E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vbt6d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
V _{DD} = 2.0 to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 The CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See STM32[™] microcontroller system memory boot mode AN2606 for details.

3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)

There are six synchronizable general-purpose timers embedded in the STM32L151x6/8/B and STM32L152x6/8/B devices (see *Table 6* for differences).

TIM2, TIM3, TIM4

These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload up-counter and a 16-bit prescaler. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.15.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit down-counter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.15.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.17 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.18 Development support

Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151x6/8/B and STM32L152x6/8/B device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

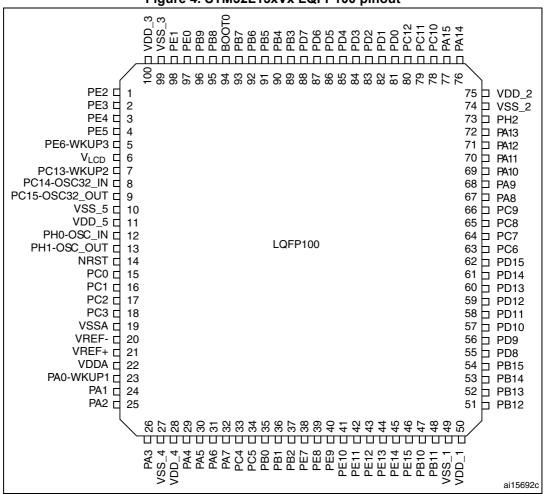


Figure 4. STM32L15xVx LQFP100 pinout

1. This figure shows the package top view.

		Pins							Pins functions	- ,
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
71	45	B8	A12	33	PA12	I/O	FT	PA12	USART1_RTS/ SPI1_MOSI	USB_DP
72	46	A8	A11	34	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-
73	-	-	C11	-	PH2	I/O	FT	PH2	-	-
74	47	D5	F11	35	V _{SS_2}	S	-	V _{SS_2}	-	-
75	48	E5	G11	36	V _{DD_2}	S	-	V _{DD_2}	-	-
76	49	A7	A10	37	PA14	I/O	FT	JTCK -SWCLK	JTCK-SWCLK	-
77	50	A6	A9	38	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/PA15/ SPI1_NSS/ LCD_SEG17	-
78	51	B7	B11	-	PC10	I/O	FT	PC10	USART3_TX/LCD_SEG28 /LCD_SEG40/LCD_COM4	-
79	52	B6	C10	-	PC11	I/O	FT	PC11	USART3_RX/LCD_SEG29 /LCD_SEG41/LCD_COM5	-
80	53	C5	B10	-	PC12	I/O	FT	PC12	USART3_CK/LCD_SEG30 /LCD_SEG42/LCD_COM6	-
81	-	-	C9	-	PD0	I/O	FT	PD0	SPI2_NSS/TIM9_CH1	-
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-
83	54	B5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31/ LCD_SEG43/LCD_COM7	-
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/TIM9_CH2	-
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/LCD_SEG7/ JTDO	COMP2_INM

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)

5 Memory mapping

The memory map is shown in *Figure 9*.

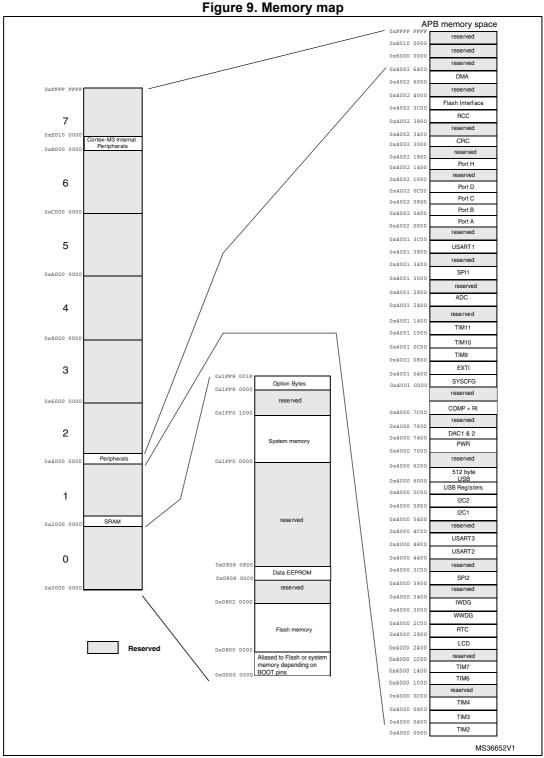


Figure 9 Momor

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 10: Voltage characteristics*, *Table 11: Current characteristics*, and *Table 12: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant pin	V _{SS} –0.3	V _{DD} +4.0	V
VIN V	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all different ground $pins^{(3)}$	-	50	
V _{REF+} –V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	- 0.4 see Section 6.3.11		-

Table 10. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to Table 11 for maximum allowed injected current values.

