

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24j10t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Typical Capacitor Values Tested:		
	Freq.	C1	C2	
HS	4 MHz	27 pF	27 pF	
	8 MHz	22 pF	22 pF	
	20 MHz	15 pF	15 pF	

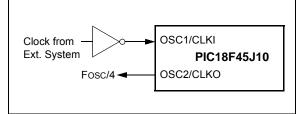
Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

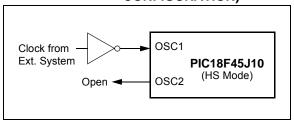
Crystals Used:
4 MHz
8 MHz
20 MHz


- Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - Rs may be required to avoid overdriving crystals with low drive level specification.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.

3.3 External Clock Input (EC Modes)

The EC and ECPLL Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-2 shows the pin connections for the EC Oscillator mode.


FIGURE 3-2: EXTERNAL CLOCK INPUT OPERATION (EC CONFIGURATION)

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-3. In this configuration, the divide-by-4 output on OSC2 is not available.

FIGURE 3-3:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

3.8 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 24-10). It is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 24-10), following POR, while the controller becomes ready to execute instructions.

TABLE 3-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Oscillator Mode	OSC1 Pin	OSC2 Pin
EC, ECPLL	Floating, pulled by external clock	At logic low (clock/4 output)
HS, HSPLL	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

Note: See Table 5-2 in Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

5.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

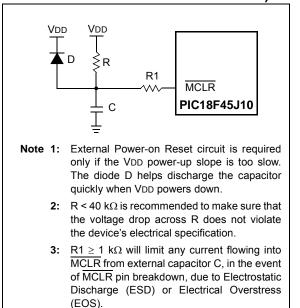
5.3 Power-on Reset (POR)

A Power-on Reset condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

Power-on Reset events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset.


5.4 Brown-out Reset (BOR) (PIC18F2XJ10/4XJ10 Devices Only)

The PIC18F45J10 family of devices incorporates a simple BOR function when the internal regulator is enabled (ENVREG pin is tied to VDD). Any drop of VDD below VBOR (parameter D005) for greater than time TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

Once a BOR has occurred, the Power-up Timer will keep the chip in Reset for TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

In devices designated with an "LF" part number (such as PIC18LF25J10), Brown-out Reset functionality is disabled. In this case, the BOR bit cannot be used to determine a Brown-out Reset event. The BOR bit is still cleared by a Power-on Reset event.

6.1.3 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.6.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

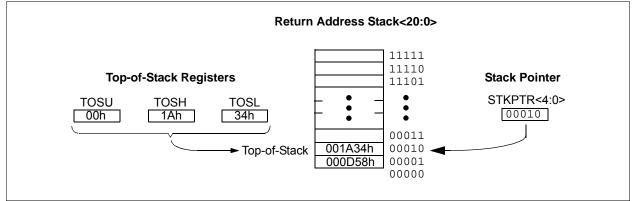
The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.4 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the top-of-stack Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

6.1.4.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

6.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 6.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before.

6.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 22.2 "Extended Instruction Set**".

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Example Situation:

ADDWF f, d, a FSR2H:FSR2L = 120h

Locations in the region from the FSR2 Pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh).

Locations in Bank 0 from 060h to 07Fh are mapped, as usual, to the middle half of the Access Bank.

Special Function Registers at F80h through FFFh are mapped to 80h through FFh, as usual.

Bank 0 addresses below 5Fh can still be addressed by using the BSR.

7.4 Erasing Flash Program Memory

The minimum erase block is 1024 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be Bulk Erased. Word Erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 1024 bytes of program memory is erased. The Most Significant 7 bits of the TBLPTR<21:10> point to the block being erased. TBLPTR<9:0> are ignored.

The EECON1 register commands the erase operation. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of the block being erased.
- 2. Set the WREN and FREE bits (EECON1<2,4>) to enable the erase operation.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the erase cycle.
- The CPU will stall for duration of the erase for TIE (see parameter D133B).
- 8. Re-enable interrupts.

