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Figure 14.  Flash Memory Architecture

FM0 Memory Architecture The Flash memory is made up of 4 blocks (see Figure 14):

1. The memory array (user space) 32 Kbytes

2. The Extra Row

3. The Hardware security bits

4. The column latch registers

User Space This space is composed of a 32 Kbytes Flash memory organized in 256 pages of 128
bytes. It contains the user’s application code. 

Extra Row (XRow) This row is a part of FM0 and has a size of 128 bytes. The extra row may contain infor-
mation for bootloader usage.

Hardware Security Space The hardware security space is a part of FM0 and has a size of 1 byte.
The 4 MSB can be read/written by software. The 4 LSB can only be read by software
and written by hardware in parallel mode.

Column Latches The column latches, also part of FM0, have a size of full page (128 bytes).
The column latches are the entrance buffers of the three previous memory locations
(user array, XRow and Hardware security byte).

Overview of FM0 
Operations

The CPU interfaces to the Flash memory through the FCON register and AUXR1
register. 

These registers are used to:

• Map the memory spaces in the adressable space

• Launch the programming of the memory spaces

• Get the status of the Flash memory (busy/not busy)

• Select the Flash memory FM0/FM1.

Mapping of the Memory Space By default, the user space is accessed by MOVC instruction for read only. The column
latches space is made accessible by setting the FPS bit in FCON register. Writing is
possible from 0000h to 7FFFh, address bits 6 to 0 are used to select an address within a
page while bits 14 to 7 are used to select the programming address of the page.

Setting this bit takes precedence on the EXTRAM bit in AUXR register.

7FFFh

32 Kbytes

Flash Memory

FM0

0000h

Hardware Security (1 Byte)

Column Latches (128 Bytes)

User Space

 Extra Row (128 Bytes)

3 Kbytes
Flash Memory

FM1

Boot Space

FFFFh

F400h

FM1 mapped between FFFFh and
F400h when bit ENBOOT is set in 
AUXR1 register
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AT89C5131
Reading the Flash Spaces

User The following procedure is used to read the User space and is summarized in Figure 18:

• Map the User space by writing 00h in FCON register.

• Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & 
DPTR = 0000h to FFFFh.

Extra Row The following procedure is used to read the Extra Row space and is summarized in
Figure 18:

• Map the Extra Row space by writing 02h in FCON register.

• Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & 
DPTR = FF80h to FFFFh.

Hardware Security The following procedure is used to read the Hardware Security space and is summa-
rized in Figure 18:

• Map the Hardware Security space by writing 04h in FCON register.

• Read the byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & 
DPTR = 0000h.

Figure 18.  Reading Procedure

Flash Spaces Reading

Flash Spaces Mapping
FCON = 00000xx0b

Data Read
DPTR = Address

ACC = 0
Exec: MOVC A, @A+DPTR

Erase Mode
FCON = 00h
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AT89C5131
Boot Process

Software Boot Process 
Example

Many algorithms can be used for the software boot process. Below are descriptions of
the different flags and Bytes.

Boot Loader Jump bit (BLJB):
- This bit indicates if on RESET the user wants to jump to this application at address
@0000h on FM0 or execute the boot loader at address @F400h on FM1.
- BLJB = 0 (i.e. bootloader FM1 executed after a reset) is the default Atmel factory pro-
gramming.
-To read or modify this bit, the APIs are used.

Boot Vector Address (SBV):
- This byte contains the MSB of the user boot loader address in FM0.
- The default value of SBV is FFh (no user boot loader in FM0).
- To read or modify this byte, the APIs are used.

Extra Byte (EB) & Boot Status Byte (BSB):
- These Bytes are reserved for customer use.
- To read or modify these Bytes, the APIs are used.

Figure 21.  Hardware Boot Process Algorithm

RESET

BLJB == 0

?

H
ar

dw
ar

e
S

of
tw

ar
e

Bootloader
in FM1

Application
in FM0

bit ENBOOT in AUXR1 Register
Is Initialized with BLJB Inverted.

