

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 40MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 21                                                                          |
| Program Memory Size        | 16KB (8K x 16)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                                 |
| Data Converters            | A/D 10x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-VQFN Exposed Pad                                                         |
| Supplier Device Package    | 28-QFN (6x6)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f24j10t-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Pin Diagrams (Continued)**



| TOSU         —         —         —         Top-of-Stack Upper Byte (TOS-20:16>)        0         0000         47.53           TOSH         Top-of-Stack LOW Byte (TOS-7:58>)         0000         0000         47.53           STKPTR         STKVINF         —         Return Stack Pointer         00-0000         47.53           PCLATU         —         —         Holding Register for PC-415.8>         0000         0000         47.53           PCLATU         —         —         Holding Register for PC-415.8>         0000         0000         47.53           PCLATU         —         —         Ibit 1         Program Memory Table Pointer High Byte (TBLPTR<15.8)         0000         0000         47.74           TBLPTRU         Program Memory Table Pointer Low Byte (TBLPTR<15.8)         0000         0000         47.74           TBLATEN         Program Memory Table Pointer Low Byte (TBLPTR<20-)         0000         0000         47.74           TBLATEN         Program Memory Table Pointer Low Byte (TBLPTR         0000         0000         47.74           TBLATEN         Program Memory Table Pointer Low Byte (TBLPTR<20-)         0000         0000         47.74           TBLATEN         Program Memory Table Pointer Low Byte (TBLPTRC10-)         0000         0000                                                                                                                                                                                                                                                                                                                                                                                                                  | File Name | Bit 7                                                                                                                              | Bit 6                           | Bit 5           | Bit 4                                            | Bit 3          | Bit 2          | Bit 1           | Bit 0        | Value on<br>POR, BOR | Details<br>on page: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|--------------------------------------------------|----------------|----------------|-----------------|--------------|----------------------|---------------------|
| TOSH         Top-of-Stack High Byte (TOS         0000         0000         47, 53           TOSL         Top-of-Stack Low Byte (TOS         0000         0000         47, 53           STKPTR         STKPLU                                                                                                                                                                                                                                                                                                                                                                                                                              | TOSU      | _                                                                                                                                  | —                               | _               | Top-of-Stack                                     | Upper Byte (T  | OS<20:16>)     |                 |              | 0 0000               | 47, 53              |
| TOSL         Top-of-Stack Low Byte (TOS-7:0>         0000         0000         47, 53           STKPTR         STKPUL         STKUHF         —         Return Stack Pointer         00-0         0000         47, 53           PCLATU         —         —         Holding Register for PC<50:16>         0000         0000         47, 53           PCLATH         Holding Register for PC<15:8>         0000         0000         47, 53           PCLATU         —         —         Ibit 21         Program Memory Table Pointer High Byte (TBLPTR<15:8>)         0000         0000         47, 74           TBLPTRU         Program Memory Table Pointer Low Byte (TBLPTR<7:0>)         0000         0000         47, 74           TBLATA         Program Memory Table Pointer Low Byte (TBLPTR<7:0>)         0000         0000         47, 74           TROCN         GE/GIEH         PECIALU         xxxx xxxxx         47, 81           PRODH         Product Register Low Byte         xxxx xxxxx         47, 81           INTCON         GE/GIEH         PECIALU         INTEDG1         INTEDG2         —         TMROIP         INTIP         RBIP         1000         0000         47, 67           NDFD         Uses contents of FSR0 to address data memory - value of FSR0 notanged (not a physical                                                                                                                                                                                                                                                                                                                                                                                                                 | TOSH      | Top-of-Stack                                                                                                                       | High Byte (TO                   | S<15:8>)        | •                                                |                |                |                 |              | 0000 0000            | 47, 53              |
| STKFUR         STKFUL         STKFUL         STKFUL         STKFUL         O         0.00         0.00         47, 54           PCLATH         Holding Register for PC<15.8→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOSL      | Top-of-Stack                                                                                                                       | Low Byte (TO                    | S<7:0>)         |                                                  |                |                |                 |              | 0000 0000            | 47, 53              |
| PCLATH       —       Holding Register for PC<20:16>      0       0.000       47, 53         PCLAPH       Holding Register for PC<15.3>       0000       0000       47, 53         PCL       PC Low Byte (PC<7:0>)       0000       0000       47, 53         TBLPTRI       —       it       Program Memory Table Pointer Low Byte (TBLPTR<15:8>)       0000       0000       47, 74         TBLPTRI       Program Memory Table Pointer Low Byte (TBLPTR<7:0>)       0000       0000       47, 74         TABLAT       Program Memory Table Calct-       Viscon Byte (TBLPTR<7:0-)       0000       0000       47, 74         PRODL       Product Register High Byte       TMROIE       INTOIF       RBIF       0000       0000       47, 74         NTCON       GIE/GIEL       PEI/GIEL       TMROIE       INTOIDE       INTOID       RBIF       1111       1-1       47, 85         INTCON2       RBFDU       INTEPC0       INTEPC0       INTEPC1       INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STKPTR    | STKFUL                                                                                                                             | STKUNF                          | —               | Return Stack                                     | Pointer        |                |                 |              | 00-0 0000            | 47, 54              |
| PCLATH       Holding Register for PC<15:8>       0000       047, 53         PCL       PC Low Byte (PC<7:0>'       0000       0000       47, 53         SILPTRM       Program Memory Table Pointer High Byte (TBLPTR<15:8>'       0000       0000       47, 74         TBLPTRH       Program Memory Table Pointer Low Byte (TBLPTR<7:0>'       0000       0000       47, 74         TBLPTRH       Program Memory Table Pointer Low Byte (TBLPTR<7:0>'       0000       0000       47, 74         PRODH       Product Register Low Byte       *       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       × <t< td=""><td>PCLATU</td><td>—</td><td>_</td><td>_</td><td>Holding Regi</td><td>ster for PC&lt;20</td><td>):16&gt;</td><td></td><td></td><td>0 0000</td><td>47, 53</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCLATU    | —                                                                                                                                  | _                               | _               | Holding Regi                                     | ster for PC<20 | ):16>          |                 |              | 0 0000               | 47, 53              |
| PCL         PC Low Byte (PC-7:0>         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCLATH    | Holding Regis                                                                                                                      | ster for PC<15                  | :8>             |                                                  |                |                |                 |              | 0000 0000            | 47, 53              |
| TBL PTRU       -       bl 21       Program Memory Table Pointer Ugb Pyte (TBL PTR < 20:16>)      0000000       47, 74         TBL PTRL       Program Memory Table Pointer Ligh Byte (TBL PTR < 15:8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCL       | PC Low Byte (PC<7:0>)                                                                                                              |                                 |                 |                                                  |                |                |                 |              |                      | 47, 53              |
| TBLPTRH       Program Memory Table Pointer Ligh Byte (TBLPTR<15.8>)       0000 0000 47, 74         TBLPTRL       Program Memory Table Pointer Low Byte (TBLPTR<15.8>)       0000 0000 47, 74         TBLDTR       Program Memory Table Pointer Low Byte (TBLPTR<15.8>)       0000 0000 47, 74         PRODH       Product Register Ligh Byte       xxxx xxxx       47, 81         INTCON       GIF/GIEH       PEIE/GIEL       TMR0IE       INT0IE       RBPU       INT1FDC0       INT2D0       INTEDC0       INTEDC1       INTEDC2       —       TMR0IF       RINT0IF       RBIP       1011.1       -1       47, 85         INTCON3       INT2IP       INT1FD Q       INTEDC3       INTEDC2       —       TMR0IF       INT2IF       INT1IF       1.0       -0       47, 67         POSTINC0       Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)       N/A       47, 67         POSTDEC0       Uses contents of FSR0 to address data memory - value of FSR0 opst-incremented (not a physical register)       N/A       47, 67         PUSW0       Uses contents of FSR0 to address data memory - value of FSR0 opst-incremented (not a physical register)       N/A       47, 67         PUSW0       Uses contents of FSR0 to address data memory - value of FSR0 opst-incremented (not a physical register)       N/A       47, 6                                                                                                                                                                                                                                                                                                                                         | TBLPTRU   | —                                                                                                                                  | —                               | bit 21          | Program Mer                                      | nory Table Po  | inter Upper By | te (TBLPTR<2    | 20:16>)      | 00 0000              | 47, 74              |
| TBLPTRL       Program Memory Table Pointer Low Byte (TBLPTR<7:0>)       0000       0000       47, 74         TABLAT       Program Memory Table Lath       0000       0000       47, 74         PRODH       Product Register Low Byte       xxxx xxxxx       47, 81         PRODL       Product Register Low Byte       xxxx xxxxx       47, 81         INTCON       GIE/GIEH       PEIC/GIEL       TMR0IF       INTICP       RBIF       0000       0000       47, 74         INTCON       GIE/GIEH       PEIC/GIEL       TMR0IF       INTICP       RBIF       0000       0000       47, 85         INTCON       GIE/GIEH       PEIC/GIEL       TMR0IF       INTICP       RBIF       1111       -1       47, 86         INTCON       Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)       N/A       47, 67         POSTINCO       Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)       N/A       47, 67         PLUSW0       Value of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)       N/A       47, 67         PLUSW0       Value of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)       N/A       47, 67         PSR0L                                                                                                                                                                                                                                                                                                                                                                                                      | TBLPTRH   | Program Mer                                                                                                                        | nory Table Poi                  | nter High Byte  | e (TBLPTR<15                                     | 5:8>)          |                |                 |              | 0000 0000            | 47, 74              |
