

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) .	. 28
		3.15.2	Basic timers (TIM6 and TIM7)	. 28
		3.15.3	SysTick timer	. 28
		3.15.4	Independent watchdog (IWDG)	. 28
		3.15.5	Window watchdog (WWDG)	. 29
	3.16	Commu	nication interfaces	29
		3.16.1	I ² C bus	. 29
		3.16.2	Universal synchronous/asynchronous receiver transmitter (USART)	. 29
		3.16.3	Serial peripheral interface (SPI)	. 29
		3.16.4	Universal serial bus (USB)	. 29
	3.17	CRC (cy	clic redundancy check) calculation unit	30
	3.18	Develop	oment support	30
4	Pin de	escripti	ons	31
5	Memo	ory map	ping	48
		,		
6	Electi	rical cha	aracteristics	49
	6.1	Parame	ter conditions	49
		6.1.1	Minimum and maximum values	. 49
		6.1.2	Typical values	. 49
		6.1.3	Typical curves	. 49
		6.1.4	Loading capacitor	. 49
		6.1.5	Pin input voltage	. 49
		6.1.6	Power supply scheme	. 50
		6.1.7	Optional LCD power supply scheme	
		6.1.8	Current consumption measurement	. 51
	6.2	Absolute	e maximum ratings	52
	6.3	Operatir	ng conditions	53
		6.3.1	General operating conditions	. 53
		6.3.2	Embedded reset and power control block characteristics	. 54
		6.3.3	Embedded internal reference voltage	. 56
		6.3.4	Supply current characteristics	. 57
		6.3.5	Wakeup time from Low power mode	. 69
		6.3.6	External clock source characteristics	. 70
		6.3.7	Internal clock source characteristics	. 75
		6.3.8	PLL characteristics	. 77

HSE crystal oscillators are disabled. The voltage regulator is in the low power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 22: Typical and maximum current consumptions in Stop mode*.

Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 23*.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

	Functionalitie	s depending on	the operating pow	ver supply range	
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation	
V _{DD} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance	
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance	
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance	

Table 3. Functionalities dep	pending on the operating	power supply range
------------------------------	--------------------------	--------------------

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See STM32[™] microcontroller system memory boot mode AN2606 for details.

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock source**: three different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

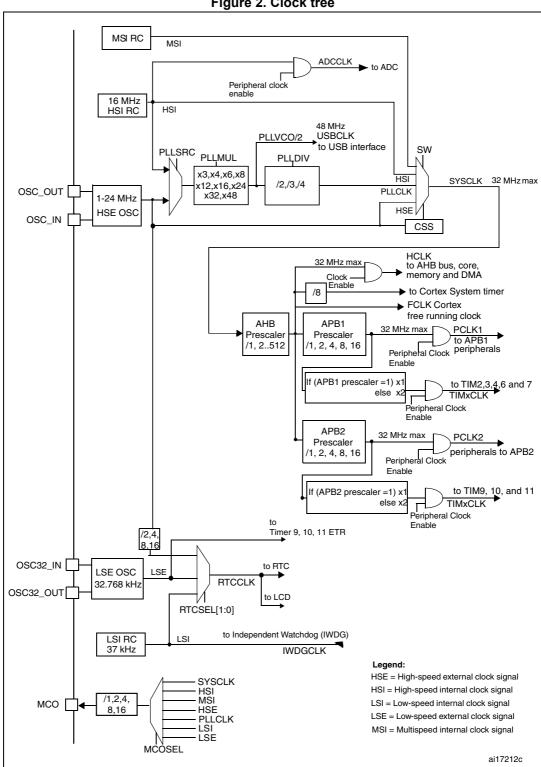


Figure 2. Clock tree

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B and STM32L152x6/8/B devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode, see *Table 58: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 16: Embedded internal reference voltage*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