ENBOOT = 0
PC = 0000h

ENBOOT = 1
PC = F400h

Example, if BLJB=0, ENBOOT 
is set (=1) during reset, thus the 
bootloader is executed after the 
reset.
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Reset Value = 0000 0000b
Bit addressable

Table 47.  T2CON Register
T2CON - Timer 2 Control Register (C8h)

7 6 5 4 3 2 1 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit 

Number

Bit        

Mnemonic Description

7 TF2
Timer 2 overflow Flag
Must be cleared by software.
Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0.

6 EXF2

Timer 2 External Flag
Set when a capture or a reload is caused by a negative transition on T2EX pin if 
EXEN2 = 1.
When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 
interrupt is enabled.
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down 
counter mode (DCEN = 1).

5 RCLK
Receive Clock bit
Cleared to use Timer 1 overflow as receive clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.

4 TCLK
Transmit Clock bit
Cleared to use Timer 1 overflow as transmit clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3.

3 EXEN2

Timer 2 External Enable bit
Cleared to ignore events on T2EX pin for Timer 2 operation.
Set to cause a capture or reload when a negative transition on T2EX pin is 
detected, if Timer 2 is not used to clock the serial port.

2 TR2
Timer 2 Run control bit
Cleared to turn off Timer 2.
Set to turn on Timer 2.

1 C/T2#

Timer/Counter 2 select bit
Cleared for timer operation (input from internal clock system: FCLK PERIPH).
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 
0 for clock out mode.

0 CP/RL2#

Timer 2 Capture/Reload bit
If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to Auto-reload 
on Timer 2 overflow.
Cleared to Auto-reload on Timer 2 overflows or negative transitions on T2EX 
pin if EXEN2 = 1.
Set to capture on negative transitions on T2EX pin if EXEN2 = 1.
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Programmable 
Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard
timer/counters. Its advantages include reduced software overhead and improved accu-
racy. The PCA consists of a dedicated timer/counter which serves as the time base for
an array of five compare/capture modules. Its clock input can be programmed to count
any one of the following signals:

• Peripheral clock frequency (FCLK PERIPH) ÷ 6 

• Peripheral clock frequency (FCLK PERIPH) ÷ 2 

• Timer 0 overflow

• External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes: 

• rising and/or falling edge capture, 

• software timer 

• high-speed output, or 

• pulse width modulator

Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog
Timer", page 64).

When the compare/capture modules are programmed in the capture mode, software
timer, or high speed output mode, an interrupt can be generated when the module exe-
cutes its function. All five modules plus the PCA timer overflow share one interrupt
vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O.
These pins are listed below. If the port pin is not used for the PCA, it can still be used for
standard I/O.

The PCA timer is a common time base for all five modules (see Figure 25). The timer
count source is determined from the CPS1 and CPS0 bits in the CMOD register
(Table 49) and can be programmed to run at: 

• 1/6 the peripheral clock frequency (FCLK PERIPH). 
• 1/2 the peripheral clock frequency (FCLK PERIPH).
• The Timer 0 overflow

• The input on the ECI pin (P1.2)

PCA Component External I/O Pin

16-bit Counter P1.2/ECI

16-bit Module 0 P1.3/CEX0

16-bit Module 1 P1.4/CEX1

16-bit Module 2 P1.5/CEX2

16-bit Module 3 P1.6/CEX3

16-bit Module 4 P1.7/CEX4
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AT89C5131
Table 56.  CL Register

CL - PCA Counter Register Low (0E9h)

Reset Value = 0000 0000b
Not bit addressable

PCA Capture Mode To use one of the PCA modules in the capture mode either one or both of the CCAPM
bits CAPN and CAPP for that module must be set. The external CEX input for the mod-
ule (on port 1) is sampled for a transition. When a valid transition occurs the PCA
hardware loads the value of the PCA counter registers (CH and CL) into the module’s
capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON
SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated
(see Figure 27).

