

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24j10-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nama	Pi	n Numt	ber	Pin	Buffer	Description		
Fin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTA is a bidirectional I/O port.		
RA0/AN0	2	19	19					
RA0				I/O	TTL	Digital I/O.		
AN0				I	Analog	Analog Input 0.		
RA1/AN1	3	20	20					
RA1				I/O	TTL	Digital I/O.		
AN1				I	Analog	Analog Input 1.		
RA2/AN2/VREF-/CVREF	4	21	21					
RA2				I/O	TTL	Digital I/O.		
AN2				I	Analog	Analog Input 2.		
VREF-					Analog	A/D reference voltage (low) input.		
CVREF				0	Analog	Comparator reference voltage output.		
RA3/AN3/VREF+	5	22	22					
RA3				I/O	TTL	Digital I/O.		
AN3				I	Analog	Analog Input 3.		
VREF+				I	Analog	A/D reference voltage (high) input.		
RA5/AN4/SS1/C2OUT	7	24	24					
RA5				I/O	TTL	Digital I/O.		
AN4				I	Analog	Analog Input 4.		
SS1					TTL	SPI slave select input.		
C2001				0	—	Comparator 2 output.		
Legend: TTL = TTL co	mpatibl	e input			C	CMOS = CMOS compatible input or output		
ST = Schmit	ST = Schmitt Trigger input with CMOS levels I = Input							
O = Output					P	' = Power		

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Dia Mara	Pi	n Numb	ber	Pin	Buffer	Description							
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description							
						PORTC is a bidirectional I/O port.							
RC0/T1OSO/T1CKI	15	34	32										
RC0				I/O	ST	Digital I/O.							
T1OSO				0		Timer1 oscillator output.							
T1CKI				I	ST	Timer1 external clock input.							
RC1/T1OSI/CCP2	16	35	35										
RC1				I/O	ST	Digital I/O.							
T10SI				I	CMOS	Timer1 oscillator input.							
CCP2 ⁽²⁾				I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.							
RC2/CCP1/P1A	17	36	36										
RC2				I/O	ST	Digital I/O.							
CCP1				1/0	SI	Capture 1 input/Compare 1 output/PWM1 output.							
PIA				0									
RC3/SCK1/SCL1	18	37	37		oT								
RC3				1/0	SI	Digital I/O.							
SUKI				1/0	51	Synchronous serial clock input/output for							
SCI 1				1/0	ST	Synchronous serial clock input/output for							
OOLI				"0	01	I^2C^{TM} mode.							
RC4/SDI1/SDA1	23	42	42										
RC4	20	12		I/O	ST	Digital I/O.							
SDI1					ST	SPI data in.							
SDA1				I/O	ST	I ² C data I/O.							
RC5/SDO1	24	43	43										
RC5		_	_	I/O	ST	Digital I/O.							
SDO1				0		SPI data out.							
RC6/TX/CK	25	44	44										
RC6				I/O	ST	Digital I/O.							
TX				0		EUSART asynchronous transmit.							
СК				I/O	ST	EUSART synchronous clock (see related RX/DT).							
RC7/RX/DT	26	1	1										
RC7				I/O	ST	Digital I/O.							
RX				I	ST	EUSART asynchronous receive.							
DT				I/O	ST	EUSART synchronous data (see related TX/CK).							
Legend: TTL = TTL co	ompatibl	e input			C	CMOS = CMOS compatible input or output							
ST = Schmi	tt Trigge	er input	with CM	OS lev	els l	= Input							
O = Output	t				F	O = Output P = Power							

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- · EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as 11. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP		RBIP
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
hit 7		P Pullun Engl	ala hit				
		B Full-up Enai R pull-ups are	disabled				
	0 = PORTB p	oull-ups are ena	abled by individ	dual port latch v	values		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Select	t bit			
	1 = Interrupt	on rising edge	-				
	0 = Interrupt	on falling edge					
bit 5	INTEDG1: Ex	ternal Interrupt	: 1 Edge Select	t bit			
	1 = Interrupt	on rising edge					
		on failing eage					
bit 4		ternal Interrupt	2 Edge Select	t bit			
	1 = Interrupt	on fising edge on falling edge					
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TMROIP: TMF	R0 Overflow Int	errupt Priority	bit			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 1	Unimplement	ted: Read as '	כ'				
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	:			
	1 = High prior	rity					
	0 = Low prior	ity					
Note: In	nterrupt flag bits	are set when	an interrupt co	ndition occurs	regardless of t	the state of its	corresponding
е	nable bit or the c	global interrupt	enable bit. Use	er software sho	uld ensure the	appropriate int	errupt flag bits
а	re clear prior to e	enabling an inte	errupt. This fea	ature allows for	software pollin	g.	