3. Include VREF- pin.

Table 11. Current characteristics

Symbol	Ratings	Max.	Unit
Ι _{VDDΣ}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	80	
$I_{VSS\Sigma}$	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	80	
I	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/O and control pin	- 25	
ı (2)	Injected current on five-volt tolerant I/O ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	mA

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.

3. Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN} <V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	V rice time rate	BOR detector enabled	0	-	~	
+ (1)	V _{DD} rise time rate	BOR detector disabled	0	-	1000	
^I VDD ⁽¹⁾) (fall time rate	BOR detector enabled	20	-	~	µs/V
	$\frac{1}{1} \frac{1}{1} \frac{1}$	0	-	1000		
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3	
RSTTEMPO	Resettemponzation	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
V	Power on/power down reset	Falling edge	1	1.5	1.65	v
V POR/PDR	^{//PDR} threshold	Rising edge	1.3	1.5	1.65	v
N/	Drown out react threshold 0	Falling edge	1.67	1.7	1.74	
VBOR0	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
V	Drown out react threshold 1	Falling edge	1.87	1.93	1.97	
VBOR1	Brown-out reset threshold T	Rising edge	1.96	2.03	2.07	
M	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	v
V _{BOR2}		Rising edge	2.31	2.41	2.44	v
V		Falling edge	2.45	2.55	2.60	
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
M	Brown-out reset threshold 4	Falling edge	2.68	2.8	2.85	
V _{BOR4}		Rising edge	2.78	2.9	2.95	

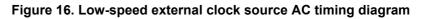
Table 14. Embedded reset and power control block characteristics

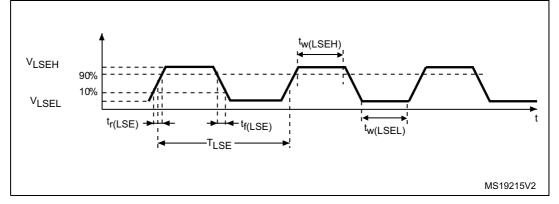
Symbol	Parameter		Conditions		Тур	Max (1)	Unit
				T_A = -40 °C to 25 °C	9	12	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	17.5	24	
		All peripherals	HOLK 02 KHZ	T _A = 105 °C	31	46	
I _{DD (LP} Run) Supply current in Low power run mode		OFF, code executed		$T_A = -40 \text{ °C to } 25 \text{ °C}$	14	17	
		from RAM,	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	22	29	
	Flash switched		T _A = 105 °C	35	51		
	OFF, V _{DD}		T_A = -40 °C to 25 °C	37	42		
		from 1.65 V to 3.6 V	MSI clock, 131 kHz	T _A = 55 °C	37	42	
	current in Low power	10 3.0 V	f _{HCLK} = 131 kHz	T _A = 85 °C	37	42	μA
				T _A = 105 °C	48	65	
		All peripherals OFF, code executed from Flash,	MSI clock, 65 kHz f _{HCLK} = 32 kHz	$T_A = -40 \degree C$ to 25 $\degree C$	24	32	
				T _A = 85 °C	33	42	
				T _A = 105 °C	48	64	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	$T_A = -40 \text{ °C to } 25 \text{ °C}$	31	40	
				T _A = 85 °C	40	48	
				T _A = 105 °C	54	70	-
		V _{DD} from 1.65 V to		$T_A = -40 \degree C$ to 25 $\degree C$	48	58	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	54	63	
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	65	
				T _A = 105 °C	70	90	
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 20. Current consumption in Low power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz		
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v		
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v		
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns		
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115		
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF		
DuCy _(LSE)	Duty cycle	-	45	-	55	%		
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA		

Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C	-1.5	-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Tested in production.

