CADC
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

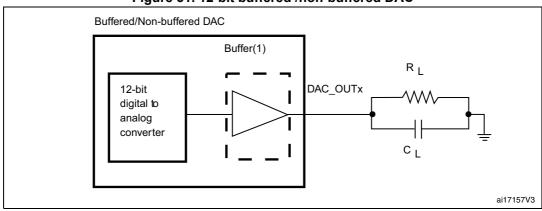


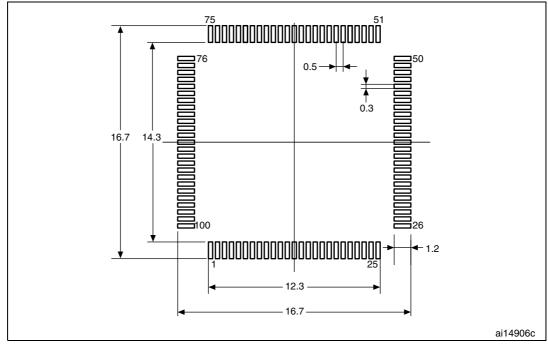
Figure 31. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A-0x1FF8 007B
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3 V	0x1FF8 007E-0x1FF8 007F

Table 58. Temperature sensor calibration values


Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

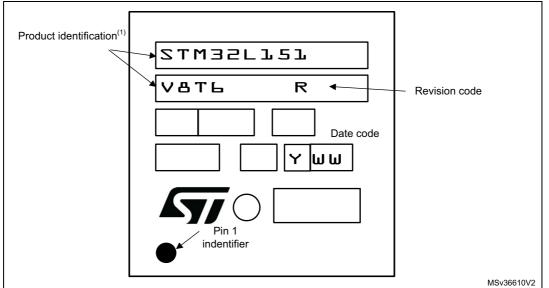
- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

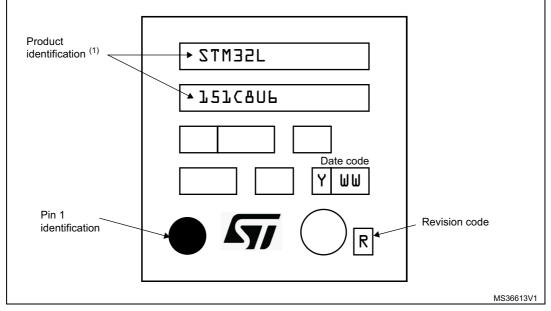
Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

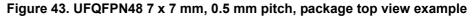
1. Dimensions are in millimeters.

LQFP100 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.




Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient BGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm	65	°C/W
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	C/w
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	16	

Table 71. Thermal characteristics

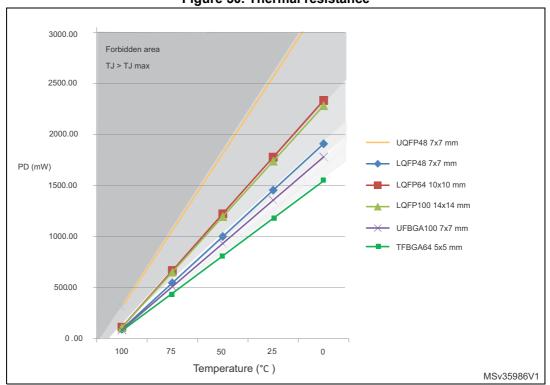


Figure 50. Thermal resistance

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

Date	Revision	Changes
Date		Updated Table 23: Typical and maximum current consumptions in Standby mode on page 66 (I _{DD} (WU from Standby) instead of (I _{DD} (WU from Stop). Table 25: Low-power mode wakeup timings on page 69: updated condition for Wakeup from Stop mode, regulator in Run mode; updated max values for Wakeup from Stop mode, regulator in low power mode; updated max values for t _{WUSTDBY} . Table 24: Peripheral current consumption on page 67: updated values for column Low power sleep and run; updated Flash values; renamed ADC1 to ADC; updated I _{DD (LCD)} value; updated units; added values for I _{DD (RTC)} and I _{DD (WDG)} ; updated footnote 1 and 3; added foot note 2 concerning ADC. Table 26: High-speed external user clock characteristics on page 70: added min value for t _{W(HSE)} /t _{w(HSE)} OSC_IN high or low time; added max value for t _{w(HSE)} /t _{t(HSE)} OSC_IN rise or fall time; updated I _L for typ and max values. Table 27: Low-speed external user clock characteristics on page 71: updated max value for I _L . Table 28: HSE oscillator characteristics on page 72: renamed i ₂ as I _{HSE} and updated max value; updated max values for I _{DD(HSE)} . Table 29: LSE oscillator characteristics on page 75: updated some min and max values for ACC _{HSI} . Table 32: MSI oscillator characteristics on page 76: updated parameter, typ, and max values for D _{VOLT(MSI}). Table 35: Flash memory and data EEPROM characteristics on page 78: updated typ values for t _{prog} . Table 44: I/O AC characteristics on page 84: updated some max values for 01, 10, and 11; updated min value; updated footnotes. Table 55: ADC accuracy on page 95: updated typ values and some of the test conditions for ENOB, SINAD, SNR, and THD. Table 57: DAC characteristics on page 99: updated footnote 7 and added footnote 8. Updated leakage value in Figure 27: Typical connection diagram using the ADC.
20-1 60-2011	(continued)	min and max values for ACC_{HSI} . <i>Table 32: MSI oscillator characteristics on page</i> 76: updated parameter, typ, and max values for $D_{VOLT(MSI)}$. <i>Table 35: Flash memory and data EEPROM characteristics on</i> <i>page</i> 78: updated typ values for t_{prog} . <i>Table 44: I/O AC characteristics on page</i> 84: updated some max values for 01, 10, and 11; updated min value; updated footnotes. <i>Table 55: ADC accuracy on page</i> 95: updated typ values and some of the test conditions for ENOB, SINAD, SNR, and THD. <i>Table 57: DAC characteristics on page</i> 99: updated footnote 7 and added footnote 8. Updated leakage value in <i>Figure</i> 27: <i>Typical connection diagram</i> <i>using the ADC</i> . Added <i>Figure</i> 28: Maximum dynamic current consumption on <i>VREF</i> + supply pin during ADC conversion. Added <i>Table</i> 56: <i>R_{AIN} max for f_{ADC} = 16 MHz on page</i> 98
		Figure 29: Power supply and reference decoupling (VREF+ not connected to VDDA): replaced all 10 nF capacitors with 100 nF capacitors. Figure 30: Power supply and reference decoupling (VREF+ connected to VDDA): replaced 10 nF capacitor with 100 nF capacitor.

