

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152r6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	SCL frequency (f _{PCLK1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)	88
Table 49.	SPI characteristics	
Table 50.	USB startup time.	
Table 51.	USB DC electrical characteristics	
Table 52.	USB: full speed electrical characteristics	
Table 53.	ADC clock frequency	
Table 54.	ADC characteristics	
Table 55.	ADC accuracy	
Table 56.	Maximum source impedance R _{AIN} max	
Table 57.	DAC characteristics	
Table 58.	Temperature sensor calibration values.	101
Table 59.	Temperature sensor characteristics	101
Table 60.	Comparator 1 characteristics	102
Table 61.	Comparator 2 characteristics	103
Table 62.	LCD controller characteristics	104
Table 63.	LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data	106
Table 64.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data	108
Table 65.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data	112
Table 66.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data	115
Table 67.	UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data	117
Table 68.	UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules	118
Table 69.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data	120
Table 70.	TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules	121
Table 71.	Thermal characteristics.	123
Table 72.	Ordering information scheme	125
Table 73.	Document revision history	126

Figure 48.	TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint	121
Figure 49.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example	122
Figure 50.	Thermal resistance	124

2 Description

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at 32 MHz frequency (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 16 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151x6/8/B and STM32L152x6/8/B devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB. The STM32L151x6/8/B and STM32L152x6/8/B devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application.

They also include a real-time clock and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151x6/8/B devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. It is available in the -40 to +85 °C temperature range, extended to 105°C in low power dissipation state. A comprehensive set of power-saving modes allows the design of low-power applications.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

3.5 Low power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes.

- The programmable wakeup time ranges from 120 µs to 36 hours
- Stop mode consumption with LSI and Auto-wakeup: 1.2 μA (at 1.8 V) and 1.4 μA (at 3.0 V)
- Stop mode consumption with LSE, calendar and Auto-wakeup: 1.3 μA (at 1.8V), 1.6 μA (at 3.0 V)

The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation.

There are twenty 32-bit backup registers provided to store 80 bytes of user application data. They are cleared in case of tamper detection.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.

External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or Comparator events.

3.7 Memories

The STM32L151x6/8/B and STM32L152x6/8/B devices have the following features:

- Up to 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 32, 64 or 128 Kbytes of embedded Flash program memory
 - 4 Kbytes of data EEPROM
 - Options bytes

The options bytes are used to write-protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.8 DMA (direct memory access)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I^2C , USART, general-purpose timers and ADC.

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- external triggers for conversion
- input reference voltage V_{REF+}

Eight DAC trigger inputs are used in the STM32L151x6/8/B and STM32L152x6/8/B devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.12 Ultra-low-power comparators and reference voltage

The STM32L151x6/8/B and STM32L152x6/8/B devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- one comparator with fixed threshold
- one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or V_{REFINT} submultiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low power / low current output buffer (driving current capability of 1 μ A typical).

3.13 Routing interface

This interface controls the internal routing of I/Os to TIM2, TIM3, TIM4 and to the comparator and reference voltage output.

3.14 Touch sensing

The STM32L151x6/8/B and STM32L152x6/8/B devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 20 capacitive sensing channels distributed over 10 analog I/O groups. Only software capacitive sensing acquisition mode is supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven

Pins									Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
71	45	B8	A12	33	PA12	I/O	FT	PA12	USART1_RTS/ SPI1_MOSI	USB_DP
72	46	A8	A11	34	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-
73	-	-	C11	-	PH2	I/O	FT	PH2	-	-
74	47	D5	F11	35	V _{SS_2}	S	-	V _{SS_2}	-	-
75	48	E5	G11	36	V _{DD_2}	S	-	V _{DD_2}	-	-
76	49	A7	A10	37	PA14	I/O	FT	JTCK -SWCLK	JTCK-SWCLK	-
77	50	A6	A9	38	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/PA15/ SPI1_NSS/ LCD_SEG17	-
78	51	B7	B11	-	PC10	I/O	FT	PC10	USART3_TX/LCD_SEG28 /LCD_SEG40/LCD_COM4	-
79	52	B6	C10	-	PC11	I/O	FT	PC11	USART3_RX/LCD_SEG29 /LCD_SEG41/LCD_COM5	-
80	53	C5	B10	-	PC12	I/O	FT	PC12	USART3_CK/LCD_SEG30 /LCD_SEG42/LCD_COM6	-
81	-	-	C9	-	PD0	I/O	FT	PD0	SPI2_NSS/TIM9_CH1	-
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-
83	54	B5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31/ LCD_SEG43/LCD_COM7	-
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/TIM9_CH2	-
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/LCD_SEG7/ JTDO	COMP2_INM

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)