| TABLAT       Program Memory Table Latch       0000       47, 74         PRODI       Product Register High Byte       xxxx xxxx       47, 81         PRODL       Product Register Low Byte       xxxx xxxx       47, 81         INTCON       GE/GEH       PEIC/GEL       TMR0IE       INTDIE       RBIE       TMR0IF       INT0IF       RBIP       1111 -1-1       47, 86         INTCON2       RBPU       INTEDG0       INTEDG1       INTEDC2       —       TMR0IP       —       RBIP       1111 -1-1       47, 86         INTCON3       INT2IP       INT1P       —       INT2IE       INT1IE       _       INT0IF       RBIP       1111 -1-1       47, 86         INTCON3       Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)       N/A       47, 67         POSTINC0       Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PLUSW0       Uses contents of FSR0 to address data memory - value of FSR1 post-incremented (not a physical register)       N/A       47, 67         PSR0L1       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         PLUSW0       Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a p                                                                                                                                                                                                                                                                                                                                                                                              | TBLPTRL   | Program Mer                                                                                                                        | nory Table Poi                  | nter Low Byte   | (TBLPTR<7:0                                      | )>)            |                |                 |              | 0000 0000            | 47, 74              |
| PRODH       Product Register High Byte       xxxx       47, 81         PRODL       Product Register Low Byte       xxxx       47, 81         INTCON       GIE/GIEN       PIEIGAIEL       TMROIE       INTOE       RBI       TMROIF       INTOIF       RBI       111 1 -1.1       47, 85         INTCON3       INT2IP       INT1P       —       INT0E       RBI       —       INT0IF       RBIP       1111 1 -1.1       47, 85         INTCON3       INT2IP       INT1IP       —       INT2IE       INT1IE       —       INT2IF       INT1IF       11-0       0-00       47, 85         INDF0       Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)       N/A       47, 67         POSTIDC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PLUSW0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         FSR0H       —       —       —       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         VREG       Working Register       Vorking Register       Vorking Register       N/A       47, 67         INDF1                                                                                                                                                                                                                                                                                                                                                                                                                                           | TABLAT    | Program Mer                                                                                                                        | nory Table Lat                  | ch              |                                                  |                |                |                 |              | 0000 0000            | 47, 74              |
| PRODL         Product Register Low Byter         TMROIF         INTCON         GIE/GIEH         PEIE/GIEL         TMROIF         INTOIF         RBIF         0.000         0.000         47, 85           INTCON2         RBFU         INTEDG0         INTEDG1         INTEDG2         —         TMROIP         —         RBIF         1111         -1         47, 85           INTCON3         INT2IP         INTEDG0         INTEDG1         INTEDG2         —         TMROIP         —         RBIF         1111         -1         47, 87           INTCON3         INT2IP         INT1P         INT1P         INT1P         INT1P         N/A         47, 67           POSTINCO         Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)         N/A         47, 67           FSR0L         Indirect Data Memory Address Pointer 0 Low Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRODH     | Product Regi                                                                                                                       | ster High Byte                  |                 |                                                  |                |                |                 |              | xxxx xxxx            | 47, 81              |
| INTCON         GIE/GIEH         PEIE/GIEL         TMR0IE         INTOIC         RBIE         TMR0IF         INTOIF         RBIF         0000 000x         47, 85           INTCON2         RBPU         INTEDG0         INTEDG0         INTEDG2         —         TMR0IF         —         RBIP         1111 - 1-1         47, 85           INTCON3         INT2IP         INT1IP         —         INT2IE         INT1IE         —         INT2IF         INT1IF         11.0 0 -00         47, 87           INDF0         Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)         N/A         47, 67           POSTIDC0         Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           FSR0H         —         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRODL     | Product Regi                                                                                                                       | ster Low Byte                   |                 |                                                  |                |                |                 |              | xxxx xxxx            | 47, 81              |
| INTCON2         RBPU         INTEDG0         INTEDG1         INTEDG2         —         TMR0IP         —         RBIP         1111 -1-1         47, 86           INTCON3         INT2IP         INT1IP         —         INT2IE         INT1IF         —         INT2IF         INT1IF         11-0         0-00         47, 87           INDF0         Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)         N/A         47, 67           POSTINC0         Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)         N/A         47, 67           POSTDEC0         Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           FSR0H         —         —         Indirect Data Memory Address Pointer 0 Low Byte         xxxxx xxxx         47, 67           VBEG         Working Register         xxxx         xxxx         47, 67           POSTINC1         Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)         N/A         47, 67           POSTINC1         Uses contents of FSR1 to address data memor                                                                                                                                                                                                                                                                                                      | INTCON    | GIE/GIEH                                                                                                                           | PEIE/GIEL                       | TMR0IE          | INT0IE                                           | RBIE           | TMR0IF         | INT0IF          | RBIF         | 0000 000x            | 47, 85              |
| INTCON3         INT2IP         INT1IP         INT2IE         INT1IE         INT1IE         INT2IF         INT1IF         11-0         0-00         47, 87           INDF0         Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)         N/A         47, 67           POSTIDEC0         Uses contents of FSR0 to address data memory – value of FSR0 post-faceremented (not a physical register)         N/A         47, 67           POSTIDEC0         Uses contents of FSR0 to address data memory – value of FSR0 post-faceremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           PLUSW0         Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)         N/A         47, 67           PSR0H         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INTCON2   | RBPU                                                                                                                               | INTEDG0                         | INTEDG1         | INTEDG2                                          | _              | TMR0IP         | _               | RBIP         | 1111 -1-1            | 47, 86              |
| INDF0       Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)       N/A       47, 67         POSTINC0       Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)       N/A       47, 67         POSTDC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PREINC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PREINC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         FSR0H       —       —       —       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         VBREG       Working Register       xxxx xxxx       47, 67       xxxx xxxx       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 prost-incremented (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 prost-incremented (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 prost-incremented (not a physical register)       N/A       47, 67         POSTINC1       Uses conten                                                                                                                                                                                                                                             | INTCON3   | INT2IP                                                                                                                             | INT1IP                          | _               | INT2IE                                           | INT1IE         | _              | INT2IF          | INT1IF       | 11-0 0-00            | 47, 87              |
| POSTINC0       Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)       N/A       47, 67         POSTDEC0       Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)       N/A       47, 67         PREINC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PLUSW0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         FSR0H       —       —       —       Indirect Data Memory Address Pointer 0 Low Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INDF0     | Uses content                                                                                                                       | s of FSR0 to a                  | iddress data n  | nemory – valu                                    | e of FSR0 not  | changed (not   | a physical reg  | ister)       | N/A                  | 47, 67              |
| POSTDEC0       Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)       N/A       47, 67         PREINC0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PLUSW0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         FSR0H       —       —       —       Indirect Data Memory Address Pointer 0 Low Byte       xxxxx       47, 67         FSR0L       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         WREG       Working Register       xxxx xxxx       47, 67         INDF1       Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)       N/A       47, 67         POSTIDC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) <t< td=""><td>POSTINC0</td><td>Uses content</td><td>s of FSR0 to a</td><td>iddress data n</td><td>nemory – valu</td><td>e of FSR0 pos</td><td>t-incremented</td><td>(not a physica</td><td>al register)</td><td>N/A</td><td>47, 67</td></t<> | POSTINC0  | Uses content                                                                                                                       | s of FSR0 to a                  | iddress data n  | nemory – valu                                    | e of FSR0 pos  | t-incremented  | (not a physica  | al register) | N/A                  | 47, 67              |
| PREINCO       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)       N/A       47, 67         PLUSW0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W       N/A       47, 67         FSR0H       —       —       Indirect Data Memory Address Pointer 0 Low Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POSTDEC0  | Uses content                                                                                                                       | s of FSR0 to a                  | iddress data n  | nemory – valu                                    | e of FSR0 pos  | t-decremented  | l (not a physic | al register) | N/A                  | 47, 67              |
| PLUSW0       Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W       N/A       47, 67         FSR0H       —       —       —       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         FSR0L       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         WREG       Working Register       xxxx xxxx       47, 67         INDF1       Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         FSR14       —       —       —       Indirect Data Memory Address Pointer 1 Low Byte                                                                                                                                                                                                                                                                                                                                                                                                      | PREINC0   | Uses content                                                                                                                       | s of FSR0 to a                  | iddress data n  | nemory – valu                                    | e of FSR0 pre  | -incremented ( | not a physical  | register)    | N/A                  | 47, 67              |
| FSR0H       —       —       Indirect Data Memory Address Pointer 0 Low Byte       xxxx       47, 67         FSR0L       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         WREG       Working Register       xxxx xxxx       47, 67         INDF1       Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSV1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLUSW0    | Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W |                                 |                 |                                                  |                |                | register) –     | N/A          | 47, 67               |                     |