DocID17659 Rev 12

		Pin	S						Pins functions	inicaj
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
35	26	F5	M5	18	PB0	I/O	TC	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ VREF_OUT
36	27	G5	M6	19	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
37	28	G6	L6	20	PB2	I/O	FT	PB2/BOOT1	BOOT1	-
38	-	-	M7	-	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP
39	-	-	L7	-	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP
40	-	-	M8	-	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP
41	-	-	L8	-	PE10	I/O	тс	PE10	TIM2_CH2	ADC_IN25/ COMP1_INP
42	-	-	M9	-	PE11	I/O	FT	PE11	TIM2_CH3	-
43	-	-	L9	-	PE12	I/O	FT	PE12	TIM2_CH4/SPI1_NSS	-
44	-	-	M10	-	PE13	I/O	FT	PE13	SPI1_SCK	-
45	-	-	M11	-	PE14	I/O	FT	PE14	SPI1_MISO	-
46	-	-	M12	-	PE15	I/O	FT	PE15	SPI1_MOSI	-
47	29	G7	L10	21	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX/ TIM2_CH3/LCD_SEG10	-
48	30	H7	L11	22	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX/ TIM2_CH4/LCD_SEG11	-
49	31	D6	F12	23	V _{SS_1}	S	-	V _{SS_1}	-	-
50	32	E6	G12	24	V _{DD_1}	S	-	V _{DD_1}	-	-
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/TIM10_CH1	ADC_IN18/ COMP1_INP
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/USART3_CTS/ LCD_SEG13/ TIM9_CH1	ADC_IN19/ COMP1_INP

Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)

Symbol	Parameter	er Conditions			Тур	Max ⁽¹⁾			Unit
Symbol		Cond	f _{HCLK}	55 °C		85 °C	105 °C	Unit	
	Supply	MSI clock, 65 kHz		65 kHz	40	70	70	80	
	current in Sleep	MSI clock, 524 kHz	Range 3,	524 kHz	60	90	90	100	
I _{DD} (Sleep)	mode, code executed from Flash	MSI clock, 4.2 MHz	V _{CORE} =1.2V VOS[1:0] = 11	4.2 MHz	210	250	250	260	μA

 Table 19. Current consumption in Sleep mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Tested in production

Symbol	Parameter		Conditions		Тур	Max (1)	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	4.4	-	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	17.5	25	
			f _{HCLK} = 32 kHz	T _A = 85 °C	22	27	
		All	Flash ON	T _A = 105 °C	31	39	
		peripherals OFF, V _{DD}	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18	26	
		from 1.65 V to 3.6 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	23	28	
		10 3.0 V	Flash ON	T _A = 105 °C	31	40	
				T_A = -40 °C to 25 °C	22	30	
	Supply		MSI clock, 131 kHz	T _A = 55 °C	24	32	
I _{DD} (LP Sleep) current in Low power sleep		f _{HCLK} = 131 kHz, Flash ON	T _A = 85 °C	26	34		
				T _A = 105 °C	34	45	μΑ
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	17.5	25	
				T _A = 85 °C	22	27	
				T _A = 105 °C	31	39	
		TIM9 and USART1	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T_A = -40 °C to 25 °C	18	26	
		enabled,		T _A = 85 °C	23	28	1
		Flash ON, V _{DD} from	HOLK OUT IN 2	T _A = 105 °C	31	40	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	22	30	
		0.0 V	MSI clock, 131 kHz	T _A = 55 °C	24	32	
			f _{HCLK} = 131 kHz	T _A = 85 °C	26	34	
				T _A = 105 °C	34	45	
I _{DD} Max (LP Sleep)	Max allowed current in Low power Sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

		Туріса	l consumption,	V _{DD} = 3.0 V, T _A	= 25 °C			
Peri	pheral	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit		
	GPIOA	5	4.5	3.5	4			
	GPIOB	5	4.5	3.5	4.5			
	GPIOC	5	4.5	3.5	4.5			
	GPIOD	5	4.5	3.5	4.5			
AHB	GPIOE	5	4.5	3.5	4.5	µA/MHz		
	GPIOH	4	4	3	3.5	(f _{HCLK})		
	CRC	1	0.5	0.5	0.5			
	FLASH	13	11.5	9	18.5			
	DMA1	12	10	8	10.5			
All enabled		166	138	106	130			
I _{DD (RTC)}			0.4	47				
I _{DD (LCD)}								
I _{DD (ADC)} ⁽³⁾			14	50				
I _{DD (DAC)} ⁽⁴⁾			34	40				
I _{DD (COMP1)}			0.	16		μA		
	Slow mode		2	2				
'DD (COMP2)	DD (COMP2) Fast mode		5					
I _{DD (PVD / BOR)}	DD (PVD / BOR) ⁽⁵⁾		2.6					
I _{DD (IWDG)}			0.25					

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Low power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).

