STMicroelectronics - <u>STM32L152VBT6TR Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

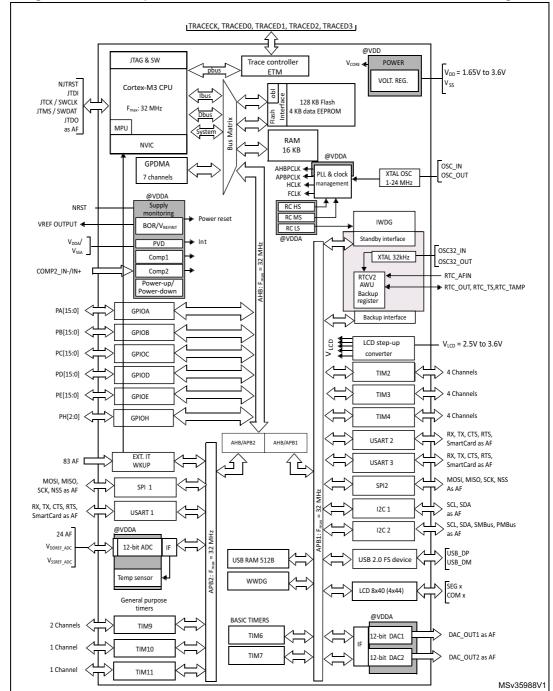
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) .	. 28
		3.15.2	Basic timers (TIM6 and TIM7)	. 28
		3.15.3	SysTick timer	. 28
		3.15.4	Independent watchdog (IWDG)	. 28
		3.15.5	Window watchdog (WWDG)	. 29
	3.16	Commu	nication interfaces	29
		3.16.1	I ² C bus	. 29
		3.16.2	Universal synchronous/asynchronous receiver transmitter (USART)	. 29
		3.16.3	Serial peripheral interface (SPI)	. 29
		3.16.4	Universal serial bus (USB)	. 29
	3.17	CRC (cy	clic redundancy check) calculation unit	30
	3.18	Develop	oment support	30
4	Pin de	escripti	ons	31
5	Memo	ory map	ping	48
		,		
6	Electi	rical cha	aracteristics	49
	6.1	Parame	ter conditions	49
		6.1.1	Minimum and maximum values	. 49
		6.1.2	Typical values	. 49
		6.1.3	Typical curves	. 49
		6.1.4	Loading capacitor	. 49
		6.1.5	Pin input voltage	. 49
		6.1.6	Power supply scheme	. 50
		6.1.7	Optional LCD power supply scheme	
		6.1.8	Current consumption measurement	. 51
	6.2	Absolute	e maximum ratings	52
	6.3	Operatir	ng conditions	53
		6.3.1	General operating conditions	. 53
		6.3.2	Embedded reset and power control block characteristics	. 54
		6.3.3	Embedded internal reference voltage	. 56
		6.3.4	Supply current characteristics	. 57
		6.3.5	Wakeup time from Low power mode	. 69
		6.3.6	External clock source characteristics	. 70
		6.3.7	Internal clock source characteristics	. 75
		6.3.8	PLL characteristics	. 77

3 Functional overview

Figure 1 shows the block diagram.

Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram

1. AF = alternate function on I/O port pin.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

STM32L151x6/8/B STM32L152x6/8/B

	1	2	3	4	5	6	7	8
A	• /PC14-, OŚC32_IN	, PC13-, WKUP2	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	/PC15-, O\$C32_OUT	VLCD	(PB8)	ВООТО	(PD2)	(PC11)	(PC10)	(PA12)
С	, ₽ĤŎ÷, OSC_IN∳	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	V _{DD_4}	(PB6)	,V _{SS_3} ,	VSS_2	VSS_1	(PA8)	(PC9)
E	(NRST)	(PC1)	PC0	'VDD_3'	'VDD_2'	VDD_1	(PC7)	(PC8)
F	(Vssa)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+ F	PA(0-WKU)P1	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	(PA7)	(PC4)	PC5	(PB11)	(PB12)