Low-speed internal (LSI) RC oscillator

Table 31.	LSI	oscillator	characteristics
-----------	-----	------------	-----------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Tested in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	34.	RAM	and	hardware	reaisters
	• • •			indiana io	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

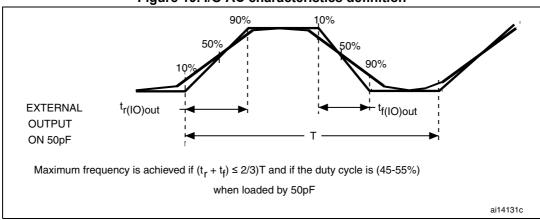
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

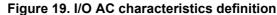
Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
	Programming / erasing time for	Erasing	-	3.28	3.94	
t _{prog}	byte / word / double word / half- page	Programming	-	3.28	3.94	ms
1	Average current during whole program/erase operation	T - 25 °C V - 3 6 V	-	300	-	μA
I _{DD}	Maximum current (peak) during program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

Table 35. Flash memory and data EEPROM characteristics

1. Guaranteed by design.


Table 36. Flash memory, data EEPROM endurance and data retention


Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	Onit
NCYC ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	10	-	-	kcycles
NOTO: 7	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	RUYCIUS
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-	
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	INET = '03' C	30	-	-	voars
RET	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	I	-	years
	Data retention (EEPROM data memory) after 300 kcycles at T _A = 105 °C	11121 - 103 C	10	-	-	

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see *Table 45*).

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	1.4	-		
V _{OL(NRST)} ⁽¹⁾	NRST output low level	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	V
VOL(NRST)	voltage	age I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V		-	0.7	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾		mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	_		ns

Table 45. NRST pin characteristics

1. Guaranteed by design.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 54* are guaranteed by design.

Symbol	Parameter		Conditions			Max	Unit
		Voltage Range 1 & 2		$V_{REF+} = V_{DDA}$		16	
			2.4 V ≤V _{DDA} ≤3.6 V	$V_{REF+} < V_{DDA}$ $V_{REF+} > 2.4 V$		8	
f _{ADC}	ADC clock frequency			V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V		4	MHz
			18/10/ 01/	$V_{REF+} = V_{DDA}$		8	
			1.8 V ≤V _{DDA} ≤2.4 V	$V_{REF+} < V_{DDA}$		4	
			Voltage Range 3			4	

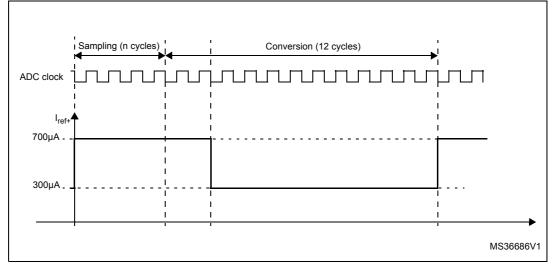

Table 53. ADC clock frequency

Table 54. ADC characteristics

	10510 0-	+. ADC characteristic				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Power supply	-	1.8	-	3.6	V
V _{REF+}	Positive reference voltage	2.4 V \le V _{DDA} \le 3.6 V V _{REF+} must be below or equal to V _{DDA}	1.8 ⁽¹⁾	-	V _{DDA}	v
V_{REF-}	Negative reference voltage	-	-	V_{SSA}	-	V
I _{VDDA}	Current on the V_{DDA} input pin	-	-	1000	1450	μA
ı (2)	Current on the V _{REF} input	Peak	-	400	700	μA
I _{VREF} ⁽²⁾	pin	Average	-	400	450	μA
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V_{REF} +	V
	12-bit sampling rate	Direct channels	0.03	-	1	Msps
	12-bit sampling rate	Multiplexed channels	0.03	-	0.76	ivisps
	10 hit compling rate	Direct channels	0.03	-	1.07	Mana
£	10-bit sampling rate	Multiplexed channels	0.03	-	0.8	Msps
f _S	9 hit compling rate	Direct channels	0.03	-	1.23	Mana
	8-bit sampling rate	Multiplexed channels	0.03	-	0.89	Msps
	6-bit sampling rate	Direct channels	0.03	-	1.45	Msps
		Multiplexed channels	0.03	-	1	ivisps