EXAMPLE 7-2:	ERASING A FLASH PROGRAM MEMORY BLOCK

	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
ERASE_ROW			
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

TABLE 10-7:	PORTC	1		1	
Pin	Function	TRIS Setting	I/O	I/O Type	Description
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.
T1CKI		1	Ι	ST	PORTC<0> data input.
	T1OSO	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.
	T1CKI	1	Ι	ST	Timer1 counter input.
RC1/T1OSI/CCP2	RC1	0	0	DIG	LATC<1> data output.
		1	Ι	ST	PORTC<1> data input.
	T1OSI	x	-	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.
	CCP2 ⁽¹⁾	0	0	DIG	CCP2 compare and PWM output; takes priority over port data.
		1	Ι	ST	CCP2 capture input.
RC2/CCP1/P1A	RC2	0	0	DIG	LATC<2> data output.
		1	Ι	ST	PORTC<2> data input.
	CCP1	0	0	DIG	ECCP1/CCP1 compare or PWM output; takes priority over port data.
		1	Ι	ST	ECCP1/CCP1 capture input.
	P1A ⁽²⁾	0	0	DIG	ECCP1 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC3/SCK1/SCL1	RC3	0	0	DIG	LATC<3> data output.
		1	Ι	ST	PORTC<3> data input.
	SCK1	0	0	DIG	SPI clock output (MSSP1 module); takes priority over port data.
		1	Ι	ST	SPI clock input (MSSP1 module).
	SCL1	0	0	DIG	I ² C [™] clock output (MSSP1 module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C clock input (MSSP1 module); input type depends on module setting.
RC4/SDI1/SDA1	RC4	0	0	DIG	LATC<4> data output.
		1	Ι	ST	PORTC<4> data input.
	SDI1	1	Ι	ST	SPI data input (MSSP1 module).
	SDA1	1	0	DIG	I ² C data output (MSSP1 module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C data input (MSSP1 module); input type depends on module setting.
RC5/SDO1	RC5	0	0	DIG	LATC<5> data output.
		1	I	ST	PORTC<5> data input.
	SDO1	0	0	DIG	SPI data output (MSSP1 module); takes priority over port data.
RC6/TX/CK	RC6	0	0	DIG	LATC<6> data output.
		1	I	ST	PORTC<6> data input.
	ТХ	1	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as output.
	СК	1	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial clock input (EUSART module).
RC7/RX/DT	RC7	0	0	DIG	LATC<7> data output.
		1	Ι	ST	PORTC<7> data input.
	RX	1	Ι	ST	Asynchronous serial receive data input (EUSART module).
	DT	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART module). User must configure as an input.

TABLE 10-7: PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C^{TM}/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. Alternate assignment is RB3.

2: Enhanced PWM output is available only on PIC18F44J10/45J10 devices.

14.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F45J10 family devices all have two CCP (Capture/Compare/PWM) modules. Each module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register.

In 28-pin devices, the two standard CCP modules (CCP1 and CCP2) operate as described in this chapter. In 40/44-pin devices, CCP1 is implemented as an Enhanced CCP module (ECCP1) with standard Capture and Compare modes and Enhanced PWM modes. The Enhanced CCP implementation is discussed in **Section 15.0 "Enhanced Capture/Compare/PWM** (ECCP) Module".

The Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP modules.

Note: Throughout this section and Section 15.0 "Enhanced Capture/Compare/PWM (ECCP) Module", references to the register and bit names for CCP modules are referred to generically by the use of 'x' or 'y' in place of the specific module number. Thus, "CCPxCON" might refer to the control register for CCP1, CCP2 or ECCP1. "CCPxCON" is used throughout these sections to refer to the module control register regardless of whether the CCP module is a standard or Enhanced implementation.

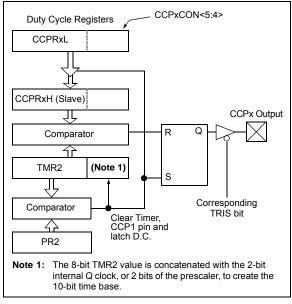
REGISTER 14-1:	CCPxCON: CCP1/CCP2 CONTROL REGISTER IN 28-PIN DEVICES

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

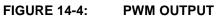
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0
	Capture mode: Unused.
	<u>Compare mode</u> : Unused.
	PWM mode:
	These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DCxB<9:2>) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0001 = Reserved
	0010 = Compare mode, toggle output on match (CCPxIF bit is set)
	0011 = Reserved
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)
	1001 = Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)
	1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin reflects I/O state)
	1011 = Compare mode: trigger special event, reset timer, start A/D conversion on CCPx match (CCPxIF bit is set)
	11xx = PWM mode

14.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force the RB3 or RC1 output latch (depending on device configuration) to the default low level. This is not the PORTB or PORTC I/O
	level. This is not the PORTB of PORTC I/O
	data latch.