4. Data based on a differential Ibb measurement between DAC in reset configuration and continuous DAC conversion of Vbb/2. DAC is in buffered mode, output is left floating.

5. Including supply current of internal reference voltage.

Multi-speed internal (MSI) RC oscillator

	Table 32. MSI oscillator chara	cteristics	-			
Symbol	Parameter	Condition	Тур	Мах	Unit	
		MSI range 0	65.5	-		
		MSI range 1	131	-	kHz	
		MSI range 2	262	-	KHZ	
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-		
		MSI range 4	1.05	-		
		MSI range 5	2.1	-	MHz	
		MSI range 6	4.2	-		
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%	
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C ≤T _A ≤85 °C	-	±3	-	%	
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V ≤V _{DD} ≤3.6 V, T _A = 25 °C	-	-	2.5	%/V	
		MSI range 0	0.75	-		
		MSI range 1	1	-	μA	
	MSI oscillator power consumption	MSI range 2	1.5	-		
I _{DD(MSI)} ⁽²⁾		MSI range 3	2.5	-		
		MSI range 4	4.5	-		
		MSI range 5	8	-		
		MSI range 6	15	-		
		MSI range 0	30	-		
		MSI range 1	20	I		
		MSI range 2	15	I		
		MSI range 3	10	-		
tournon	MSI oscillator startup time	MSI range 4	6	-	μs	
t _{SU(MSI)}		MSI range 5	5	-	μο	
		MSI range 6, Voltage range 1 and 2	3.5	-		
		MSI range 6, Voltage range 3	5	-		

Table 32. MSI oscillator characteristics

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	34.	RAM	and	hardware	reaisters
	• • •			indiana io	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V	
	Programming / erasing time for	Erasing	-	3.28	3.94		
prog	byte / word / double word / half- page	Programming	-	3.28	3.94	ms	
1	Average current during whole program/erase operation	T - 25 °C V - 3 6 V	-	300	-	μA	
I _{DD}	Maximum current (peak) during program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA	

Table 35. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 36. Flash memory, data EEPROM endurance and data retention

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	Onit
NCYC ⁽²⁾	Cycling (erase / write) Program memory			-	-	kovolos
NCTC()	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-	
	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	INET = '03' C	30	-	-	voars
	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	I	-	years
	Data retention (EEPROM data memory) after 300 kcycles at T _A = 105 °C	11121 - 103 C	10	-	-	

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 13*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
_		Master mode	-	- 16		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
t _{r(SCK)} ⁽²⁾ t _{f(SCK)} ⁽²⁾	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3		
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-		
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾		Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-		

Table 49. SPI characteristics	ble 49. SPI characteristics	(1)
-------------------------------	-----------------------------	-----

1. The characteristics above are given for voltage Range 1.

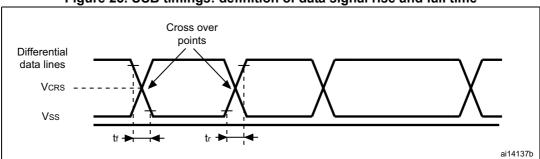
2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
ls				-
USB operating voltage ⁽²⁾	-	3.0	3.6	V
Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
Differential common mode range	Includes V _{DI} range	0.8	2.5	V
Single ended receiver threshold	-	1.3	2.0	
vels				
Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	v
Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	
	USB operating voltage ⁽²⁾ Differential input sensitivity Differential common mode range Single ended receiver threshold rels Static output level low	USB operating voltage ⁽²⁾ - Differential input sensitivity I(USB_DP, USB_DM) Differential common mode range Includes V _{DI} range Single ended receiver threshold - rels Static output level low R _L of 1.5 kΩ to 3.6 V ⁽⁵⁾	USB operating voltage ⁽²⁾ - 3.0 Differential input sensitivity I(USB_DP, USB_DM) 0.2 Differential common mode range Includes V _{DI} range 0.8 Single ended receiver threshold - 1.3 rels Static output level low R _L of 1.5 kΩ to 3.6 V ⁽⁵⁾ -	USB operating voltage ⁽²⁾ - 3.0 3.6 Differential input sensitivity I(USB_DP, USB_DM) 0.2 - Differential common mode range Includes V _{DI} range 0.8 2.5 Single ended receiver threshold - 1.3 2.0 rels Static output level low R _L of 1.5 kΩ to 3.6 V ⁽⁵⁾ - 0.3