Table 56. Maximum source impedance $R_{AIN} \max^{(1)}$

		R _{AIN} max (kOhm)						
Ts (µs)	Multiplexed channels		Direct o	hannels	Ts (cycles) f _{ADC} = 16 MHz ⁽²⁾			
	2.4 V < V _{DDA} < 3.6 V	2.4 V < V _{DDA} < 3.6 V 1.8 V < V _{DDA} < 2.4 V		$4 \text{ V} < \text{V}_{\text{DDA}} < 3.6 \text{ V}$ 1.8 V < $\text{V}_{\text{DDA}} < 2.4 \text{ V}$ 2.4 V < $\text{V}_{\text{DDA}} < 3.3 \text{ V}$ 1.8 V < $\text{V}_{\text{DDA}} < 2.4 \text{ V}$		ADC		
0.25	Not allowed	Not allowed	0.7	Not allowed	4			
0.5625	0.8	Not allowed	2.0	1.0	9			
1	2.0	0.8	4.0	3.0	16			
1.5	3.0	1.8	6.0	4.5	24			
3	6.8	4.0	15.0	10.0	48			
6	15.0	10.0	30.0	20.0	96			
12	32.0	25.0	50.0	40.0	192			
24	50.0	50.0	50.0	50.0	384			

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

General PCB design guidelines

Power supply decoupling should be performed as shown in The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	С	onditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-		1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}		1.8	-	3.6	V
V _{REF-}	Lower reference voltage		-	V _{SSA}			V
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	130	220	μA
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, wo	rst code (0x000)	-	220	350	μA
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, wo	rst code (0xF1C)	-	320	520	μA
RL	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ
		buffer ON	Connected to $\mathrm{V}_{\mathrm{DDA}}$	25	-	-	N32
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
V	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
V _{DAC_OUT}	output	DAC output buffer OFF		0.5	-	V _{REF+} – 1LSB	mV
DNL ⁽¹⁾	Differential non	C _L ≤ 50 pF, I DAC output	-	-	1.5	3	
DINE	linearity ⁽²⁾	No R _{LOAD} , 0 DAC output	-	-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF, I}$ DAC output	-	-	2	4	
IINE' '	integral non inteanty '	No R _{LOAD} , 0 DAC output		-	2	4	LSB
(1)	Offset error at code	$C_L \le 50$ pF, $R_L \ge 5$ k Ω DAC output buffer ON		-	±10	±25	
Offset ⁽¹⁾ Offset error at code 0x800 ⁽⁴⁾		No R _{LOAD} , C _L ≤50 pF DAC output buffer OFF		-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R _{LOAD} , 0 DAC output		-	±1.5	±5	

Table	57.	DAC	characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V	
t _{start}	Comparator startup time	Fast mode	-	15	20		
		Slow mode	-	20	25		
t _{d slow}	Propagation delay ⁽²⁾ in slow mode	1. V ≤V _{DDA} ≤2.7 V	-	1.8	3.5		
		2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs	
t _{d fast}	Propagation delay ⁽²⁾ in fast mode	1. V ⊴V _{DDA} ⊴2.7 V	-	0.8	2		
		2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_{A} = 0 \text{ to } 50 \circ C$ $V = V_{REFINT},$ $3/4 V_{REFINT},$ $1/2 V_{REFINT},$ $1/4 V_{REFINT}$	-	15	100	ppm /°C	
I _{COMP2}	Current consumption ⁽³⁾	Fast mode	-	3.5	5	μA	
		Slow mode	-	0.5	2		

Table 61.	Comparator	2 characteristics
-----------	------------	-------------------

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

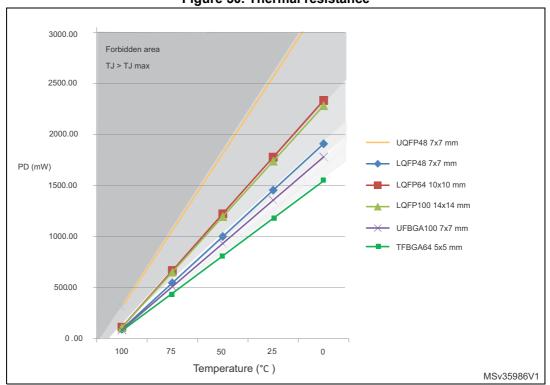


Figure 50. Thermal resistance

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Ordering information

Table 72. Ordering	information	on scheme		
Example:	STM32	L 151 C 8	T 6 7	
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
L = Low power				
Device subfamily				
151: Devices without LCD				
152: Devices with LCD				
132. Devices with ECD				
Pin count				
C = 48 pins				
R = 64 pins				
V = 100 pins				
Flash memory size				
6 = 32 Kbytes of Flash memory				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
Package				
H = BGA				
T = LQFP				
U = UFQFPN				
Temperature range				
6 = Industrial temperature range, -40 to 85 °C			1	
Options				
No character = V_{DD} range: 1.8 to 3.6 V and BOF	R enabled			•
T = V_{DD} range: 1.65 to 3.6 V and BOR disabled				
Packing				

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID17659 Rev 12