Figure 14-3 shows a simplified block diagram of the CCP module in PWM mode.

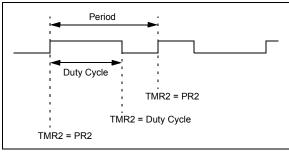
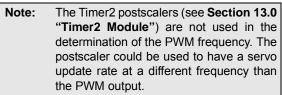

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 14.4.4** "Setup for PWM Operation".

FIGURE 14-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 14-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

14.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 14-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH

14.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> contains the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 14-2:

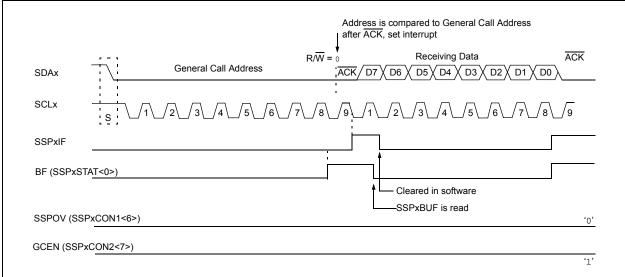
```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

16.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

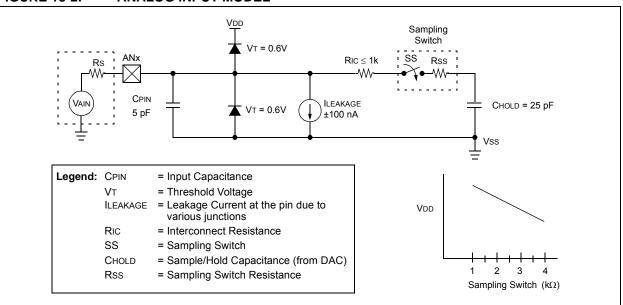

The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPxCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPxSR and the address is compared against the SSPxADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPxSR is transferred to the SSPxBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPxIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPxBUF. The value can be used to determine if the address was device-specific or a general call address.

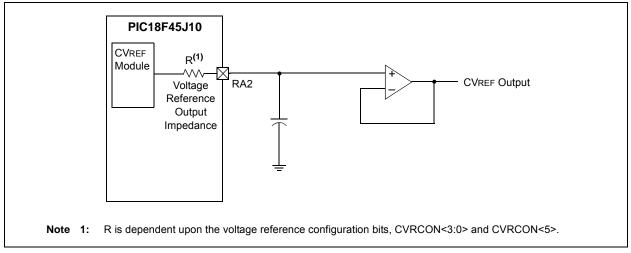
In 10-bit mode, the SSPxADD is required to be updated for the second half of the address to match and the UA bit is set (SSPxSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 16-15).

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 18.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.


The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared


OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.

FIGURE 18-2: ANALOG INPUT MODEL

FIGURE 20-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	49
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	49
TRISA	_	_	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	50

Legend: Shaded cells are not used with the comparator voltage reference.

22.0 INSTRUCTION SET SUMMARY

PIC18F45J10 family devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

22.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 22-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 22-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 22-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 22-2, lists the standard instructions recognized by the Microchip Assembler (MPASMTM).

Section 22.1.1 "Standard Instruction Set" provides a description of each instruction.

PIC18F45J10 FAMILY

CPFSGT		Compare	Compare f with W, Skip if f > W				
Synta	ax:	CPFSGT	f {,a}				
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0 , 1]					
Oper	ation:	(f) – (W), skip if (f) > ((unsigned c					
Statu	s Affected:	None					
Enco	ding:	0110	010a fff	f ffff			
Encoding: 0110 010a ffff ffff Description: Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Word	lo:	1		uetalis.			
Cycle	es:	1(2) Note: 3 cy	cles if skip and 2-word instrue				
QC	ycle Activity:						
1	Q1	Q2	Q3 Process	Q4 No			
	Decode	Read register 'f'	Data	operation			
lf sk	ip:		Dulu	operation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
IT SK	ip and followed Q1	d by 2-word in: Q2	struction: Q3	Q4			
1	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exan</u>	<u>nple:</u>	HERE NGREATER GREATER	CPFSGT RE : :	G, 0			
	Before Instruc	tion					