| FSR0L       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         WREG       Working Register       xxxx xxxx       47         INDF1       Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxx       47, 67         FSR1       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67       44, 67         FSR1       Indirect Data Memory Address Pointer 0 Low Byte       xxxx xxxx       47, 67         FSR1       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67         FSR1       Indirect Data Memory Address Pointer 1 High Byte                                                                                                                                                                                                                                                                                                        | FSR0H     | —                                                                                                                                  | —                               |                 | —                                                | Indirect Data  | Memory Addr    | ess Pointer 0 I | High Byte    | xxxx                 | 47, 67              |
| WREG       Working Register       xxxx       xxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FSR0L     | Indirect Data                                                                                                                      | Memory Addr                     | ess Pointer 0 I | Low Byte                                         |                |                |                 |              | xxxx xxxx            | 47, 67              |
| INDF1       Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)       N/A       47, 67         POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67         BSR       —       —       —       Bank Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         POSTINC2                                                                                                                                                                                                                                                                                | WREG      | Working Reg                                                                                                                        | ister                           |                 |                                                  |                |                |                 |              | xxxx xxxx            | 47                  |
| POSTINC1       Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)       N/A       47, 67         POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67       88       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67                                                                                                                                                                                                                                                   | INDF1     | Uses content                                                                                                                       | s of FSR1 to a                  | iddress data n  | nemory – valu                                    | e of FSR1 not  | changed (not   | a physical reg  | ister)       | N/A                  | 47, 67              |
| POSTDEC1       Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)       N/A       47, 67         PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67         BSR       —       —       —       Bank Select Register      0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to add                                                                                                                                                                                                                                                                  | POSTINC1  | Uses content                                                                                                                       | s of FSR1 to a                  | iddress data n  | nemory – value                                   | e of FSR1 pos  | t-incremented  | (not a physica  | al register) | N/A                  | 47, 67              |
| PREINC1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)       N/A       47, 67         PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67       47, 67         BSR       —       —       —       Bank Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents o                                                                                                                                                                                                                                                                          | POSTDEC1  | Uses content                                                                                                                       | s of FSR1 to a                  | iddress data n  | nemory – value                                   | e of FSR1 pos  | t-decremented  | l (not a physic | al register) | N/A                  | 47, 67              |
| PLUSW1       Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –       N/A       47, 67         FSR1H       —       —       —       Indirect Data Memory Address Pointer 1 High Byte       xxxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67         BSR       —       —       —       Bark Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre                                                                                                                                                                                                                                                                | PREINC1   | Uses content                                                                                                                       | s of FSR1 to a                  | iddress data n  | nemory – value                                   | e of FSR1 pre- | -incremented ( | not a physical  | register)    | N/A                  | 47, 67              |
| FSR1H       -       -       -       Indirect Data Memory Address Pointer 1 High Byte       xxxxx       47, 67         FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxx       47, 67         BSR       -       -       -       Bank Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         FSR2H       -       -       -       -       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxxx       48, 67       Xxxx xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte<                                                                                                                                                                                                                                                                                                                                | PLUSW1    | Uses content value of FSR                                                                                                          | s of FSR1 to a<br>1 offset by W | iddress data n  | nemory – value                                   | e of FSR1 pre  | -incremented ( | not a physical  | register) –  | N/A                  | 47, 67              |
| FSR1L       Indirect Data Memory Address Pointer 1 Low Byte       xxxx xxxxx       47, 67         BSR       —       —       —       Bank Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         FSR2H       —       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxxx       48, 67       48, 67         STATUS       —       —       N       OV       Z       DC       C                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSR1H     | —                                                                                                                                  | —                               |                 | —                                                | Indirect Data  | Memory Addr    | ess Pointer 1 I | High Byte    | xxxx                 | 47, 67              |
| BSR       —       —       —       Bank Select Register       0000       47, 58         INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxxx       48, 67       xxxx xxxxx       48, 67         STATUS       —       —       —       N       OV       Z       DC       C       xxxxxx       48, 67                                                                                                                                                                                                                                                                                                                                                               | FSR1L     | Indirect Data                                                                                                                      | Memory Addr                     | ess Pointer 1 I | Low Byte                                         |                |                |                 |              | xxxx xxxx            | 47, 67              |
| INDF2       Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)       N/A       48, 67         POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –       N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxx       48, 67       xxxx xxxx       48, 67         STATUS       —       —       N       OV       Z       DC       C       xxxxx       48, 65                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BSR       | —                                                                                                                                  | —                               | —               | —                                                | Bank Select    | Register       |                 |              | 0000                 | 47, 58              |
| POSTINC2       Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)       N/A       48, 67         POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxx       48, 67       Xxxx xxxx       48, 67         STATUS       —       —       N       OV       Z       DC       C       xxxxx       48, 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INDF2     | Uses content                                                                                                                       | s of FSR2 to a                  | iddress data n  | nemory – value                                   | e of FSR2 not  | changed (not   | a physical reg  | ister)       | N/A                  | 48, 67              |
| POSTDEC2       Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)       N/A       48, 67         PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxxx       48, 67         STATUS       —       —       N       OV       Z       DC       C      x xxxxx       48, 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POSTINC2  | Uses content                                                                                                                       | s of FSR2 to a                  | iddress data n  | nemory – value                                   | e of FSR2 pos  | t-incremented  | (not a physica  | al register) | N/A                  | 48, 67              |
| PREINC2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)       N/A       48, 67         PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W       N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxx       48, 67         STATUS       —       —       N       OV       Z       DC       C      x xxxx       48, 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POSTDEC2  | Uses content                                                                                                                       | s of FSR2 to a                  | iddress data n  | nemory – value                                   | e of FSR2 pos  | t-decremented  | l (not a physic | al register) | N/A                  | 48, 67              |
| PLUSW2       Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A       48, 67         FSR2H       —       —       —       Indirect Data Memory Address Pointer 2 High Byte       xxxx       48, 67         FSR2L       Indirect Data Memory Address Pointer 2 Low Byte       xxxx xxxx       48, 67         STATUS       —       —       N       OV       Z       DC       C       xxxx       48, 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PREINC2   | Uses content                                                                                                                       | s of FSR2 to a                  | iddress data n  | nemory – value                                   | e of FSR2 pre- | -incremented ( | not a physical  | register)    | N/A                  | 48, 67              |
| FSR2H         —         —         —         Indirect Data Memory Address Pointer 2 High Byte         xxxx         48, 67           FSR2L         Indirect Data Memory Address Pointer 2 Low Byte         xxxx         x48, 67           STATUS         —         —         N         OV         Z         DC         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLUSW2    | Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W |                                 |                 |                                                  |                |                | register) –     | N/A          | 48, 67               |                     |
| FSR2L         Indirect Data Memory Address Pointer 2 Low Byte         xxxx         xxxx         48, 67           STATUS         —         —         N         OV         Z         DC         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FSR2H     | _                                                                                                                                  | —                               | —               | Indirect Data Memory Address Pointer 2 High Byte |                |                |                 |              | xxxx                 | 48, 67              |
| STATUS – – – N OV Z DC Cx xxxx 48,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FSR2L     | Indirect Data                                                                                                                      | Memory Addr                     | ess Pointer 2 I | Low Byte                                         | •              |                |                 |              | xxxx xxxx            | 48, 67              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATUS    | —                                                                                                                                  | —                               | —               | N                                                | OV             | Z              | DC              | С            | x xxxx               | 48, 65              |