INTCON2: INTERRUPT CONTROL REGISTER 2 REGISTER 9-2:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
RCON	IPEN	—	CM	RI	TO	PD	POR	BOR	46
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
TRISB	PORTB Da	ata Direction	Control Regi	ster					50
TRISC	PORTC Data Direction Control Register								50
TMR2	Timer2 Register								48
PR2	Timer2 Period Register								48
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	48
CCPR1L	Capture/Co	ompare/PWN	I Register 1	Low Byte					49
CCPR1H	Capture/Co	ompare/PWN	1 Register 1	High Byte					49
CCP1CON	P1M1 ⁽¹⁾	P1M0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	49
CCPR2L	Capture/Co	ompare/PWN	I Register 2	Low Byte					49
CCPR2H	Capture/Compare/PWM Register 2 High Byte							49	
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	49
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾	49
ECCP1DEL	PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾	49

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

15.4.6 PROGRAMMABLE DEAD-BAND DELAY

Note:	Programmable	de	ad-band	delay	is	not
	implemented	in	28-pin	devices	;	with
	standard CCP	mod	dules.			

In half-bridge applications, where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shootthrough current*) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the nonactive state to the active state. See Figure 15-4 for an illustration. Bits PDC<6:0> of the ECCP1DEL register (Register 15-2) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc). These bits are not available in 28-pin devices as the standard CCP module does not support half-bridge operation.

15.4.7 ENHANCED PWM AUTO-SHUTDOWN

When the ECCP1 is programmed for any of the Enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the Enhanced PWM output pins into a defined shutdown state when a shutdown event occurs.

A shutdown event can be caused by either of the comparator modules, a low level on the Fault input pin (FLT0) or any combination of these three sources. The comparators may be used to monitor a voltage input proportional to a current being monitored in the bridge circuit. If the voltage exceeds a threshold, the comparator switches state and triggers a shutdown. Alternatively, a low digital signal on FLT0 can also trigger a shutdown. The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS<2:0> bits (bits<6:4> of the ECCP1AS register).

When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC<1:0> and PSSBD<1:0> bits (ECCPAS<3:0>). Each pin pair (P1A/P1C and P1B/P1D) may be set to drive high, drive low or be tri-stated (not driving). The ECCPASE bit (ECCP1AS<7>) is also set to hold the Enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared.

If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	x = Bit is unkn	iown	
bit 7	PRSEN: PWN	A Restart Enab	le bit				
	1 = Upon aut the PWM	o-shutdown, the	e ECCPASE b atically	it clears automa	tically once the	e shutdown eve	ent goes away;
	0 = Upon aut	o-shutdown, E	CCPASE must	be cleared in s	oftware to resta	art the PWM	
bit 6-0	PDC<6:0>: P	WM Delay Cou	nt bits ⁽¹⁾				
Delay time, in number of Fosc/4 (4 * Tosc) cycles, between the scheduled and actual time for a PWM signal to transition to active.							

REGISTER 15-2: ECCP1DEL: PWM DEAD-BAND DELAY REGISTER

Note 1: Reserved on 28-pin devices; maintain these bits clear.

16.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit (SSPxCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

16.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 04h). When the \overline{SSx} pin is low, transmission and reception are enabled and the

SDOx pin is driven. When the SSx pin goes high, the SDOx pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with SSx pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the SSx pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SSx pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDOx pin can be connected to the SDIx pin. When the SPI needs to operate as a receiver, the SDOx pin can be configured as an input. This disables transmissions from the SDOx. The SDIx can always be left as an input (SDIx function) since it cannot create a bus conflict.