Figure 5. STM32L15xRx TFBGA64 ballout

1. This figure shows the package top view.

		Pin							Pins functions	,
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14//TIM9_CH2	ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-
56	-	-	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-
67	41	D7	D11	29	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-
68	42	C7	D10	30	PA9	I/O	FT	PA9	USART1_TX/LCD_COM1	-
69	43	C6	C12	31	PA10	I/O	FT	PA10	USART1_RX/LCD_COM2	-
70	44	C8	B12	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{VDD} ⁽¹⁾	V rice time rate	BOR detector enabled	0	-	~	
	V _{DD} rise time rate	BOR detector disabled	0	-	1000	
^I VDD ⁽¹⁾) (fall time rate	BOR detector enabled	20	-	~	µs/V
	V _{DD} fall time rate	BOR detector disabled	0	-	1000	
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3	
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
V	Power on/power down reset	Falling edge	1	1.5	1.65	v
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	v
N/	Drown out react threshold 0	Falling edge	1.67	1.7	1.74	
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
V	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	
V _{BOR1}	Brown-out reset threshold T	Rising edge	1.96	2.03	2.07	
M	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	v
V _{BOR2}		Rising edge	2.31	2.41	2.44	v
V	Drown out react threshold 2	Falling edge	2.45	2.55	2.60	
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
M	Brown-out reset threshold 4	Falling edge	2.68	2.8	2.85	
V _{BOR4}		Rising edge	2.78	2.9	2.95	

Table 14. Embedded reset and power control block characteristics

Symbol	Parameter	Co	onditions		Typ (1)	Max (1)(2)	Unit
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.2	2.75	
			LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.4	4	
			OFF	T _A = 55°C	2.6	6	
				T _A = 85°C	4.8	10	
		RTC clocked by LSI,		T _A = 105°C	10.2	23	
		regulator in LP mode,		$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.3	6	
		HSI and HSE OFF (no independent	LCD ON (static	T _A = 55°C	4.5	8	
		watchdog)	duty) ⁽³⁾	T _A = 85°C	6.6	12	
				T _A = 105°C	13.6	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.7	10	
		LCD ON (1/8 duty) ⁽⁴⁾ $T_A = 55^{\circ}C$ $T_A = 85^{\circ}C$ $T_A = 105^{\circ}C$	T _A = 55°C	8.6	12		
			duty) ⁽⁴⁾	T _A = 85°C	10.7	16	μΑ
				T _A = 105°C	19.8	40	
	Supply current	by bold of the product of the produ		T_A = -40°C to 25°C	1.6	4	
I _{DD (Stop}	ex kH mo			T _A = 55°C	2.7	6	
with RTC)				T _A = 85°C	4.8	10	
				T _A = 105°C	10.3	23	
			(static	T_A = -40°C to 25°C	3.6	6	
				T _A = 55°C	4.6	8	
				T _A = 85°C	6.7	12	
			T _A = 105°C	10.9	23		
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.6	10	
			LCD ON (1/8	T _A = 55°C	8.6	12	
			duty) ⁽⁴⁾	T _A = 85°C	10.7	16	1
				T _A = 105°C	19.8	40	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.45	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁵⁾	LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0 \text{ V}$	1.9	-	
		,		$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	2.2	-	