## TABLE 6-3: REGISTER FILE SUMMARY (PIC18F24J10/25J10/44J10/45J10)

These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

Alternate names and definitions for these bits when the MSSP module is operating in I<sup>2</sup>C™ Slave mode. See Section 16.4.3.2 "Address Masking" for details.

| R/W-1        | R/W-1               | R/W-1                             | R/W-1             | U-0               | R/W-1            | U-0              | R/W-1            |
|--------------|---------------------|-----------------------------------|-------------------|-------------------|------------------|------------------|------------------|
| RBPU         | INTEDG0             | INTEDG1                           | INTEDG2           | _                 | TMR0IP           |                  | RBIP             |
| bit 7        |                     |                                   |                   |                   |                  |                  | bit 0            |
|              |                     |                                   |                   |                   |                  |                  |                  |
| Legend:      |                     |                                   |                   |                   |                  |                  |                  |
| R = Readab   | le bit              | W = Writable                      | bit               | U = Unimplen      | nented bit, read | d as '0'         |                  |
| -n = Value a | t POR               | '1' = Bit is set                  |                   | '0' = Bit is clea | ared             | x = Bit is unkr  | nown             |
| hit 7        |                     | P Pullun Engl                     | ala hit           |                   |                  |                  |                  |
|              |                     | B Full-up Enai<br>R pull-ups are  | disabled          |                   |                  |                  |                  |
|              | 0 = PORTB p         | oull-ups are ena                  | abled by individ  | dual port latch v | values           |                  |                  |
| bit 6        | INTEDG0: Ex         | ternal Interrupt                  | 0 Edge Select     | t bit             |                  |                  |                  |
|              | 1 = Interrupt       | on rising edge                    | -                 |                   |                  |                  |                  |
|              | 0 = Interrupt       | on falling edge                   |                   |                   |                  |                  |                  |
| bit 5        | INTEDG1: Ex         | ternal Interrupt                  | : 1 Edge Select   | t bit             |                  |                  |                  |
|              | 1 = Interrupt       | on rising edge                    |                   |                   |                  |                  |                  |
|              |                     | on failing eage                   |                   |                   |                  |                  |                  |
| bit 4        |                     | ternal Interrupt                  | 2 Edge Select     | t bit             |                  |                  |                  |
|              | 1 = Interrupt       | on fising edge<br>on falling edge |                   |                   |                  |                  |                  |
| bit 3        | Unimplemen          | ted: Read as '                    | 0'                |                   |                  |                  |                  |
| bit 2        | TMROIP: TMF         | R0 Overflow Int                   | errupt Priority   | bit               |                  |                  |                  |
|              | 1 = High prio       | rity                              |                   |                   |                  |                  |                  |
|              | 0 = Low prior       | ity                               |                   |                   |                  |                  |                  |
| bit 1        | Unimplement         | ted: Read as '                    | כ'                |                   |                  |                  |                  |
| bit 0        | RBIP: RB Por        | rt Change Inter                   | rupt Priority bit | :                 |                  |                  |                  |
|              | 1 = High prior      | rity                              |                   |                   |                  |                  |                  |
|              | 0 = Low prior       | ity                               |                   |                   |                  |                  |                  |
| Note: In     | nterrupt flag bits  | are set when                      | an interrupt co   | ndition occurs    | regardless of t  | the state of its | corresponding    |
| е            | nable bit or the c  | global interrupt                  | enable bit. Use   | er software sho   | uld ensure the   | appropriate int  | errupt flag bits |
| а            | re clear prior to e | enabling an inte                  | errupt. This fea  | ature allows for  | software pollin  | g.               |                  |

#### **INTCON2: INTERRUPT CONTROL REGISTER 2 REGISTER 9-2:**

## 11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
   prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

#### REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER

| R/W-1  | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|--------|--------|-------|-------|-------|-------|-------|-------|
| TMR0ON | T08BIT | TOCS  | T0SE  | PSA   | T0PS2 | T0PS1 | T0PS0 |
| bit 7  |        |       |       |       |       |       | bit 0 |

| Legend:      |                          |                                 |                             |                    |
|--------------|--------------------------|---------------------------------|-----------------------------|--------------------|
| R = Readab   | le bit                   | W = Writable bit                | U = Unimplemented bit,      | , read as '0'      |
| -n = Value a | t POR                    | '1' = Bit is set                | '0' = Bit is cleared        | x = Bit is unknown |
|              |                          |                                 |                             |                    |
| bit 7        | TMR0ON:                  | Fimer0 On/Off Control bit       |                             |                    |
|              | 1 = Enables              | s Timer0                        |                             |                    |
|              | 0 = Stops T              | imer0                           |                             |                    |
| bit 6        | TO8BIT: Tim              | ner0 8-Bit/16-Bit Control bit   |                             |                    |
|              | 1 = Timer0               | is configured as an 8-bit time  | r/counter                   |                    |
|              | 0 = Timer0               | is configured as a 16-bit time  | r/counter                   |                    |
| bit 5        | TOCS: Time               | er0 Clock Source Select bit     |                             |                    |
|              | 1 = Transitio            | on on T0CKI pin                 |                             |                    |
|              | 0 = Internal             | instruction cycle clock (CLKC   | D)                          |                    |
| bit 4        | T0SE: Time               | r0 Source Edge Select bit       |                             |                    |
|              | 1 = Increme              | ent on high-to-low transition o | n T0CKI pin                 |                    |
|              | 0 = Increme              | ent on low-to-high transition o | n T0CKI pin                 |                    |
| bit 3        | PSA: Timer               | 0 Prescaler Assignment bit      |                             |                    |
|              | 1 = TImer0               | prescaler is not assigned. Tir  | ner0 clock input bypasses p | prescaler.         |
|              | 0 = Timer0               | prescaler is assigned. Timer    | ) clock input comes from pr | escaler output.    |
| bit 2-0      | T0PS<2:0>                | : Timer0 Prescaler Select bits  | 6                           |                    |
|              | 111 = 1:256              | 6 Prescale value                |                             |                    |
|              | 110 = 1:128              | 3 Prescale value                |                             |                    |
|              | 101 = 1:64               | Prescale value                  |                             |                    |
|              | 100 - 1.32<br>011 = 1.16 | Prescale value                  |                             |                    |
|              | 010 = 1:8                | Prescale value                  |                             |                    |
|              | 001 = 1:4                | Prescale value                  |                             |                    |
|              | 000 = 1:2                | Prescale value                  |                             |                    |
|              | 500 - 1. <b>Z</b>        |                                 |                             |                    |

## 13.0 TIMER2 MODULE

The Timer2 timer module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- · Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- · Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

## 13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (FOSC/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS<1:>0 (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see **Section 13.2 "Timer2 Interrupt"**).

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

## REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

| U-0                                                                       | R/W-0                | R/W-0           | R/W-0          | R/W-0        | R/W-0           | R/W-0    | R/W-0   |  |  |
|---------------------------------------------------------------------------|----------------------|-----------------|----------------|--------------|-----------------|----------|---------|--|--|
| —                                                                         | T2OUTPS3             | T2OUTPS2        | T2OUTPS1       | T2OUTPS0     | TMR2ON          | T2CKPS1  | T2CKPS0 |  |  |
| bit 7                                                                     | •                    |                 |                | ·            |                 | •        | bit 0   |  |  |
|                                                                           |                      |                 |                |              |                 |          |         |  |  |
| Legend:                                                                   |                      |                 |                |              |                 |          |         |  |  |
| R = Readable                                                              | bit                  | W = Writable    | bit            | U = Unimplem | ented bit, read | 1 as '0' |         |  |  |
| -n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown |                      |                 |                |              |                 |          | Iown    |  |  |
|                                                                           |                      |                 |                |              |                 |          |         |  |  |
| bit 7                                                                     | Unimplement          | ted: Read as 'd | )'             |              |                 |          |         |  |  |
| bit 6-3                                                                   | T2OUTPS<3:           | 0>: Timer2 Ou   | tput Postscale | Select bits  |                 |          |         |  |  |
|                                                                           | 0000 = 1:1 Postscale |                 |                |              |                 |          |         |  |  |
|                                                                           | 0001 = 1:2 Po        | ostscale        |                |              |                 |          |         |  |  |
|                                                                           | •                    |                 |                |              |                 |          |         |  |  |
|                                                                           | •                    |                 |                |              |                 |          |         |  |  |
|                                                                           | 1111 = 1:16 F        | Postscale       |                |              |                 |          |         |  |  |
| bit 2                                                                     | TMR2ON: Tin          | ner2 On bit     |                |              |                 |          |         |  |  |
|                                                                           | 1 = Timer2 is        | on              |                |              |                 |          |         |  |  |
|                                                                           | 0 = Timer2 is        | off             |                |              |                 |          |         |  |  |
| bit 1-0                                                                   | T2CKPS<1:0           | >: Timer2 Cloc  | k Prescale Sel | ect bits     |                 |          |         |  |  |
|                                                                           | 00 = Prescale        | er is 1         |                |              |                 |          |         |  |  |
|                                                                           | 01 = Prescale        | eris 4          |                |              |                 |          |         |  |  |
|                                                                           | $\perp x = Prescale$ | er is 16        |                |              |                 |          |         |  |  |

## 13.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

## 13.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 16.0 "Master Synchronous Serial Port (MSSP) Module".



### TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

| Name   | Bit 7                | Bit 6        | Bit 5    | Bit 4    | Bit 3    | Bit 2  | Bit 1   | Bit 0   | Reset<br>Values<br>on page |
|--------|----------------------|--------------|----------|----------|----------|--------|---------|---------|----------------------------|
| INTCON | GIE/GIEH             | PEIE/GIEL    | TMR0IE   | INT0IE   | RBIE     | TMR0IF | INT0IF  | RBIF    | 47                         |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF         | RCIF     | TXIF     | SSP1IF   | CCP1IF | TMR2IF  | TMR1IF  | 49                         |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE         | RCIE     | TXIE     | SSP1IE   | CCP1IE | TMR2IE  | TMR1IE  | 49                         |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP         | RCIP     | TXIP     | SSP1IP   | CCP1IP | TMR2IP  | TMR1IP  | 49                         |
| TMR2   | Timer2 Register      |              |          |          |          |        |         |         | 48                         |
| T2CON  | —                    | T2OUTPS3     | T2OUTPS2 | T2OUTPS1 | T2OUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | 48                         |
| PR2    | Timer2 Per           | iod Register |          |          |          |        |         |         | 48                         |