Figure 27.  PCA Capture Mode

16-bit Software 
Timer/Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT
bits in the modules CCAPMn register. The PCA timer will be compared to the module’s
capture registers and when a match occurs an interrupt will occur if the CCFn (CCON
SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (see Figure 28).

7 6 5 4 3 2 1 0

- - - - - - - -

Bit 

Number

Bit       

Mnemonic Description

7 - 0 -
PCA Counter
CL Value

CF CR CCON
0xD8

CH CL

CCAPnH CCAPnL

CCF4 CCF3 CCF2 CCF1 CCF0

PCA IT

PCA Counter/Timer

ECOMn CCAPMn, n = 0 to 4
0xDA to 0xDE

CAPNn MATn TOGn PWMn ECCFnCAPPn

Cex.n

Capture
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Figure 28.  PCA Compare Mode and PCA Watchdog Timer

Note: 1. Only for Module 4

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value,
otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t
occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this
reason, user software should write CCAPnL first, and then CCAPnH. Of course, the
ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode, the CEX output (on port 1) associated with the PCA module will toggle
each time a match occurs between the PCA counter and the module's capture registers.
To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR
must be set (see Figure 29).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

CH CL

CCAPnH CCAPnL

ECOMn
CCAPMn, n = 0 to 4

0xDA to 0xDE
CAPNn MATn TOGn PWMn ECCFnCAPPn

16-bit Comparator
Match

CCON

0xD8

PCA IT

Enable

PCA Counter/Timer

RESET(1)

CIDL CPS1 CPS0 ECF
CMOD

0xD9
WDTE

Reset
Write to
CCAPnL

Write to
CCAPnH

CF CCF2 CCF1 CCF0CR CCF3CCF4

1 0
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AT89C5131
Interrupt System

Overview The AT89C5131 has a total of 15 interrupt vectors: two external interrupts (INT0 and
INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt,
Keyboard interrupt, USB interrupt and the PCA global interrupt. These interrupts are
shown in Figure 36.

Figure 36.  Interrupt Control System
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Table 65.  IEN1 Register

IEN1 - Interrupt Enable Register (B1h)

Reset Value = XXXX X000b
Bit addressable

7 6 5 4 3 2 1 0

- EUSB - - - ESPI - EKB

Bit 

Number

Bit        

Mnemonic Description

7 - Reserved

6 EUSB USB Interrupt Enable bit

5 - Reserved

4 - Reserved

3 - Reserved

2 ESPI
SPI interrupt Enable bit
Cleared to disable SPI interrupt.
Set to enable SPI interrupt.

1 - Reserved

0 EKB
Keyboard interrupt Enable bit
Cleared to disable keyboard interrupt.
Set to enable keyboard interrupt.
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Figure 41.  Full-duplex Master/Slave Interconnection

Master Mode The SPI operates in Master mode when the Master bit, MSTR (1), in the SPCON register
is set. Only one Master SPI device can initiate transmissions. Software begins the trans-
mission from a Master SPI module by writing to the Serial Peripheral Data Register
(SPDAT). If the shift register is empty, the byte is immediately transferred to the shift
register. The byte begins shifting out on MOSI pin under the control of the serial clock,
SCK. Simultaneously, another byte shifts in from the Slave on the Master’s MISO pin.
The transmission ends when the Serial Peripheral transfer data flag, SPIF, in SPSTA
becomes set. At the same time that SPIF becomes set, the received byte from the Slave
is transferred to the receive data register in SPDAT. Software clears SPIF by reading
the Serial Peripheral Status register (SPSTA) with the SPIF bit set, and then reading the
SPDAT. 

Slave Mode The SPI operates in Slave mode when the Master bit, MSTR (2), in the SPCON register is
cleared. Before a data transmission occurs, the Slave Select pin, SS, of the Slave
device must be set to’0’. SS must remain low until the transmission is complete. 