Table 22. Typical and maximum current consumptions in Stop mode

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.9	-	-
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1.1	1.8	
		independent watchdog)	T _A = 55 °C	1.42	2.5	
			T _A = 85 °C	1.87	3	
I _{DD}	Supply current in Standby		T _A = 105 °C	2.78	5	
(Standby with RTC)	V _{DD} = 1.8 V		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	1	-	
			$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.33	2.9	-
			T _A = 55 °C	1.59	3.4	
		T _A = 85 °C	2.01	4.3	μA	
			T _A = 105 °C	3.27	6.3	
		Independent watchdog and LSI enabled	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.1	1.6	
I _{DD}	Supply current in Standby		$T_A = -40 \degree C$ to 25 $\degree C$	0.3	0.55	
(Standby)	mode with RTC disabled	Independent watchdog	T _A = 55 °C	0.5	0.8	
		and LSI OFF	T _A = 85 °C	1	1.7	
			T _A = 105 °C	2.5	4 ⁽⁴⁾	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	

Table 23. Typical and maximum current consumption	s in Standby mode
Table 25. Typical and maximum current consumption	5 III Stanuby moue

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

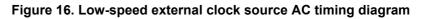

 Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

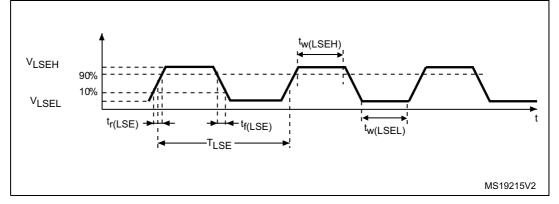
4. Tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz				
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v				
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v				
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns				
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115				
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF				
DuCy _(LSE)	Duty cycle	-	45	-	55	%				
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA				

Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C	-1.5	-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Tested in production.

Low-speed internal (LSI) RC oscillator

Table 31.	LSI	oscillator	characteristics
-----------	-----	------------	-----------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Tested in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table* 37. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, \text{LQFP100}, \text{T}_{\text{A}} = +25 \\ ^{\circ}\text{C}, \\ \text{f}_{\text{HCLK}} = 32 \text{ MHz} \\ \text{conforms to IEC 61000-4-4} \end{array}$	4A

Table 37. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol		Conditions	Monitored frequency band	Max vs			
	Parameter			4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
S _{EMI} Peak level		$V_{DD} = 3.3 V,$ $T_A = 25 °C,$ LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	3	-6	-5	
	Dook loval		30 to 130 MHz	18	4	-7	dBµV
	Peakievei		130 MHz to 1GHz	15	5	-7	
			SAE EMI Level	2.5	2	1	-

Table 38. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to JESD22-C101	All	111	500	v

Table 39. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 40.	Electrical	sensitivities
	LICCUITCUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in Table 41.

Table 41. I/O current injection susceptibility

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on all 5 V tolerant (FT) pins	-5	+0	mA	
I _{INJ}	Injected current on any other pin	-5	+5		

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 44*, respectively.

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kHz
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KUZ
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	115
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	
01	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	MHz
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns
t _{r(IO)out}	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250	
	Е)out Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MHz
10	F _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	115
	E	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
11	F _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8	
	t _{f(IO)out}	Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 44.	I/O AC	characteristics ⁽¹⁾
-----------	--------	--------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151x6/8/B and STM32L152x6/8/B reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

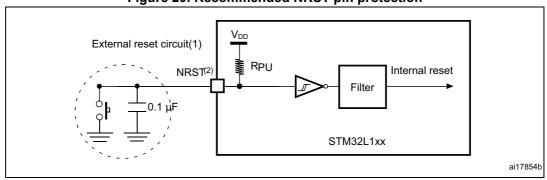


Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 45. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in Table 46 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 46. TIMX ^V Characteristics								
Symbol	Parameter	Conditions	Min	Max	Unit			
4	Timer resolution time	-	1	-	t _{TIMxCLK}			
^t res(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns			
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz			
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz			
Res _{TIM}	Timer resolution	-	-	16	bit			
	16-bit counter clock	-	1	65536	t _{TIMxCLK}			
t _{COUNTER}	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs			
tury court	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}			
t _{MAX_COUNT}		f _{TIMxCLK} = 32 MHz	-	134.2	S			