		Pins	5						Pins functions	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8/ NJTRST	COMP2_INP
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0	-	-
95	61	B3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/TIM10_CH1	-
96	62	A3	B3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/TIM11_CH1	-
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36/ TIM10_CH1	-
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/TIM11_CH1	-
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-
100	64	E4	C4	48	V_{DD_3}	S	-	V _{DD_3}	-	-

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)	Table 8. STM32L151x6/8/B	3 and STM32L152x6/8/B	pin definitions	(continued)
--	--------------------------	-----------------------	-----------------	-------------

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

Table 9. Alternate function input/output Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15 AFIO7 Port name Alternate function TIM3/4 SPI1/2 SYSTEM TIM2 TIM9/10/11 I2C1/2 N/A **USART1/2/3** N/A N/A LCD N/A N/A RI SYSTEM BOOTO BOOT0 ----_ -_ _ ---_ _ -NRST NRST --------------PA0-WKUP1 TIM2 CH1 ETR USART2 CTS TIMx IC1 EVENTOUT -----------PA1 -TIM2 CH2 -USART2 RTS -[SEG0] -TIMx IC2 EVENTOUT ------PA2 TIM2 CH3 TIM9 CH1 USART2_TX [SEG1] TIMx_IC3 EVENTOUT ---_ -----PA3 TIMx_IC4 EVENTOUT TIM2_CH4 -TIM9 CH2 --USART2_RX -[SEG2] -----TIMx_IC1 EVENTOUT PA4 SPI1 NSS USART2 CK --------TIMx_IC2 EVENTOUT PA5 TIM2 CH1 ETR SPI1 SCK ----------PA6 ТІМЗ СН1 TIM10 CH1 SPI1 MISO [SEG3] TIMx_IC3 EVENTOUT ---------TIMx_IC4 EVENTOUT PA7 TIM3_CH2 TIM11 CH1 SPI1_MOSI -[SEG4] --------TIMx_IC1 EVENTOUT PA8 MCO --USART1_CK -[COM0] -------PA9 USART1_TX [COM1] TIMx_IC2 EVENTOUT -----------TIMx_IC3 EVENTOUT PA10 USART1_RX -[COM2] ----------PA11 SPI1 MISO USART1_CTS TIMx_IC4 EVENTOUT -----------PA12 SPI1_MOSI USART1_RTS -TIMx_IC1 EVENTOUT ----------JTMS-PA13 TIMx IC2 EVENTOUT -------SWDIO JTCK-TIMx_IC3 EVENTOUT PA14 ---------SWCLK JTDI TIMx IC4 EVENTOUT PA15 TIM2 CH1 ETR SPI1 NSS SEG17 _ . _ ------PB0 ТІМЗ СНЗ [SEG5] EVENTOUT -----. ------PB1 TIM3 CH4 [SEG6] EVENTOUT ------------PB2 BOOT1 EVENTOUT -------------SPI1 SCK PB3 JTDO TIM2 CH2 [SEG7] EVENTOUT _ . _ . ------PB4 NJTRST TIM3 CH1 SPI1 MISO [SEG8] EVENTOUT ------. ---

43/133

Pin descriptions

6.3.3 Embedded internal reference voltage

The parameters given in the following table are based on characterization results, unless otherwise specified.

Table 15. Embedded internal reference voltage calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 0078-0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +105 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REF} value $^{(2)}$	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +105 °C	-	25	100	ppm/°C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾⁽⁴⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current ⁽⁵⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 16. Embedded internal reference voltage

1. Tested in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. Shortest sampling time can be determined in the application by multiple iterations.

5. To guarantee less than 1% VREF_OUT deviation.

0h.al	Demonster	0	Conditions		T		Max ⁽¹)	Unit
Symbol	Parameter	Conditions		f _{HCLK}	Тур	55 °C	85 °C	105 °C	Unit
			Range 3,	1 MHz	80	140	140	140	
			V _{CORE} =1.2 V	2 MHz	150	210	210	210	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	VOS[1:0] = 11	4 MHz	280	330	330	330 ⁽³⁾	
			Range 2,	4 MHz	280	400	400	400	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	450	550	550	550	
	Supply current in	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	900	1050	1050	1050	
	Sleep	,	Range 1,	8 MHz	550	650	650	650	
	mode, code executed from RAM, Flash switched OFF	e, uted RAM, 1	V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	
			VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	μA
			Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	-
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		MSI clock, 65 kHz	Range 3,	65 kHz	30	50	50	60	
I _{DD} (Sleep)		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	50	70	70	80	
(Sleep)		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	200	240	240	250	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	80	140	140	140	
				2 MHz	150	210	210	210	
				4 MHz	290	350	350	350	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	300	400	400	400	
	Supply	$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	500	600	600	600	1
	current in	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
	Sleep mode,		Range 1,	8 MHz	550	650	650	650	μA
	code		V _{CORE} =1.8 V	16 MHz	1050	1200	1200	1200	μ
	executed from Flash		VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	
		HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	1000	1100	1100	1100	
		HSI clock source (16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	2300	2500	2500	2500	