In a Slave SPI module, data enters the shift register under the control of the SCK from
the Master SPI module. After a byte enters the shift register, it is immediately transferred
to the receive data register in SPDAT, and the SPIF bit is set. To prevent an overflow
condition, Slave software must then read the SPDAT before another byte enters the
shift register (3). A Slave SPI must complete the write to the SPDAT (shift register) at
least one bus cycle before the Master SPI starts a transmission. If the write to the data
register is late, the SPI transmits the data already in the shift register from the previous
transmission. 

Transmission Formats Software can select any of four combinations of serial clock (SCK) phase and polarity
using two bits in the SPCON: the Clock POLarity (CPOL (4)) and the Clock PHAse
(CPHA4). CPOL defines the default SCK line level in idle state. It has no significant
effect on the transmission format. CPHA defines the edges on which the input data are
sampled and the edges on which the output data are shifted (Figure 42 and Figure 43).
The clock phase and polarity should be identical for the Master SPI device and the com-
municating Slave device. 

8-bit Shift Register

SPI 
Clock Generator

Master MCU

8-bit Shift RegisterMISOMISO

MOSI MOSI

SCK SCK

VSS

VDD SSSS

Slave MCU

1. The SPI module should be configured as a Master before it is enabled (SPEN set). Also
the Master SPI should be configured before the Slave SPI. 

2. The SPI module should be configured as a Slave before it is enabled (SPEN set). 
3. The maximum frequency of the SCK for an SPI configured as a Slave is the bus clock

speed. 
4. Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN =’0’). 
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AT89C5131
If the AA bit is reset during a transfer, SSLC will transmit the last byte of the transfer and
enter state C0h or C8h. SSLC is switched to the not addressed slave mode and will
ignore the master receiver if it continues the transfer. Thus the master receiver receives
all 1’s as serial data. While AA is reset, SSLC does not respond to its own slave
address. However, the TWI bus is still monitored and address recognition may be
resume at any time by setting AA. This means that the AA bit may be used to tempo-
rarily isolate SSLC from the TWI bus.

Miscellaneous States There are two SSCS codes that do not correspond to a define SSLC hardware state
(see Table 86). These codes are discuss hereafter.

Status F8h indicates that no relevant information is available because the serial interrupt
flag is not set yet. This occurs between other states and when SSLC is not involved in a
serial transfer.

Status 00h indicates that a bus error has occurred during an SSLC serial transfer. A bus
error is caused when a START or a STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions happen during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, SI is set. To
recover from a bus error, the STO flag must be set and SI must be cleared. This causes
SSLC to enter the not addressed slave mode and to clear the STO flag (no other bits in
SSCON are affected). The SDA and SCL lines are released and no STOP condition is
transmitted.

Notes SSLC interfaces to the external TWI bus via two port pins: SCL (serial clock line) and
SDA (serial data line). To avoid low level asserting on these lines when SSLC is
enabled, the output latches of SDA and SLC must be set to logic 1.

Bit Frequency (kHz)

CR2 CR1 CR0 FOSCA= 12 MHz FOSCA = 16 MHz FOSCA divided by

0 0 0 47 62.5 256

0 0 1 53.5 71.5 224

0 1 0 62.5 83 192

0 1 1 75 100 160

1 0 0 12.5 16.5 960

1 0 1 100 - 120

1 1 0 - - 60

1 1 1 0.5 < . < 62.5 0.67 < . < 83

96 · (256 - reload 
value Timer 1)

(reload value range: 
0-254 in mode 2)
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AT89C5131
Figure 52.  Format and State in the Slave Transmitter Mode

Table 83.  Status for Miscellaneous States

S SLA R A Data A Data P or SA

A8h B8h C0h

P or SA

C8h

All 1’s

A

B0h

Data A

n

From master to slave

From slave to master

Any number of data bytes and their associated
acknowledge bits

This number (contained in SSCS) corresponds
to a defined state of the TWI bus

Reception of the 
own slave address
and one or more 
data bytes

Arbitration lost as master
and addressed as slave

Last data byte transmitted.
Switched to not addressed
slave (AA=0)

Status Code 
(SSCS)