Table 46. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-	
		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-	
t _S	Sampling time ⁽⁵⁾	Direct channels 1.8 V ⊴V _{DDA} ⊴2.4 V	0.56	-	-	μs
		Multiplexed channels 1.8 V ≤V _{DDA} ≤2.4 V	1	-	-	
		-	4	-	384	1/f _{ADC}
		f _{ADC} = 16 MHz	1	-	24.75	μs
t _{CONV}	Total conversion time (including sampling time)	-	4 to 384 (sampling phase) +12 (successive approximation)			1/f _{ADC}
0	Internal sample and hold	Direct channels	-	16	-	pF
C _{ADC}	capacitor	Multiplexed channels	-	10	-	
£	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}
f _{TRIG}	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}
f	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}
f _{TRIG}	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}
R _{AIN}	Signal source impedance ⁽⁵⁾	-	-	-	50	кΩ
+	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns
t _{lat}	latency	-	3.5	-	4.5	1/f _{ADC}
+	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns
t _{latr}	latency	-	2.5	-	3.5	1/f _{ADC}
t _{STAB}	Power-up time	-	-	-	3.5	μs

Table 54. ADC characteristics (continued)

The V_{REF+} input can be grounded iif neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through $\mathsf{V}_{\mathsf{REF}}$ is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μ A), only during sampling time + 2 first conversion pulses.

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

3. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} must be tied to ground.

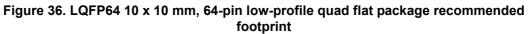
5. See Table 56: Maximum source impedance RAIN max for $\mathsf{R}_{\mathsf{AIN}}$ limitation.

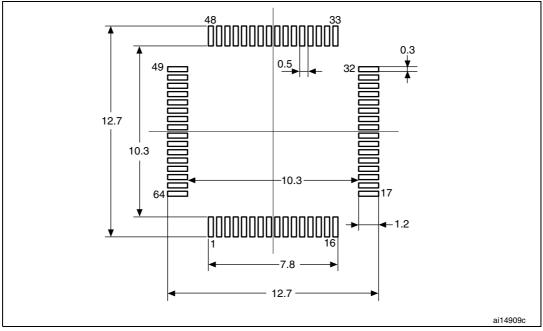
STM32L151x6/8/B STM32L152x6/8/B

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	-
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤ V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{\text{DDA}} = V_{\text{REF}+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	dB
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	57.5	62	-	
THD	Total harmonic distortion	1 kHz ≤ F _{input} ≤ 100 kHz	-74	-75	-	
ET	Total unadjusted error		-	4	6.5	LSB
EO	Offset error	2.4 V ≤ V _{DDA} ≤ 3.6 V	-	2	4	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	4	6	
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 V \le V_{DDA} \le 2.4 V$	-	1	1.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	1	1.5	

1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

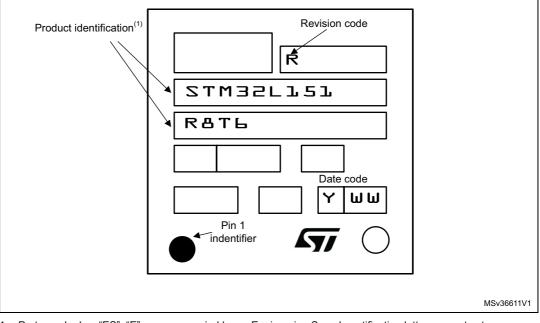

3. Guaranteed by characterization results.



Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Тур	Min	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.



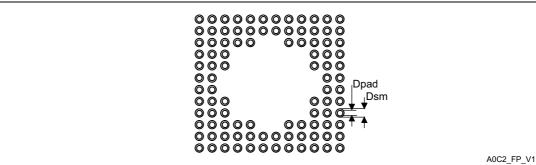
1. Dimensions are in millimeters.

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
eee	-	-	0.15	-	-	0.0059	
fff	-	-	0.05	-	-	0.002	

Table 67. UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