Table 51. USB DC electrical characteristics


1. All the voltages are measured from the local ground potential.

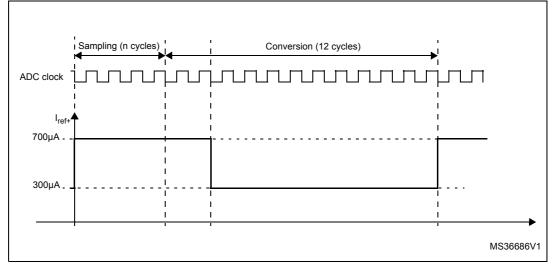
2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Tested in production.

5. R_L is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time


	Driver characteristics ⁽¹⁾						
Symbol	Symbol Parameter Conditions Min Max						
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage		1.3	2.0	V		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

Table 56. Maximum source impedance $R_{AIN} \max^{(1)}$

Ts (µs)	Multiplexed channels		Direct o	Ts (cycles) f _{ADC} = 16 MHz ⁽²⁾	
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V		ADC
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

General PCB design guidelines

Power supply decoupling should be performed as shown in The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 14 x 14 mm, 100-pin low-profile quad flat package information

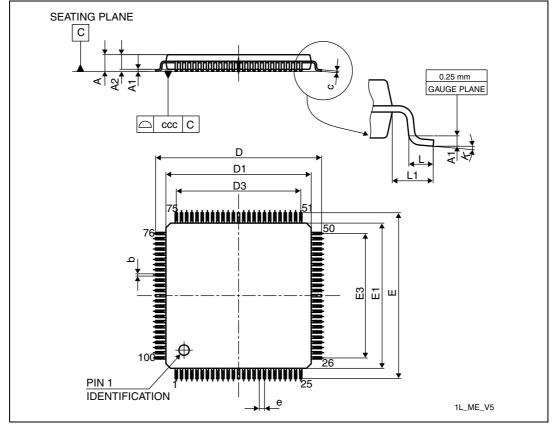
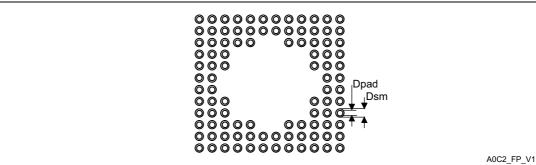


Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.



Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
eee	-	-	0.15	-	-	0.0059	
fff	-	-	0.05	-	-	0.002	

Table 67. UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint

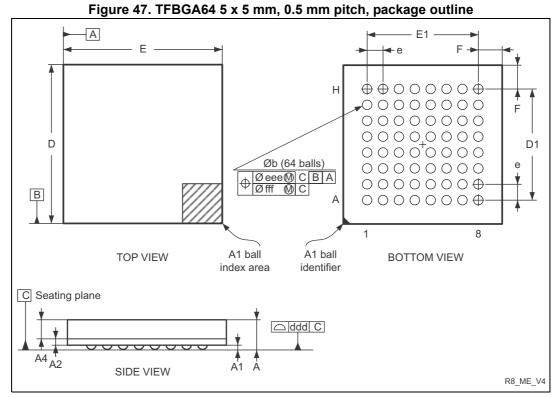


Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball 7.6 grid array package information