Table 19. Current consumption in Sleep mode

Symbol	Parameter		Conditions		Тур	Max (1)	Unit
				T_A = -40 °C to 25 °C	9	12	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	17.5	24	
		All peripherals	HOLK 02 KHZ	T _A = 105 °C	31	46	
		OFF, code		$T_A = -40 \text{ °C to } 25 \text{ °C}$	14	17	
		executed from RAM,	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	22	29	
I _{DD (LP} C _{Run)} L		Flash switched	HOLK	T _A = 105 °C	35	51	
		OFF, V _{DD}		$T_A = -40 \text{ °C to } 25 \text{ °C}$	37	42	
	Supply	from 1.65 V to 3.6 V	MSI clock, 131 kHz	T _A = 55 °C	37	42	
		10 3.0 V	f _{HCLK} = 131 kHz	T _A = 85 °C	37	42	μA
	Supply current in			T _A = 105 °C	48	65	
	Low power run mode	All	MSI clock, 65 kHz f _{HCLK} = 32 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	24	32	
				T _A = 85 °C	33	42	
				T _A = 105 °C	48	64	
		peripherals OFF, code	MSI clock, 65 kHz f _{HCLK} = 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	31	40	
		executed		T _A = 85 °C	40	48	
		from Flash, V _{DD} from	HOLK	T _A = 105 °C	54	70	
		1.65 V to		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	48	58	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	54	63	
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	65	
				T _A = 105 °C	70	90	
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 20. Current consumption in Low power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.

Symbol	Parameter	Conditions		Тур (1)	Max (1)(2)	Unit	
I _{DD (Stop)}	Supply current	Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to 25°C	1.1	2.2		
	in Stop mode		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.5	0.9	μA	
		Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)	T _A = 55°C	1.9	5		
			T _A = 85°C	3.7	8		
			T _A = 105°C	8.9	20 ⁽⁶⁾		
	RMS (root	MSI = 4.2 MHz		2	-		
	mean square) supply current	MSI = 1.05 MHz		1.45	-		
I _{DD} (WU from Stop)	during wakeup time when exiting from Stop mode	MSI = 65 kHz ⁽⁷⁾	V _{DD} = 3.0 V T _A = -40°C to 25°C	1.45	-	mA	

 Table 22. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Tested in production

7. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time of the wakeup period, the current is similar to the Run mode current.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
	Supply current in Standby mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.9	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.1	1.8]
		independent watchdog)	T _A = 55 °C	1.42	2.5	
			T _A = 85 °C	1.87	3	
I _{DD}			T _A = 105 °C	2.78	5	
(Standby with RTC)		RTC clocked by LSE (no independent watchdog) ⁽³⁾	T _A = -40 °C to 25 °C V _{DD} = 1.8 V	1	-	
			$T_A = -40 \degree C$ to 25 $\degree C$	1.33	2.9	μΑ
			T _A = 55 °C	1.59	3.4	
			T _A = 85 °C	2.01	4.3	
			T _A = 105 °C	3.27	6.3	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.1	1.6	
I _{DD}	Supply current in Standby		$T_A = -40 \degree C$ to 25 $\degree C$	0.3	0.55	-
(Standby)	mode with RTC disabled	Independent watchdog	T _A = 55 °C	0.5	0.8	
		and LSI OFF	T _A = 85 °C	1	1.7	
			T _A = 105 °C	2.5	4 ⁽⁴⁾]
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	

Table 23. Typical and maximum current cons	umptions in Standby mode
Table 23. Typical and maximum current cons	

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

 Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

4. Tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Typical consumption, V_{DD} = 3.0 V, T _A = 25 °C						
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	TIM2	13	10.5	8	10.5	
	TIM3	14	12	9	12	
	TIM4	12.5	10.5	8	11	
	TIM6	5.5	4.5	3.5	4.5	
	TIM7	5.5	5	3.5	4.5	
	LCD	5.5	5	3.5	5	
	WWDG	4	3.5	2.5	3.5	
APB1	SPI2	5.5	5	4	5	µA/MHz
APDI	USART2	9	8	5.5	8.5	(f _{HCLK})
	USART3	10.5	9	6	8	
	I2C1	8.5	7	5.5	7.5	
	I2C2	8.5	7	5.5	6.5	
	USB	12.5	10	6.5	10	
	PWR	4.5	4	3	3.5	
	DAC	9	7.5	6	7	
	COMP	4.5	4	3.5	4.5	
	SYSCFG & RI	3	2.5	2	2.5	
	TIM9	9	7.5	6	7	
APB2	TIM10	6.5	5.5	4.5	5.5	
	TIM11	7	6	4.5	5.5	μΑ/ΜΗz (f _{HCLK})
	ADC ⁽²⁾	11.5	9.5	8	9	('HCLK/
	SPI1	5	4.5	3	4	
	USART1	9	7.5	6	7.5	