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

| Name                 | Bit 7                                    | Bit 6               | Bit 5               | Bit 4               | Bit 3               | Bit 2               | Bit 1                 | Bit 0                 | Reset<br>Values<br>on page |
|----------------------|------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|----------------------------|
| INTCON               | GIE/GIEH                                 | PEIE/GIEL           | TMR0IE              | INT0IE              | RBIE                | TMR0IF              | INT0IF                | RBIF                  | 47                         |
| RCON                 | IPEN                                     | _                   | CM                  | RI                  | TO                  | PD                  | POR                   | BOR                   | 46                         |
| PIR1                 | PSPIF <sup>(1)</sup>                     | ADIF                | RCIF                | TXIF                | SSP1IF              | CCP1IF              | TMR2IF                | TMR1IF                | 49                         |
| PIE1                 | PSPIE <sup>(1)</sup>                     | ADIE                | RCIE                | TXIE                | SSP1IE              | CCP1IE              | TMR2IE                | TMR1IE                | 49                         |
| IPR1                 | PSPIP <sup>(1)</sup>                     | ADIP                | RCIP                | TXIP                | SSP1IP              | CCP1IP              | TMR2IP                | TMR1IP                | 49                         |
| PIR2                 | OSCFIF                                   | CMIF                |                     | —                   | BCL1IF              |                     | —                     | CCP2IF                | 49                         |
| PIE2                 | OSCFIE                                   | CMIE                | _                   | —                   | BCL1IE              | _                   | —                     | CCP2IE                | 49                         |
| IPR2                 | OSCFIP                                   | CMIP                |                     | —                   | BCL1IP              |                     | —                     | CCP2IP                | 49                         |
| TRISB                | PORTB Da                                 | ta Direction C      | ontrol Registe      | er                  |                     |                     |                       |                       | 50                         |
| TRISC                | PORTC Da                                 | ta Direction C      | ontrol Regist       | er                  |                     |                     |                       |                       | 50                         |
| TRISD <sup>(1)</sup> | PORTD Da                                 | ta Direction C      | ontrol Regist       | er                  |                     |                     |                       |                       | 50                         |
| TMR1L                | Timer1 Reg                               | ister Low Byt       | e                   |                     |                     |                     |                       |                       | 48                         |
| TMR1H                | Timer1 Reg                               | ister High By       | te                  | -                   |                     |                     |                       |                       | 48                         |
| T1CON                | RD16                                     | T1RUN               | T1CKPS1             | T1CKPS0             | T1OSCEN             | T1SYNC              | TMR1CS                | TMR10N                | 48                         |
| TMR2                 | Timer2 Reg                               | jister              |                     |                     |                     |                     |                       |                       | 48                         |
| T2CON                | —                                        | T2OUTPS3            | T2OUTPS2            | T2OUTPS1            | T2OUTPS0            | TMR2ON              | T2CKPS1               | T2CKPS0               | 48                         |
| PR2                  | Timer2 Peri                              | iod Register        |                     |                     |                     |                     |                       |                       | 48                         |
| CCPR1L               | Capture/Compare/PWM Register 1 Low Byte  |                     |                     |                     |                     |                     |                       | 49                    |                            |
| CCPR1H               | Capture/Compare/PWM Register 1 High Byte |                     |                     |                     |                     |                     |                       | 49                    |                            |
| CCP1CON              | P1M1 <sup>(1)</sup>                      | P1M0 <sup>(1)</sup> | DC1B1               | DC1B0               | CCP1M3              | CCP1M2              | CCP1M1                | CCP1M0                | 49                         |
| ECCP1AS              | ECCPASE                                  | ECCPAS2             | ECCPAS1             | ECCPAS0             | PSSAC1              | PSSAC0              | PSSBD1 <sup>(1)</sup> | PSSBD0 <sup>(1)</sup> | 49                         |
| ECCP1DEL             | PRSEN                                    | PDC6 <sup>(1)</sup> | PDC5 <sup>(1)</sup> | PDC4 <sup>(1)</sup> | PDC3 <sup>(1)</sup> | PDC2 <sup>(1)</sup> | PDC1 <sup>(1)</sup>   | PDC0 <sup>(1)</sup>   | 49                         |

### TABLE 15-3: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1

**Legend:** — = unimplemented, read as '0'. Shaded cells are not used during ECCP operation.

Note 1: These registers and/or bits are not implemented on 28-pin devices and should be read as '0'.

### 16.4.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPxCON1<5>).

The SSPxCON1 register allows control of the  $I^2C$  operation. Four mode selection bits (SSPxCON1<3:0>) allow one of the following  $I^2C$  modes to be selected:

- I<sup>2</sup>C Master mode, clock = (Fosc/4) x (SSPxADD + 1)
- I<sup>2</sup>C Slave mode (7-bit address)
- I<sup>2</sup>C Slave mode (10-bit address)
- I<sup>2</sup>C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I<sup>2</sup>C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I<sup>2</sup>C Firmware Controlled Master mode, slave is Idle

Selection of any I<sup>2</sup>C mode, with the SSPEN bit set, forces the SCLx and SDAx pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC or TRISD bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCLx and SDAx pins.

#### 16.4.3 SLAVE MODE

In Slave mode, the SCLx and SDAx pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I<sup>2</sup>C Slave mode hardware will always generate an interrupt on an exact address match. In addition, address masking will also allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPxBUF register with the received value currently in the SSPxSR register.

Any combination of the following conditions will cause the MSSP module not to give this  $\overline{ACK}$  pulse:

- The Buffer Full bit, BF (SSPxSTAT<0>), was set before the transfer was received.
- The MSSP Overflow bit, SSPOV (SSPxCON1<6>), was set before the transfer was received.

In this case, the SSPxSR register value is not loaded into the SSPxBUF, but the SSPxIF bit is set. The BF bit is cleared by reading the SSPxBUF register, while the SSPOV bit is cleared through software. The SCLx clock input must have a minimum high and low for proper operation. The high and low times of the  $I^2C$  specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

### 16.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPxSR register. All incoming bits are sampled with the rising edge of the clock (SCLx) line. The value of register SSPxSR<7:1> is compared to the value of the SSPxADD register. The address is compared on the falling edge of the eighth clock (SCLx) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPxSR register value is loaded into the SSPxBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSP Interrupt Flag bit, SSPxIF, is set (and interrupt is generated, if enabled) on the falling edge of the ninth SCLx pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPxSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-Bit Addressing mode is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPxIF, BF and UA (SSPxSTAT<1>), are set).
- 2. Update the SSPxADD register with second (low) byte of address (clears bit, UA, and releases the SCLx line).
- 3. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 4. Receive second (low) byte of address (bits, SSPxIF, BF and UA, are set).
- 5. Update the SSPxADD register with the first (high) byte of address. If match releases SCLx line, this will clear bit, UA.
- 6. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPxIF and BF, are set).
- 9. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.



## FIGURE 17-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)



### TABLE 17-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

| Name    | Bit 7                                         | Bit 6       | Bit 5       | Bit 4       | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|---------|-----------------------------------------------|-------------|-------------|-------------|--------|--------|--------|--------|----------------------------|
| INTCON  | GIE/GIEH                                      | PEIE/GIEL   | TMR0IE      | INT0IE      | RBIE   | TMR0IF | INT0IF | RBIF   | 47                         |
| PIR1    | PSPIF <sup>(1)</sup>                          | ADIF        | RCIF        | TXIF        | SSP1IF | CCP1IF | TMR2IF | TMR1IF | 49                         |
| PIE1    | PSPIE <sup>(1)</sup>                          | ADIE        | RCIE        | TXIE        | SSP1IE | CCP1IE | TMR2IE | TMR1IE | 49                         |
| IPR1    | PSPIP <sup>(1)</sup>                          | ADIP        | RCIP        | TXIP        | SSP1IP | CCP1IP | TMR2IP | TMR1IP | 49                         |
| RCSTA   | SPEN                                          | RX9         | SREN        | CREN        | ADDEN  | FERR   | OERR   | RX9D   | 49                         |
| TXREG   | EUSART T                                      | ransmit Reg | jister      |             |        |        |        |        | 49                         |
| TXSTA   | CSRC                                          | TX9         | TXEN        | SYNC        | SENDB  | BRGH   | TRMT   | TX9D   | 49                         |
| BAUDCON | ABDOVF                                        | RCIDL       | _           | SCKP        | BRG16  | —      | WUE    | ABDEN  | 49                         |
| SPBRGH  | EUSART Baud Rate Generator Register High Byte |             |             |             |        |        |        |        | 49                         |
| SPBRG   | EUSART E                                      | Baud Rate G | enerator Re | egister Low | Byte   |        |        |        | 49                         |