1. Drawing is not to scale.

Table 69. TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data								
Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Max		
А	-	-	1.200	-	-	0.0472		
A1	0.150	-	-	0.0059	-	-		
A2	-	0.200	-	-	0.0079	-		
A4	-	-	0.600	-	-	0.0236		
b	0.250	0.300	0.350	0.0098	0.0118	0.0138		
D	4.850	5.000	5.150	0.1909	0.1969	0.2028		
D1	-	3.500	-	-	0.1378	-		
E	4.850	5.000	5.150	0.1909	0.1969	0.2028		
E1	-	3.500	-	-	0.1378	-		
е	-	0.500	-	-	0.0197	-		
F	-	0.750	-	-	0.0295	-		
ddd	-	-	0.080	-	-	0.0031		

Table 69. TFBGA64 5 x 5 mm	, 0.5 mm pitch, packag	e mechanical data
----------------------------	------------------------	-------------------

8 Ordering information

Table 72. Ordering	information	on scheme		
Example:	STM32	L 151 C 8	T 6 7	
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
L = Low power				
Device subfamily				
151: Devices without LCD				
152: Devices with LCD				
132. Devices with ECD				
Pin count				
C = 48 pins				
R = 64 pins				
V = 100 pins				
Flash memory size				
6 = 32 Kbytes of Flash memory				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
Package				
H = BGA				
T = LQFP				
U = UFQFPN				
Temperature range				
6 = Industrial temperature range, -40 to 85 °C			1	
Options				
No character = V_{DD} range: 1.8 to 3.6 V and BOF	R enabled			•
T = V_{DD} range: 1.65 to 3.6 V and BOR disabled				
Packing				

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID17659 Rev 12

Table 73. Document revision history (continued)		
Date	Revision	Changes
17-June-2011	5	Modified 1st page (low power features) Added STM32L15xC6 and STM32L15xR6 devices (32 Kbytes of Flash memory). Modified Section 3.6: GPIOs (general-purpose inputs/outputs) on page 22 Modified Section 6.3: Operating conditions on page 53 Modified Table 55: ADC accuracy on page 95, Table 57: DAC characteristics on page 99 and Table 60: Comparator 1 characteristics on page 102
25-Jan-2012	6	<i>Features</i> : updated internal multispeed low power RC. <i>Table 2: Ultralow power STM32L15xx6/8/B device features and peripheral counts</i> : LCD 4x44 and 8x40 available for both 64- and 128-Kbyte devices; two comparators available for all devices. <i>Table 3: Functionalities depending on the operating power supply range</i> : added footnote 1. <i>Figure 8: STM32L15xCx UFQFPN48 pinout</i> : replaced VFQPN48 by UFQFPN48 as name of package.
		Table 8: STM32L15xx6/8/B pin definitions: replaced PH0/PH1 by PC14/PC15.Table 9: Alternate function input/output: removed EVENT OUT from PH2 port, AFIO15 column.Table 19: Current consumption in Sleep mode: updated MSI conditions and f _{HCLK} .Table 20: Current consumption in Low power run mode: updated some temperature conditions; added footnote 2.Table 21: Current consumption in Low power sleep mode: updated
		some temperature conditions and one of the MSI clock conditions. <i>Table 22: Typical and maximum current consumptions in Stop</i> <i>mode</i> : updated I _{DD} (WU from Stop) parameter. <i>Table 23: Typical and maximum current consumptions in Standby</i> <i>mode</i> : updated I _{DD} (WU from Standby) parameter. <i>Table 25: Low-power mode wakeup timings</i> : updated f _{HCLK} value
		for $t_{WUSLEEP_LP}$; updated typical value of parameter "Wakeup from Stop mode, regulator in Run mode". <i>Table 24: Peripheral current consumption</i> : replaced GPIOF by GPIOH. <i>Table 33: PLL characteristics</i> : updated "PLL output clock" <i>Table 35: Flash memory and data EEPROM characteristics</i> : updated all information for I _{DD} . <i>Figure 19: I/O AC characteristics definition</i> : replaced the falling edge "t _{r(IO)out} " by "t _{f(IO)out} ". <i>Table 47: I2C characteristics</i> : updated f _S max value for direct channels, 6-bit sampling rate. <i>Table 55: ADC accuracy</i> : Updated the first, third and fourth f _{ADC} test condition. <i>Table 59: Temperature sensor characteristics</i> : updated typ, min, and max values of the T _{S temp} parameter.