FIGURE 16-4: SLAVE SYNCHRONIZATION WAVEFORM

FIGURE 17-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 17-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	49
TXREG	EUSART T	ransmit Reg	jister						49
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	49
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	49
SPBRGH	BRGH EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	Baud Rate G	enerator Re	egister Low	Byte				49

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7						-	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D 1 = Right jus 0 = Left justi	Result Format S stified fied	elect bit				
bit 6	Unimpleme	nted: Read as '	o'				
bit 5-3	ACQT<2:0>	: A/D Acquisition	n Time Select	bits			
	111 = 20 TAI 110 = 16 TAI 101 = 12 TAI 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD	D D D (1)					
bit 2-0	ADCS<2:0> 111 = FRC (c 110 = Fosc/ 101 = Fosc/ 001 = Fosc/ 011 = FRC (c 010 = Fosc/ 001 = Fosc/ 000 = Fosc/	: A/D Conversio clock derived fro /64 /16 /4 clock derived fro /32 /2	n Clock Select m A/D RC osc m A/D RC osc	t bits cillator) ⁽¹⁾ cillator) ⁽¹⁾			

REGISTER 18-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

19.2 Comparator Operation

A single comparator is shown in Figure 19-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input, VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input, VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 19-2 represent the uncertainty due to input offsets and response time.

19.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 19-2).

19.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

19.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 20.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM<2:0> = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

19.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 24.0 "Electrical Characteristics").

19.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RB5 and RA5 I/O pins. When enabled, multiplexors in the output path of the RB5 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 19-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RB5 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 20-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

20.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 20-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 24.0 "Electrical Characteristics"**.

20.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

20.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

20.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 20-2 shows an example buffering technique.

21.0 SPECIAL FEATURES OF THE CPU

PIC18F45J10 family devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- · Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- · Fail-Safe Clock Monitor
- Two-Speed Start-up
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 3.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, the PIC18F45J10 family of devices have a configurable Watchdog Timer which is controlled in software.

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

21.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h. A complete list is shown in Table 21-1. A detailed explanation of the various bit functions is provided in Register 21-1 through Register 21-8.

21.1.1 CONSIDERATIONS FOR CONFIGURING THE PIC18F45J10 FAMILY DEVICES

Unlike most PIC18 microcontrollers, devices of the PIC18F45J10 family do not use persistent memory registers to store configuration information. The configuration bytes are implemented as volatile memory which means that configuration data must be programmed each time the device is powered up.

Configuration data is stored in the four words at the top of the on-chip program memory space, known as the Flash Configuration Words. It is stored in program memory in the same order shown in Table 21-1, with CONFIG1L at the lowest address and CONFIG3H at the highest. The data is automatically loaded in the proper Configuration registers during device power-up.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data; this is to make certain that program code is not stored in this address when the code is compiled.

The volatile memory cells used for the Configuration bits always reset to '1' on Power-on Resets. For all other type of Reset events, the previously programmed values are maintained and used without reloading from program memory.

The four Most Significant bits of CONFIG1H, CONFIG2H and CONFIG3H in program memory should also be '1111'. This makes these Configuration Words appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires a device Reset.

21.2 Watchdog Timer (WDT)

For PIC18F45J10 family devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexor, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes) depending on voltage, temperature and Watchdog postscaler. The WDT and postscaler are cleared whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

FIGURE 21-1: WDT BLOCK DIAGRAM

2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

21.2.1 CONTROL REGISTER

The WDTCON register (Register 21-9) is a readable and writable register. The SWDTEN bit enables or disables WDT operation.

REGISTER 21-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER

u-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0 **SWDTEN:** Software Controlled Watchdog Timer Enable bit⁽¹⁾

1 = Watchdog Timer is on

0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 21-2:SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	48
WDTCON		_	—	—	—	_	_	SWDTEN	48