Status of the TWI bus 
and TWI hardware

Application Software Response

Next action taken by 
TWI softwareTo/From SSDAT

To SSCON

S
T
A

S
T
O

S
I

A
A

F8h
No relevant state 

information available; 
SI= 0

No SSDAT action
No SSCON 

action
Wait or proceed current 
transfer

00h
Bus error due to an 

illegal START or STOP 
condition

No SSDAT action 0 1 0 X

Only the internal 
hardware is affected, no 
STOP condition is sent on 
the bus. In all cases, the 
bus is released and STO 
is reset
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Registers
Table 84.  SSCON Register

SSCON - Synchronous Serial Control Register (93h)

7 6 5 4 3 2 1 0

CR2 SSIE STA STO SI AA CR1 CR0

Bit 
Number

Bit 
Mnemonic Description

7 CR2
Control Rate bit 2
See .

6 SSIE
Synchronous Serial Interface Enable bit
Clear to disable SSLC.
Set to enable SSLC.

5 STA
Start flag
Set to send a START condition on the bus.

4 ST0
Stop flag
Set to send a STOP condition on the bus.

3 SI
Synchronous Serial Interrupt flag
Set by hardware when a serial interrupt is requested.
Must be cleared by software to acknowledge interrupt.

2 AA

Assert Acknowledge flag
Clear in master and slave receiver modes, to force a not acknowledge (high level 
on SDA).
Clear to disable SLA or GCA recognition.
Set to recognise SLA or GCA (if GC set) for entering slave receiver or transmitter 
modes.
Set in master and slave receiver modes, to force an acknowledge (low level on 
SDA).
This bit has no effect when in master transmitter mode.

1 CR1
Control Rate bit 1
See Table

0 CR0
Control Rate bit 0
See Table

Table 85.  SSDAT (095h) - Synchronous Serial Data Register (read/write)

SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

7 6 5 4 3 2 1 0

Bit 
Number

Bit 
Mnemonic Description

7 SD7 Address bit 7 or Data bit 7.

6 SD6 Address bit 6 or Data bit 6.

5 SD5 Address bit 5 or Data bit 5.

4 SD4 Address bit 4 or Data bit 4.

3 SD3 Address bit 3 or Data bit 3.

2 SD2 Address bit 2 or Data bit 2.
112 AT89C5131
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USB Controller

Introduction The AT89C5131 implements a USB device controller supporting full speed data transfer
in accordance with the USB 1.1 and 2.0 Specifications. In addition to the default control
endpoint 0, it provides 6 other endpoints, which can be configured in control, bulk, inter-
rupt or isochronous modes:

•  Endpoint 0:32-byte FIFO, default control endpoint

•  Endpoint 1, 2, 3: 32-byte FIFO

•  Endpoint 4, 5: 2 x 64-byte Ping-pong FIFO

•  Endpoint 6: 2 x 512-byte Ping-pong FIFO

This allows the firmware to be developed conforming to most USB device classes, for
example:

• USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport, Revision 1.0 - 
December 14, 1998

• USB Mass Storage Class Bulk-only Transport, Revision 1.0 - September 31, 1999

• USB Human Interface Device Class, Version 1.1 - April 7, 1999

• USB Device Firmware Upgrade Class, Revision 1.0 - May 13, 1999

USB Mass Storage Classes

USB Mass Storage Class CBI 
Transport

Within the CBI framework, the control endpoint is used to transport command blocks as
well as to transport standard USB requests. One Bulk-out endpoint is used to transport
data from the host to the device. One Bulk-in endpoint is used to transport data from the
device to the host. And one interrupt endpoint may also be used to signal command
completion (protocol 0) but it is optional and may not be used (protocol 1).

The following configuration adheres to these requirements:

• Endpoint 0: 8 bytes, Control In-Out

• Endpoint 4: 64 bytes, Bulk-out

• Endpoint 5: 64 bytes, Bulk-in

• Endpoint 3: 8 bytes, Interrupt In

USB Mass Storage Class Bulk-
only Transport

Within the Bulk-only framework, the Control endpoint is only used to transport class-
specific and standard USB requests for device set-up and configuration. One Bulk-out
endpoint is used to transport commands and data from the host to the device. One Bulk-
in endpoint is used to transport status and data from the device to the host. No interrupt
endpoint is needed.