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

#### 17.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG register; if the RCIE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

| Name    | Bit 7                                         | Bit 6        | Bit 5       | Bit 4        | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|---------|-----------------------------------------------|--------------|-------------|--------------|--------|--------|--------|--------|----------------------------|
| INTCON  | GIE/GIEH                                      | PEIE/GIEL    | TMR0IE      | INT0IE       | RBIE   | TMR0IF | INT0IF | RBIF   | 47                         |
| PIR1    | PSPIF <sup>(1)</sup>                          | ADIF         | RCIF        | TXIF         | SSP1IF | CCP1IF | TMR2IF | TMR1IF | 49                         |
| PIE1    | PSPIE <sup>(1)</sup>                          | ADIE         | RCIE        | TXIE         | SSP1IE | CCP1IE | TMR2IE | TMR1IE | 49                         |
| IPR1    | PSPIP <sup>(1)</sup>                          | ADIP         | RCIP        | TXIP         | SSP1IP | CCP1IP | TMR2IP | TMR1IP | 49                         |
| RCSTA   | SPEN                                          | RX9          | SREN        | CREN         | ADDEN  | FERR   | OERR   | RX9D   | 49                         |
| RCREG   | EUSART F                                      | Receive Regi | ster        |              |        |        |        |        | 49                         |
| TXSTA   | CSRC                                          | TX9          | TXEN        | SYNC         | SENDB  | BRGH   | TRMT   | TX9D   | 49                         |
| BAUDCON | ABDOVF                                        | RCIDL        | _           | SCKP         | BRG16  | —      | WUE    | ABDEN  | 49                         |
| SPBRGH  | EUSART Baud Rate Generator Register High Byte |              |             |              |        |        |        |        | 49                         |
| SPBRG   | EUSART E                                      | Baud Rate G  | enerator Re | gister Low I | Byte   |        |        |        | 49                         |

### TABLE 17-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

### REGISTER 18-2: ADCON1: A/D CONTROL REGISTER 1

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-------|-------|-------|-------|-------|-------|
| —     | —   | VCFG1 | VCFG0 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 |     |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-6 Unimplemented: Read as '0'

| bit 5 | VCFG1: Voltage Reference Configuration bit (VREF- source) |
|-------|-----------------------------------------------------------|
|       | 1 = VREF-(AN2)                                            |
|       | 0 = VSS                                                   |
| bit 4 | VCFG0: Voltage Reference Configuration bit (VREF+ source) |
|       | 1 = Vref+(AN3)                                            |
|       | 0 = VDD                                                   |

bit 3-0 **PCFG<3:0>:** A/D Port Configuration Control bits:

| PCFG<3:0> | AN12 | AN11 | AN10 | AN9 | AN8 | AN7 <sup>(1)</sup> | AN6 <sup>(1)</sup> | AN5 <sup>(1)</sup> | AN4 | AN3 | AN2 | AN1 | ANO |
|-----------|------|------|------|-----|-----|--------------------|--------------------|--------------------|-----|-----|-----|-----|-----|
| 0000      | А    | Α    | Α    | Α   | Α   | Α                  | Α                  | Α                  | Α   | Α   | А   | А   | А   |
| 0001      | Α    | Α    | Α    | Α   | Α   | Α                  | Α                  | Α                  | Α   | Α   | Α   | Α   | Α   |
| 0010      | А    | Α    | Α    | Α   | Α   | Α                  | Α                  | Α                  | Α   | А   | Α   | Α   | Α   |
| 0011      | D    | Α    | Α    | А   | А   | Α                  | Α                  | Α                  | А   | Α   | Α   | Α   | Α   |
| 0100      | D    | D    | Α    | А   | А   | Α                  | Α                  | Α                  | А   | Α   | Α   | Α   | Α   |
| 0101      | D    | D    | D    | А   | Α   | Α                  | Α                  | Α                  | Α   | А   | Α   | А   | Α   |
| 0110      | D    | D    | D    | D   | Α   | Α                  | Α                  | Α                  | Α   | А   | Α   | А   | Α   |
| 0111      | D    | D    | D    | D   | D   | Α                  | Α                  | Α                  | Α   | А   | Α   | А   | Α   |
| 1000      | D    | D    | D    | D   | D   | D                  | Α                  | Α                  | А   | А   | А   | А   | А   |
| 1001      | D    | D    | D    | D   | D   | D                  | D                  | Α                  | Α   | А   | Α   | А   | Α   |
| 1010      | D    | D    | D    | D   | D   | D                  | D                  | D                  | Α   | А   | Α   | А   | Α   |
| 1011      | D    | D    | D    | D   | D   | D                  | D                  | D                  | D   | А   | А   | А   | А   |
| 1100      | D    | D    | D    | D   | D   | D                  | D                  | D                  | D   | D   | А   | А   | А   |
| 1101      | D    | D    | D    | D   | D   | D                  | D                  | D                  | D   | D   | D   | Α   | А   |
| 1110      | D    | D    | D    | D   | D   | D                  | D                  | D                  | D   | D   | D   | D   | А   |
| 1111      | D    | D    | D    | D   | D   | D                  | D                  | D                  | D   | D   | D   | D   | D   |

A = Analog input

D = Digital I/O

Note 1: AN5 through AN7 are available only on 40/44-pin devices.

### FIGURE 19-3: COMPARATOR OUTPUT BLOCK DIAGRAM



## 19.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.



The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

## 19.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

### 19.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.



#### FIGURE 20-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

## 20.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 20-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 24.0 "Electrical Characteristics"**.

## 20.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

## 20.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

## 20.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 20-2 shows an example buffering technique.

| NEGF             | Negate f                                                                                                                                                                       |                                                                                                                                                                           |                                                                                                                                                            |                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Syntax:          | NEGF f                                                                                                                                                                         | {,a}                                                                                                                                                                      |                                                                                                                                                            |                                                                                                |
| Operands:        | 0 ≤ f ≤ 255<br>a ∈ [0 , 1]                                                                                                                                                     | 5                                                                                                                                                                         |                                                                                                                                                            |                                                                                                |
| Operation:       | $(\overline{f})$ + 1 $\rightarrow$                                                                                                                                             | f                                                                                                                                                                         |                                                                                                                                                            |                                                                                                |
| Status Affected: | N, OV, C, I                                                                                                                                                                    | DC, Z                                                                                                                                                                     |                                                                                                                                                            |                                                                                                |
| Encoding:        | 0110                                                                                                                                                                           | 110a                                                                                                                                                                      | ffff                                                                                                                                                       | ffff                                                                                           |
|                  | compleme<br>data memori<br>If 'a' is '0',<br>If 'a' is '1',<br>GPR bank<br>If 'a' is '0' a<br>set is enab<br>in Indexed<br>mode whe<br>Section 2:<br>Bit-Orient<br>Literal Off | nt. The re-<br>ory location<br>the Access<br>the BSR i<br>(default).<br>and the e-<br>oled, this i<br>Literal O<br>never $f \leq$<br>2.2.3 "By<br>ed Instru-<br>fset Mode | esult is place<br>on 'f'.<br>ss Bank is<br>s used to s<br>xtended in<br>instruction<br>ffset Addre<br>95 (5Fh).<br>te-Oriente<br>ictions in<br>e" for deta | selected.<br>select the<br>struction<br>operates<br>essing<br>See<br>ed and<br>Indexed<br>ils. |
| Words:           | 1                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                            |                                                                                                |
| Cycles:          | 1                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                            |                                                                                                |

| NOF                   | )              | No Oper      | No Operation |            |          |              |  |  |
|-----------------------|----------------|--------------|--------------|------------|----------|--------------|--|--|
| Synta                 | ax:            | NOP          |              |            |          |              |  |  |
| Oper                  | ands:          | None         |              |            |          |              |  |  |
| Oper                  | ation:         | No operat    | on           |            |          |              |  |  |
| Status Affected: None |                |              |              |            |          |              |  |  |
| Enco                  | ding:          | 0000<br>1111 | 0000<br>xxxx | 000<br>xxx | 00<br>xx | 0000<br>xxxx |  |  |
| Desc                  | ription:       | No operati   | on.          |            |          |              |  |  |
| Word                  | ls:            | 1            |              |            |          |              |  |  |
| Cycle                 | es:            | 1            |              |            |          |              |  |  |
| QC                    | ycle Activity: |              |              |            |          |              |  |  |
|                       | Q1             | Q2           | Q            | 3          |          | Q4           |  |  |
|                       | Decode         | No           | No           | )          |          | No           |  |  |
|                       |                | operation    | opera        | tion       | 0        | peration     |  |  |

Example:

None.

| Words | ;: |
|-------|----|
|-------|----|

Q Cycle Activity:

| Q1     | Q2           | Q3      | Q4           |
|--------|--------------|---------|--------------|
| Decode | Read         | Process | Write        |
|        | register 'f' | Data    | register 'f' |