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

BNC	;	Branch if	Not Carry		BNN		Branch if	f Not Ne	gative	
Synta	ax:	BNC n			Syntax:		BNN n			
Oper	ands:	-128 ≤ n ≤ 1	127		Operands	s:	-128 ≤ n ≤	127		
Oper	ation:	if Carry bit i (PC) + 2 + 2	s '0', 2n → PC		Operation	n:	if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC			
Statu	is Affected:	None			Status Af	fected:	None			
Enco	oding:	1110	0011 nn	nn nnnn	Encoding	j:	1110	0111	nnnn	nnnn
Desc	ription:	If the Carry will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	bit is '0', then nplement num e PC. Since th d to fetch the the new addre n. This instruct instruction.	the program ber, '2n', is e PC will have next ess will be tion is then a	Descriptio	on:	If the Nega program w The 2's co added to th incremente instruction PC + 2 + 2 two-cycle i	ative bit is ill branch mplement he PC. Sir ed to fetch the new n. This in nstruction	'0', ther t number nce the F n the new address structior	n the r, '2n', is PC will have ct will be n is then a
Word	ls:	1			Words:		1			
Cycle	es:	1(2)			Cycles:		1(2)			
Q C If Ju	ycle Activity: imp:				Q Cycle If Jump:	Activity:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	Write to PC	[Decode	Read literal 'n'	Proce Data	ess V a	Vrite to PC
	No operation	No operation	No operation	No operation	ot	No peration	No operation	No operat	tion	No operation
lf No	o Jump:				If No Jur	mp:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Proce Data	ess a	No operation
<u>Exan</u>	nple: PC After Instruction If Carry PC If Carry PC	HERE tion = add on = 0; = add = 1; = add	BNC Jump dress (HERE dress (Jump dress (HERE)) + 2)	<u>Example</u> : Befo Afte	ore Instruc PC r Instructio If Negativ PC If Negativ PC	HERE tion = ac on ve = 0; ve = 0; ve = 1; = ac	BNN ddress (1 ddress (1 ddress (1	Jump HERE) Jump) HERE +	2)

	LW	Multiply	Multiply Literal with W						
Synt	ax:	MULLW	k						
Oper	ands:	$0 \le k \le 255$	$0 \le k \le 255$						
Oper	ation:	(W) x k \rightarrow	PRODH:F	PRODL					
Statu	is Affected:	None							
Enco	oding:	0000	1101	kkkk	kkkk				
Desc	cription:	An unsigned multiplication is carried out between the contents of W and th 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL registe pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero resu is possible but not detected.							
Word	ds:	1							
Cycle	es:	1							
Q Cycle Activity:									
. U									
QU	Q1	Q2	Q3		Q4				
	Q1 Decode	Q2 Read literal 'k'	Q3 Proces Data	ss P F	Q4 Write egisters RODH: PRODL				
Exar	Q1 Decode	Q2 Read literal 'k'	Q3 Proces Data	ss re P F	Q4 Write egisters RODH: PRODL				
Exar	Q1 Decode nple: Before Instruc	Q2 Read literal 'k' ^{MULLW}	Q3 Proces Data	ss P F	Q4 Write egisters RODH: PRODL				

MULWF	Multiply	Multiply W with f					
Syntax:	MULWF	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0 , 1]	5					
Operation:	(W) x (f) –	→ PRODH:P	RODL				
Status Affected:	None						
Encoding:	0000	001a f	fff	ffff			
Description:	An unsign out betwee register file result is st register pa high byte. unchange None of th Note that 1 possible ir result is pr If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates i Addressin $f \le 95$ (5FH ''Byte-Oric Instructio Mode'' for	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset					
Words:	1	uctans.					
Cycles:	1						
	I						
	02	03		04			
Decode	Read	Process		Write			
	register 'f'	Data	re P F	egisters RODH: PRODL			
Example:	MULWF	REG, 1					
Before Instruc	tion						
W REG PRODH PRODL After Instructio	= C4 = B5 = ? = ?	łh ih					

W	=	C4h
REG	=	B5h
PRODH	=	8Ah
PRODL	=	94h

POF)	Рор Тор	Pop Top of Return Stack						
Synta	ax:	POP	POP						
Oper	ands:	None	None						
Operation: $(TOS) \rightarrow bit bucket$									
Statu	is Affected:	None							
Enco	oding:	0000	0000	000	0	0110			
Description: The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.									
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	5	Q4				
	Decode	No operation	POP 1 valu	TOS le	ор	No peration			
<u>Exar</u>	nple:	POP GOTO	NEW						
Before Instructio TOS Stack (1 le		tion level down)	= (= (031A2 14332	2h h				
	After Instructic TOS PC	n	= (= N)14332 NEW	h				