The following configuration adheres to these requirements:

• Endpoint 0: 8 bytes, Control In-Out

• Endpoint 4: 64 bytes, Bulk-out

• Endpoint 5: 64 bytes, Bulk-in

• Endpoint 3: not used
114 AT89C5131
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AT89C5131
USB Device Firmware 
Upgrade (DFU)

The USB Device Firmware Update (DFU) protocol can be used to upgrade the on-chip
Flash memory of the AT89C5131. This allows the implementation of product enhance-
ments and patches to devices that are already in the field. Two different configurations
and descriptor sets are used to support DFU functions. The Run-Time configuration co-
exists with the usual functions of the device, which may be USB Mass Storage for the
AT89C5131. It is used to initiate DFU from the normal operating mode. The DFU config-
uration is used to perform the firmware update after device re-configuration and USB
reset. It excludes any other function. Only the default control pipe (endpoint 0) is used to
support DFU services in both configurations.

The only possible value for the wMaxPacketSize in the DFU configuration is 32 bytes,
which is the size of the FIFO implemented for endpoint 0.

Description The USB device controller provides the hardware that the AT89C5131 needs to inter-
face a USB link to a data flow stored in a double port memory (DPRAM).

The USB controller requires a 48 MHz ±0.25% reference clock, which is the output of
the AT89C5131 PLL (see Section “PLL”, page 20) divided by a clock prescaler. This
clock is used to generate a 12 MHz Full-speed bit clock from the received USB differen-
tial data and to transmit data according to full speed USB device tolerance. Clock
recovery is done by a Digital Phase Locked Loop (DPLL) block, which is compliant with
the jitter specification of the USB bus.

The Serial Interface Engine (SIE) block performs NRZI encoding and decoding, bit stuff-
ing, CRC generation and checking, and the serial-parallel data conversion.

The Universal Function Interface (UFI) realizes the interface between the data flow and
the Dual Port RAM. 

Figure 53.  USB Device Controller Block Diagram
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AT89C5131
Function Interface Unit (FIU) The Function Interface Unit provides the interface between the AT89C5131 and the SIE.
It manages transactions at the packet level with minimal intervention from the device
firmware, which reads and writes the endpoint FIFOs.

Figure 55.  UFI Block Diagram

Figure 56.  Minimum Intervention from the USB Device Firmware
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Bulk/Interrupt IN Transactions 
in Ping-pong Mode

Figure 62.  Bulk/Interrupt IN Transactions in Ping-pong Mode

An endpoint will be first enabled and configured before being able to send Bulk or Inter-
rupt packets.

The firmware will fill the FIFO bank 0 with the data to be sent and set the TXRDY bit in
the UEPSTAX register to allow the USB controller to send the data stored in FIFO at the
next IN request concerning the endpoint. The FIFO banks are automatically switched,
and the firmware can immediately write into the endpoint FIFO bank 1.

When the IN packet concerning the bank 0 has been sent and acknowledged by the
Host, the TXCMPL bit is set by the USB controller. This triggers a USB interrupt if
enabled. The firmware will clear the TXCMPL bit before filling the endpoint FIFO bank 0
with new data. The FIFO banks are then automatically switched.

When the IN packet concerning the bank 1 has been sent and acknowledged by the
Host, the TXCMPL bit is set by the USB controller. This triggers a USB interrupt if
enabled. The firmware will clear the TXCMPL bit before filling the endpoint FIFO bank 1
with new data.

The bank switch is performed by the USB controller each time the TXRDY bit is set by
the firmware. Until the TXRDY bit has been set by the firmware for an endpoint bank,
the USB controller will answer a NAK handshake for each IN requests concerning this
bank.