Example: NEGF REG, 1

| Before Instruc    | tion |      |      |       |
|-------------------|------|------|------|-------|
| REG               | =    | 0011 | 1010 | [3Ah] |
| After Instruction |      |      |      |       |
| REG               | =    | 1100 | 0110 | [C6h] |

| ADD                                       | WF                    | ADD W to<br>(Indexed                                                                           | ADD W to Indexed<br>(Indexed Literal Offset mode)                                 |                                                                  |                                           |  |  |  |  |
|-------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| Synta                                     | ax:                   | ADDWF                                                                                          | [k] {,d}                                                                          |                                                                  |                                           |  |  |  |  |
| Oper                                      | ands:                 | $\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$                                 |                                                                                   |                                                                  |                                           |  |  |  |  |
| Oper                                      | ation:                | (W) + ((FS                                                                                     | R2) + k) -                                                                        | $\rightarrow$ dest                                               |                                           |  |  |  |  |
| Statu                                     | is Affected:          | N, OV, C, [                                                                                    | DC, Z                                                                             |                                                                  |                                           |  |  |  |  |
| Enco                                      | oding:                | 0010                                                                                           | 01d0                                                                              | kkkk                                                             | kkkk                                      |  |  |  |  |
| Desc                                      | ription:              | The contert<br>contents of<br>FSR2, offs<br>If 'd' is '0', t<br>is '1', the re<br>register 'f' | nts of W a<br>f the regis<br>et by the<br>the result<br>esult is st<br>(default). | are added<br>ster indica<br>value 'k'.<br>is stored<br>ored back | to the<br>ated by<br>in W. If 'd'<br>< in |  |  |  |  |
| Word                                      | ls:                   | 1                                                                                              |                                                                                   |                                                                  |                                           |  |  |  |  |
| Cycle                                     | es:                   | 1                                                                                              |                                                                                   |                                                                  |                                           |  |  |  |  |
| QC                                        | ycle Activity:        |                                                                                                |                                                                                   |                                                                  |                                           |  |  |  |  |
|                                           | Q1                    | Q2                                                                                             | Q3                                                                                | i                                                                | Q4                                        |  |  |  |  |
|                                           | Decode                | Read 'k'                                                                                       | Proce<br>Dat                                                                      | ess V<br>a de                                                    | Write to<br>estination                    |  |  |  |  |
| Exan                                      | nple:                 | ADDWF                                                                                          | [OFST]                                                                            | , 0                                                              |                                           |  |  |  |  |
|                                           | Before Instruct       | ion                                                                                            |                                                                                   |                                                                  |                                           |  |  |  |  |
| W<br>OFST<br>FSR2<br>Contents<br>of 0A2Ch |                       | =<br>=<br>=                                                                                    | 17h<br>2Ch<br>0A00h<br>20h                                                        | 1                                                                |                                           |  |  |  |  |
|                                           | After Instructio<br>W | n<br>=                                                                                         | 37h                                                                               |                                                                  |                                           |  |  |  |  |
|                                           | of 0A2Ch              | =                                                                                              | 20h                                                                               |                                                                  |                                           |  |  |  |  |

| BSF              | Bit Set Indexed<br>(Indexed Literal Offset mode) |                                    |              |                                                               |                    |              |                       |
|------------------|--------------------------------------------------|------------------------------------|--------------|---------------------------------------------------------------|--------------------|--------------|-----------------------|
| Synt             | ax:                                              | BSF [k                             | ], b         |                                                               |                    |              |                       |
| Oper             | rands:                                           | $0 \le f \le 9$<br>$0 \le b \le 7$ | 5<br>7       |                                                               |                    |              |                       |
| Oper             | ration:                                          | $1 \rightarrow ((F))$              | SR2          | <u>2)</u> + k) <b< td=""><td>&gt;</td><td></td><td></td></b<> | >                  |              |                       |
| Statu            | is Affected:                                     | None                               |              |                                                               |                    |              |                       |
| Enco             | oding:                                           | 1000                               |              | bbb0                                                          | kk}                | ĸk           | kkkk                  |
| Desc             | cription:                                        | Bit 'b' of offset by               | the<br>/ the | register<br>e value 'l                                        | indica<br>‹', is s | ated<br>set. | by FSR2,              |
| Word             | ds:                                              | 1                                  |              |                                                               |                    |              |                       |
| Cycle            | es:                                              | 1                                  |              |                                                               |                    |              |                       |
| QC               | ycle Activity:                                   |                                    |              |                                                               |                    |              |                       |
|                  | Q1                                               | Q2                                 |              | Q3                                                            |                    |              | Q4                    |
|                  | Decode                                           | Read<br>register '                 | f            | Proce<br>Data                                                 | ess<br>a           | ۷<br>de      | Vrite to<br>stination |
| Exar             | nple:                                            | BSF                                | [            | FLAG_O                                                        | FST]               | , 7          |                       |
|                  | Before Instruc                                   | tion                               |              |                                                               |                    |              |                       |
| FLAG_OFS<br>FSR2 |                                                  | FST                                | =            | 0Ah<br>0A00h                                                  | ı                  |              |                       |
|                  | of 0A0Ah                                         | 1                                  | =            | 55h                                                           |                    |              |                       |
|                  | After Instructio                                 | on                                 |              |                                                               |                    |              |                       |
|                  | of 0A0Ah                                         | 1                                  | =            | D5h                                                           |                    |              |                       |

| SETF               |         | Set Inde<br>(Indexe   | Set Indexed<br>(Indexed Literal Offset mode) |                   |                 |                    |  |  |
|--------------------|---------|-----------------------|----------------------------------------------|-------------------|-----------------|--------------------|--|--|
| Syntax:            |         | SETF [k               | ;]                                           |                   |                 |                    |  |  |
| Operands:          |         | $0 \le k \le 9$       | 5                                            |                   |                 |                    |  |  |
| Operation:         |         | FFh  ightarrow ((     | FSR2) + k                                    | )                 |                 |                    |  |  |
| Status Affecte     | d:      | None                  |                                              |                   |                 |                    |  |  |
| Encoding:          |         | 0110                  | 1000                                         | kk}               | ck              | kkkk               |  |  |
| Description:       |         | The conte<br>FSR2, of | ents of the fset by 'k',                     | registe<br>are se | er ind<br>et to | licated by<br>FFh. |  |  |
| Words:             |         | 1                     |                                              |                   |                 |                    |  |  |
| Cycles:            |         | 1                     |                                              |                   |                 |                    |  |  |
| Q Cycle Activ      | vity:   |                       |                                              |                   |                 |                    |  |  |
| Q1                 |         | Q2                    | Q                                            | 3                 |                 | Q4                 |  |  |
| Deco               | de      | Read 'k'              | Proc                                         | ess               |                 | Write              |  |  |
|                    |         |                       | Da                                           | ta                | r               | egister            |  |  |
| Example:           |         | SETF                  | [OFST]                                       |                   |                 |                    |  |  |
| Before In          | structi | ion                   |                                              |                   |                 |                    |  |  |
| OFS                | ST      | = 2                   | 2Ch                                          |                   |                 |                    |  |  |
| Cor                | itents  | = (                   | JAUUN                                        |                   |                 |                    |  |  |
| of 0<br>After Inst | A2Ch    | = (                   | 00h                                          |                   |                 |                    |  |  |

= FFh

Contents of 0A2Ch

© 2009 Microchip Technology Inc.

## 24.2 DC Characteristics:

### Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

| PIC18F45J10 Family<br>(Industrial) |                                     | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |      |       |       |            |                |
|------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|------------|----------------|
| Param<br>No.                       | Device                              | Тур                                                                                                                                | Max  | Units |       | Condit     | ions           |
| -                                  | Supply Current (IDD) <sup>(2)</sup> |                                                                                                                                    |      |       |       |            |                |
|                                    | All devices                         | 150                                                                                                                                | 337  | μA    | -40°C |            |                |
|                                    |                                     | 160                                                                                                                                | 355  | μA    | +25°C | VDD = 2.5V |                |
|                                    |                                     | 220                                                                                                                                | 512  | μA    | +85°C |            | Fosc = 1 MHz   |
|                                    | All devices                         | 190                                                                                                                                | 518  | μA    | -40°C |            | EC oscillator) |
|                                    |                                     | 200                                                                                                                                | 528  | μA    | +25°C | VDD = 3.3V |                |
|                                    |                                     | 250                                                                                                                                | 647  | μA    | +85°C |            |                |
|                                    | All devices                         | 350                                                                                                                                | 737  | μA    | -40°C |            |                |
|                                    |                                     | 375                                                                                                                                | 787  | μA    | +25°C | VDD = 2.5V |                |
|                                    |                                     | 420                                                                                                                                | 917  | μA    | +85°C |            | FOSC = 4 MHz   |
|                                    | All devices                         | 410                                                                                                                                | 954  | μA    | -40°C |            | EC oscillator) |
|                                    |                                     | 0.450                                                                                                                              | 1.03 | mA    | +25°C | VDD = 3.3V | ,              |
|                                    |                                     | 0.475                                                                                                                              | 1.13 | mA    | +85°C |            |                |
|                                    | All devices                         | 5.0                                                                                                                                | 10.1 | mA    | -40°C |            |                |
|                                    |                                     | 5.2                                                                                                                                | 10.6 | mA    | +25°C | VDD = 2.5V |                |
|                                    |                                     | 5.5                                                                                                                                | 11.1 | mA    | +85°C |            | Fosc = 40 MHz  |
|                                    | All devices                         | 5.5                                                                                                                                | 11.1 | mA    | -40°C |            | EC oscillator) |
|                                    |                                     | 6.0                                                                                                                                | 12.1 | mA    | +25°C | VDD = 3.3V | ,              |
|                                    |                                     | 6.5                                                                                                                                | 13.1 | mA    | +85°C |            |                |

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

### 24.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 24-5 apply to all timing specifications unless otherwise noted. Figure 24-3 specifies the load conditions for the timing specifications.