Table 24. Peripheral current consumption⁽¹⁾

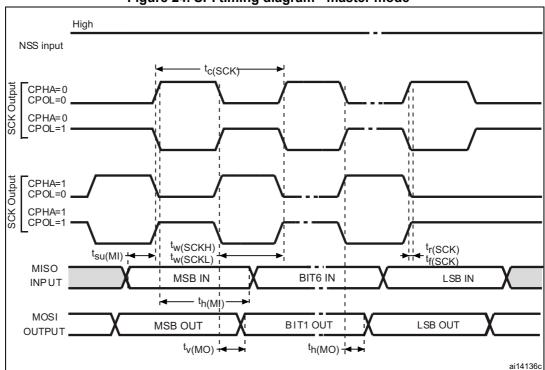


Figure 24. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

USB characteristics

The USB interface is USB-IF certified (full speed).

Table 50. USB startup time

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	С	onditions	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage	-		1.8	-	3.6	V	
V _{REF+}	Reference supply voltage	V _{REF+} must V _{DDA}	always be below	1.8	-	3.6	V	
V _{REF-}	Lower reference voltage		-	V _{SSA}			V	
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	130	220	μA	
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, wo	rst code (0x000)	-	220	350	μA	
. (1)	Current consumption on	No load, mic	dle code (0x800)	-	210	320	μA	
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, wo	rst code (0xF1C)	-	320	520	μA	
RL	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ	
		buffer ON	Connected to $\mathrm{V}_{\mathrm{DDA}}$	25	-	-	122	
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF	
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ	
V _{DAC_OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	v	
	output	DAC output buffer OFF		0.5	-	V _{REF+} – 1LSB	mV	
-		$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	1.5	3		
DINE	linearity ⁽²⁾	No R _{LOAD} , 0 DAC output	-	-	1.5	3		
NL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF, I}$ DAC output	-	-	2	4		
IINE' '	integral non inteanty '		lo R _{LOAD} , C _L ≤50 pF DAC output buffer OFF		2	4	LSB	
Offset ⁽¹⁾	Offset error at code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25		
	0x800 ⁽⁴⁾	No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	±5	±8		
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R _{LOAD} , 0 DAC output		-	±1.5	±5		

Table	57.	DAC	characteristics

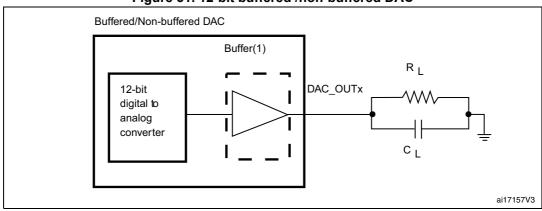


Figure 31. 12-bit buffered /non-buffered DAC

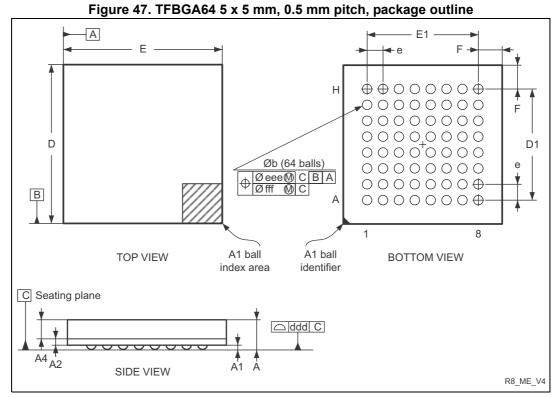
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address	
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A-0x1FF8 007B	
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3 V	0x1FF8 007E-0x1FF8 007F	

Table 58. Temperature sensor calibration values

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽⁴⁾⁽³⁾	ADC sampling time when reading the temperature	10	-	-	μs


1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

- 3. Guaranteed by design.
- 4. Shortest sampling time can be determined in the application by multiple iterations.

TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball 7.6 grid array package information

1. Drawing is not to scale.

Table 69. TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data							
Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.200	-	-	0.0472	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.200	-	-	0.0079	-	
A4	-	-	0.600	-	-	0.0236	
b	0.250	0.300	0.350	0.0098	0.0118	0.0138	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	-	3.500	-	-	0.1378	-	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E1	-	3.500	-	-	0.1378	-	
е	-	0.500	-	-	0.0197	-	
F	-	0.750	-	-	0.0295	-	
ddd	-	-	0.080	-	-	0.0031	