Note that in the example above, the firmware clears the Transmit Complete bit (TXC-
MPL) before setting the Transmit Ready bit (TXRDY). This is done in order to avoid the
firmware to clear at the same time the TXCMPL bit for bank 0 and the bank 1.

The firmware will never write more bytes than supported by the endpoint FIFO.
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Table 100.  UEPRST Register
UEPRST (S:D5h)
USB Endpoint FIFO Reset Register

Reset Value = 00h

7 6 5 4 3 2 1 0

- EP6RST EP5RST EP4RST EP3RST EP2RST EP1RST EP0RST

Bit Number
Bit 

Mnemonic Description

7 -
Reserved
The value read from this bit is always 0. Do not set this bit.

6 EP6RST

Endpoint 6 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

5 EP5RST

Endpoint 5 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

4 EP4RST

Endpoint 4 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

3 EP3RST

Endpoint 3 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

2 EP2RST

Endpoint 2 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

1 EP1RST

Endpoint 1 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.

0 EP0RST

Endpoint 0 FIFO Reset
Set this bit and reset the endpoint FIFO prior to any other operation, upon 
hardware reset or when an USB bus reset has been received.
Then, clear this bit to complete the reset operation and start using the FIFO.
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Power Management

Idle Mode An instruction that sets PCON.0 indicates that it is the last instruction to be executed
before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to
the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is
preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word,
Accumulator and all other registers maintain their data during Idle. The port pins hold
the logical states they had at the time Idle was activated. ALE and PSEN hold at logic
high level.

There are two ways to terminate the Idle mode. Activation of any enabled interrupt will
cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will
be serviced, and following RETI the next instruction to be executed will be the one fol-
lowing the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred dur-
ing normal operation or during an Idle. For example, an instruction that activates Idle
can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt
service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock
oscillator is still running, the hardware reset needs to be held active for only two
machine cycles (24 oscillator periods) to complete the reset.

Power-down Mode To save maximum power, a power-down mode can be invoked by software (refer to
Table 13, PCON register). 

In power-down mode, the oscillator is stopped and the instruction that invoked power-
down mode is the last instruction executed. The internal RAM and SFRs retain their
value until the power-down mode is terminated. VCC can be lowered to save further
power. Either a hardware reset or an external interrupt can cause an exit from power-
down. To properly terminate power-down, the reset or external interrupt should not be
executed before VCC is restored to its normal operating level and must be held active
long enough for the oscillator to restart and stabilize.

Only:

• external interrupt INT0,

• external interrupt INT1,

• Keyboard interrupt and

• USB Interrupt

are useful to exit from power-down. For that, interrupt must be enabled and configured
as level or edge sensitive interrupt input. When Keyboard Interrupt occurs after a power
down mode, 1024 clocks are necessary to exit to power-down mode and enter in oper-
ating mode.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as
detailed in Figure 69. When both interrupts are enabled, the oscillator restarts as soon
as one of the two inputs is held low and power-down exit will be completed when the first
input is released. In this case, the higher priority interrupt service routine is executed.
Once the interrupt is serviced, the next instruction to be executed after RETI will be the
one following the instruction that put AT89C5131 into power-down mode.
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Figure 69.  Power-down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external
interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal
RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence
is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and
idle mode is not entered.

This table shows the state of ports during idle and power-down modes.

Note: 1. Port 0 can force a 0 level. A “one” will leave port floating.

INT1

INT0

XTALA

Power-down Phase Oscillator restart Phase Active PhaseActive Phase

or
XTALB

Table 105.  State of Ports

Mode
Program 
Memory ALE PSEN PORT0 PORT1 PORT2 PORT3 PORTI2

Idle Internal 1 1
Port 

Data(1)
Port 
Data

Port Data Port Data
Port 
Data

Idle External 1 1 Floating
Port 
Data

Address Port Data
Port 
Data

Power-down Internal 0 0
Port 

Data(1)
Port 
Data

Port Data Port Data
Port 
Data

Power-down External 0 0 Floating
Port 
Data

Port Data Port Data
Port 
Data
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