### TABLE 24-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

|                    | Standard Operating Conditions (unless otherwise stated)                     |  |  |
|--------------------|-----------------------------------------------------------------------------|--|--|
| AC CHARACTERISTICS | Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |  |  |
|                    | Operating voltage VDD range as described in DC spec Section 24.1 and        |  |  |
|                    | Section 24.3.                                                               |  |  |

#### FIGURE 24-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS





#### FIGURE 24-11: EXAMPLE SPI<sup>™</sup> MASTER MODE TIMING (CKE = 1)

### TABLE 24-15: EXAMPLE SPI™ MODE REQUIREMENTS (CKE = 1)

| Param.<br>No. | Symbol                | Characteristic                                            | Min          | Max | Units | Conditions |
|---------------|-----------------------|-----------------------------------------------------------|--------------|-----|-------|------------|
| 73            | TDIV2scH,<br>TDIV2scL | Setup Time of SDIx Data Input to SCKx Edge                | 20           | —   | ns    |            |
| 73A           | Тв2в                  | Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 | 1.5 Tcy + 40 |     | ns    | (Note 1)   |
| 74            | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                 | 40           | _   | ns    |            |
| 75            | TDOR                  | SDOx Data Output Rise Time                                | —            | 25  | ns    |            |
| 76            | TDOF                  | SDOx Data Output Fall Time                                | —            | 25  | ns    |            |
| 78            | TscR                  | SCKx Output Rise Time (Master mode)                       | —            | 25  | ns    |            |
| 79            | TscF                  | SCKx Output Fall Time (Master mode)                       | _            | 25  | ns    |            |
| 80            | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after SCKx Edge                    | _            | 50  | ns    |            |
| 81            | TDOV2SCH,<br>TDOV2SCL | SDOx Data Output Setup to SCKx Edge                       | Тсү          | _   | ns    |            |

**Note 1:** Only if Parameter #71A and #72A are used.

## 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units     | MILLIMETERS |      | 3    |
|--------------------------|-----------|-------------|------|------|
| Dimensi                  | on Limits | MIN         | NOM  | MAX  |
| Number of Leads          | Ν         | 44          |      |      |
| Lead Pitch               | е         | 0.80 BSC    |      |      |
| Overall Height           | Α         | -           | -    | 1.20 |
| Molded Package Thickness | A2        | 0.95        | 1.00 | 1.05 |
| Standoff                 | A1        | 0.05        | -    | 0.15 |
| Foot Length              | L         | 0.45        | 0.60 | 0.75 |
| Footprint                | L1        | 1.00 REF    |      |      |
| Foot Angle               | φ         | 0° 3.5° 7°  |      |      |
| Overall Width            | E         | 12.00 BSC   |      |      |
| Overall Length           | D         | 12.00 BSC   |      |      |
| Molded Package Width     | E1        | 10.00 BSC   |      |      |
| Molded Package Length    | D1        | 10.00 BSC   |      |      |
| Lead Thickness           | С         | 0.09        | -    | 0.20 |
| Lead Width               | b         | 0.30        | 0.37 | 0.45 |
| Mold Draft Angle Top     | α         | 11°         | 12°  | 13°  |
| Mold Draft Angle Bottom  | β         | 11° 12° 13° |      |      |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

| L                                                 |
|---------------------------------------------------|
| LFSR                                              |
| Μ                                                 |
| Master Clear (MCLR)                               |
| Master Synchronous Serial Port (MSSP). See MSSP.  |
| Memory Organization51                             |
| Data Memory58                                     |
| Program Memory51                                  |
| Memory Programming Requirements                   |
| Microchip Internet Web Site                       |
| MOVF                                              |
| MOVFF                                             |
| MOVLB                                             |
| MOVLW                                             |
| MOVSF                                             |
| MOVSS                                             |
| MOVWF                                             |
| MPLAB ASM30 Assembler, Linker, Librarian          |
| MPLAB ICD 2 In-Circuit Debugger                   |
| MPLAB ICE 2000 High-Performance                   |
| Universal In-Circuit Emulator                     |
| MPLAB Integrated Development                      |
| Environment Software                              |
| MPLAB PM3 Device Programmer                       |
| MPLAB REAL ICE In-Circuit Emulator System         |
| MPLINK Object Linker/MPLIB Object Librarian       |
| MSSP                                              |
| ACK Pulse164, 166                                 |
| Control Registers (general)149                    |
| I <sup>2</sup> C Mode. See I <sup>2</sup> C Mode. |
| Module Overview149                                |
| SPI Master/Slave Connection153                    |
| SSPxBUF Register154                               |
| SSPxSR Register                                   |
| MULLW                                             |
| MULWF                                             |
| N                                                 |

#### Ν

| NEGF                                   |  |
|----------------------------------------|--|
| NOP                                    |  |
| Notable Differences Between PIC18F4520 |  |
| and PIC18F45J10 Families               |  |
| Oscillator Options                     |  |
| Peripherals                            |  |
| Pinouts                                |  |
| Power Requirements                     |  |
|                                        |  |

## 0

| Oscillator Configuration        |    |
|---------------------------------|----|
| EC                              | 27 |
| ECPLL                           |    |
| HS                              |    |
| HS Modes                        | 27 |
| HSPLL                           | 27 |
| Internal Oscillator Block       |    |
| INTRC                           |    |
| Oscillator Selection            |    |
| Oscillator Start-up Timer (OST) |    |
| Oscillator Switching            |    |
| Oscillator Transitions          |    |
| Oscillator, Timer1              |    |
|                                 |    |

## Ρ

| Packaging Information                | 337<br>330 |
|--------------------------------------|------------|
| Marking                              |            |
| Derallal Slave Dort (DSD)            | 107 112    |
| Associated Pogistors                 | . 107, 113 |
| Associated Registers                 |            |
|                                      |            |
| PD (Pood Input)                      |            |
|                                      | 107 113    |
|                                      | . 107, 113 |
| NR (Write input)                     |            |
| PICSTART Plus Development Programmer |            |
| PIE Registers                        |            |
|                                      | 10 10      |
|                                      | 12, 10     |
|                                      | 12, 10     |
|                                      | 12, 10     |
| RAU/ANU                              | 13, 17     |
|                                      | 13, 17     |
|                                      | 13, 17     |
|                                      | 13, 17     |
| RA5/AN4/SS1/C2UUT                    | 13, 17     |
| RB0/INT0/FLT0/AN12                   | 14, 18     |
|                                      | 14, 18     |
| RB2/IN12/AN8                         | 14, 18     |
|                                      | 14, 18     |
| RB4/KBI0/AN11                        | 14, 18     |
|                                      |            |
| RB5/KBI1/T0CKI/C10UT                 |            |
| RB6/KBI2/PGC                         | 14, 18     |
| RB7/KBI3/PGD                         | 14, 18     |
| RC0/I10S0/I1CKI                      | 15, 19     |
| RC1/T10SI/CCP2                       | 15, 19     |
| RC2/CCP1                             |            |
|                                      |            |
| RC3/SCK1/SCL1                        | 15, 19     |
| RC4/SDI1/SDA1                        | 15, 19     |
| RC5/SDO1                             | 15, 19     |
| RC6/TX/CK                            | 15, 19     |
| RC7/RX/D1                            | 15, 19     |
| RD0/PSP0/SCK2/SCL2                   |            |
| RD1/PSP1/SDI2/SDA2                   |            |
| RD2/PSP2/SDO2                        |            |
| RD3/PSP3/SS2                         |            |
| RD4/PSP4                             |            |
| RD5/PSP5/P1B                         |            |
| RD6/PSP6/P1C                         |            |
| RD7/PSP7/P1D                         |            |
| RE0/RD/AN5                           |            |
| RE1/WR/AN6                           |            |
| RE2/CS/AN7                           |            |
| VDD                                  | 15, 21     |
| VDDCORE/VCAP                         | 15, 21     |
| VSS                                  | 15, 21     |
| Pinout I/O Descriptions              |            |
| PIC18F24J10/25J10                    |            |
| PIC18F44J10/45J10                    |            |
| PIR Registers                        |            |
| PLL Frequency Multiplier             |            |
| ECPLL Oscillator Mode                |            |
| HSPLL Uscillator Mode                |            |
|                                      | 278        |
| POR. See Power-on Reset.             |            |