PUS	6H	Push Top	Push Top of Return Stack						
Synta	ax:	PUSH	PUSH						
Oper	ands:	None							
Oper	ation:	$(PC + 2) \rightarrow$	TOS						
Statu	is Affected:	None							
Enco	oding:	0000	0000	000	0	0101			
Description: The PC + 2 is pushed onto the top o the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing software stack by modifying TOS an then pushing it onto the return stack.						e top of TOS stack. enting a OS and stack.			
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	PUSH PC + 2 onto return stack	l ope	No eration	op	No peration			
Exan	nple:	PUSH							
	Before Instruc TOS PC	tion	= =	345Ah 0124h					
	After Instructio PC TOS Stack (1	on level down)	= = =	0126h 0126h 345Ah					

	=	0126h
down)	=	345Ah

CAL	.LW	Subroutir	Subroutine Call Using WREG						
Synta	ax:	CALLW							
Oper	ands:	None							
Oper	ration:	$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	TOS, ,, → PCH, → PCU						
Statu	is Affected:	None	None						
Enco	oding:	0000 0000 0001 0100							
		pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, STATUS or BSR.							
Word	ds:	1							
Cycle	es:	2							
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read WREG	PUSH PC to stack	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
<u>Exan</u>	nple: Before Instruc PC PCLATH PCLATU W	HERE = address = 10h = 00h = 06h	CALLW (HERE)						

MO	/SF	Move Inc	Move Indexed to f						
Synta	ax:	MOVSF	MOVSF [z _s], f _d						
Oper	ands:	$0 \le z_s \le 12$ $0 \le f_d \le 40$	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$						
Oper	ation:	((FSR2) +	$z_s) \rightarrow f_d$						
Statu	s Affected:	None							
Enco 1st w 2nd v	ding: ord (source) vord (destin.)	1110 1111	1110 1011 0zzz zz 1111 ffff ffff ff						
Desc	ription:	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h.							
Word	s:	2							
Cycle	es:	2							
QC	vcle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Determine source addr	Detern	nine addr	Read source reg	1			
	Decode	No operation No dummy read	No opera) tion	Write register 'f' (dest)				
<u>Exan</u>	nple:	MOVSF	[05h],	REG2					
	Before Instruc	tion _ o	Ъ						
	Contents of 85h REG2	= 3: = 1 [·]	3h Ih						
	After Instruction FSR2	on = 80	Dh						
	of 85h REG2	= 3: = 3:	3h 3h						

22.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F45J10 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

24.1 DC Characteristics: Supply Voltage PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial)

PIC18F4	5 J10 Fami strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
D001	Vdd	Supply Voltage	VDDCORE	—	3.6	V	PIC18LF4XJ10, PIC18LF2XJ10
D001	Vdd	Supply Voltage	2.7 ⁽¹⁾	_	3.6	V	PIC18F4X/2XJ10
D001B	VDDCORE	External Supply for Microcontroller Core	2.0	_	2.7	V	Valid only in parts designated "LF". See Section 21.3 "On-Chip Voltage Regulator" for details.
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	_	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	—	0.15	V	SeeSection 5.3 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 5.3 "Power-on Reset (POR)" for details
D005	VBOR	Brown-out Reset (BOR) Voltage	2.35	2.5	2.7	V	

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

24.2 DC Characteristics: Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

PIC18F45J10 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ⁽²⁾							
	All devices	6.2	14	mA	-40°C	VDD = 2.5V	Fosc = 4 MHz,	
		5.7	13	mA	+25°C		16 MHz internal	
		5.7	13	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	6.6	15	mA	-40°C		Fosc = 4 MHz,	
		6.1	14	mA	+25°C	VDD = 3.3V	16 MHz internal	
		6.1	14	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	11.0	22	mA	-40°C		Fosc = 10 MHz,	
		10.5	21	mA	+25°C	VDD = 2.5V	40 MHz internal	
		10.0	20	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	12.0	24	mA	-40°C		Fosc = 10 MHz,	
		11.5	23	mA	+25°C	VDD = 3.3V	40 MHz internal	
		11.0	22	mA	+85°C		(PRI_RUN HS+PLL)	

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.