Table 73. Document revision history (continued)

Date	Revision	Changes
12-Nov-2013	9 (continued)	Updated Table 54: ADC characteristics and Figure 27: Typical connection diagram using the ADC. Table 58: Temperature sensor calibration values was previously in Section 3.10.1: Temperature sensor. Updated Table 59: Temperature sensor characteristics. In Table 61: Comparator 2 characteristics, parameter dThreshold/dt, replaced any occurrence of "VREF+" by "V _{REFINT} "Updated Table 63: LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data, Table 64: LQFP64 10 x 10 mm 64-pin low-profile quad flat package mechanical data, Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. Updated Figure 33: LQFP100 recommended footprint. Updated Figure 46: TFBGA64 - 5.0x5.0x1.2 mm, 0.5 mm pitch, thin fine-pitch dall grid array package outline title. Remove minimum and typical values of A dimension in Table 67: UFBGA100 7 x 7 x 0.6 mm 0.5 mm pitch, ultra thin fine-pitch ball grid array package mechanical data Deleted second footnote in Figure 42: UFQFPN48 recommended footprint. Updated Section 8: Ordering information title and added first sentence. Changed BOR disabled option identifier in Table 72: Ordering information scheme.
22-Jul-2014	10	Updated <i>Figure 14</i> , <i>Figure 15</i> . Updated <i>Table 5</i> . Updated <i>Figure 6.3.4</i> . Updated note 5 inside <i>Table 54</i> . Updated Ro value inside <i>Table 54</i> .

Table 73.	Document revision history (continued)

Date	Revision	Changes
30-Jan-2015	11	Updated DMIPS features in cover page and Section 2: Description. Updated Table 8: STM32L151x6/8/B and STM32L152x6/8/B pin definitions and Table 9: Alternate function input/output putting additional functions. Updated package top view marking in Section 7.1: Package mechanical data. Updated Figure 9: Memory map. Updated Table 56: Maximum source impedance RAIN max adding note 2. Updated Table 72: Ordering information scheme.
28-Apr-2016	12	Updated <i>Section 7: Package information</i> structure: Paragraph titles and paragraph heading level. Updated <i>Section 7: Package information</i> for all package device markings, adding text for device orientation versus pin 1/ ball A1 identifier. Updated <i>Figure 34: LQFP100 14 x 14 mm, 100-pin package top</i> <i>view example</i> removing gate mark. Updated <i>Table 64: LQFP64 10 x 10 mm, 64-pin low-profile quad flat</i> <i>package mechanical data</i> . Updated <i>Section 7.5: UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin</i> <i>fine-pitch ball grid array package information</i> adding <i>Table 68:</i> <i>UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design</i> <i>rules</i> and <i>Figure 45: UFBGA100 7 x 7 mm, 0.5 mm pitch, package</i> <i>recommended footprint</i> . Updated Section 7.6: <i>TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine- pitch ball grid array package information</i> adding <i>Table 70: TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules</i> and changing <i>Figure 48: TFBGA64, 5 x 5 mm, 0.5 mm pitch,</i> <i>recommended footprint</i> . Updated <i>Table 16: Embedded internal reference voltage</i> temperature coefficient at 100ppm/°C. Updated <i>Table 61: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated <i>Table 61: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated <i>Table 61: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated <i>Table 61: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated <i>Table 10: Voltage characteristics</i> adding note about V _{REF} . pin. Updated <i>Table 5: Working mode-dependent functionalities</i> (from <i>Run/active down to standby</i>) LSI and LSE functionalities putting "Y" in Standby mode. Removed note 1 below <i>Figure 2: Clock tree</i> . Updated <i>Table 57: DAC characteristics</i> resistive load.

Table 73. Document revision history (continued)