PC			dress (HERE)			
	W	= ?					
	After Instructio	n					
	If REG	> W;					
	PC If REG	= Ad ≤ W;	dress (GREAT	ľER)			
	PC	,	dress (NGREA	ATER)			

SLT	Compare	Compare f with W, Skip if f < W					
IX:	CPFSLT	f {,a}					
ands:	0 ≤ f ≤ 255 a ∈ [0 , 1]						
ation:		skip if $(f) < (W)$					
s Affected:	None						
ding:	0110	000a	ffff	ffff			
ription:	location 'f' performing If the conter contents of instruction executed in two-cycle in If 'a' is '0', t If 'a' is '1', t	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the CRB hank (default)					
s:	1						
es:		•	•				
•				.			
		1		Q4 No			
Decoue				peration			
p:	-						
Q1	Q2	Q3		Q4			
No	No	No		No			
			on c	peration			
	-			Q4			
No	No	No		No			
operation	operation	operati	ion c	peration			
No	No	No		No			
operation	operation	operati	on c	peration			
iple:	HERE NLESS LESS	NLESS :					
PC W	= Ac = ? on < W	; idress (I					
	x: ands: ation: s Affected: ding: ription: s: s: s: vcle Activity: <u>Q1</u> Decode p: <u>Q1</u> No operation p and followed <u>Q1</u> No operation p and followed <u>PC</u> W	IX:CPFSLTands: $0 \le f \le 255$ $a \in [0, 1]$ ation: $(f) - (W)$, skip if $(f) < (unsigned of(unsigned ofs Affected:None0110ription:Compareslocation 'f'performingIf the contecontents ofinstructionexecuted intwo-cycle inIf 'a' is '0', tIf 'a' is '0', tIf 'a' is '1', tGPR banks:1s:1s:1s:1gen banks:s:1s:1(2)Note:Note:3 cbyycle Activity:Q1Q2DecodeReadregister 'f'p:Q1Q1Q2NoNooperationp and followed by 2-word inQ1Q1Q2NoNooperationpand followed by 2-word inOperationpefore InstructionESSBefore InstructionPC= AcPCM= ?After InstructionIf REG< WPCPC= AcO$	IX:CPFSLTf {,a}ands: $0 \le f \le 255$ $a \in [0, 1]$ ation:(f) - (W), skip if (f) < (W) (unsigned comparisons)ation:(f) - (W), (unsigned comparisons)skip if (f) < (W) (unsigned comparisons)s Affected:Noneding:0110000aription:Compares the content location 'f' to the comperforming an unsign If the contents of W, then to instruction is discard executed instead, may two-cycle instruction. If 'a' is '0', the Access If 'a' is '1', the BSR is GPR bank (default).s:1s:1s:1es:1(2) Note:Q1Q2Q3Procein register 'f'Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q2Q3NoNooperationoperationoperationoperationoperationoperationoperationoperationperationoperationperationoperationoperationoperationoperationoperationperationoperationNoNoNoNoNoNoNoNo <td>x:CPFSLTf {,a}ands:$0 \le f \le 255$ $a \in [0, 1]$ation:(f) - (W), skip if (f) < (W) (unsigned comparison)s Affected:Noneding:$0110$$000a$ffffription:Compares the contents of data location 'f' to the contents of data location 'f' to the contents of 'f' are less the contents of W, then the fetch instruction is discarded and a executed instead, making this two-cycle instruction. If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to GPR bank (default).s:1s:1(2) Note:Note:3 cycles if skip and for by a 2-word instructionycle Activity:Q1Q2Q1Q2Q3DecodeRead register 'f'Q1Q2Q3NoNoNo operationy and followed by 2-word instruction: Q1Q1Q1Q2Q3NoNoNo operationprand followed by 2-word instruction: Q1Q1Q1Q2Q3NoNoNo operationprant followed by 2-word instruction: operationoperation operationpress:LESS:Before Instruction W:PC=Address(HERE) WPC=Address(LESS)</td>	x:CPFSLTf {,a}ands: $0 \le f \le 255$ $a \in [0, 1]$ ation:(f) - (W), skip if (f) < (W) (unsigned comparison)s Affected:Noneding: 0110 $000a$ ffffription:Compares the contents of data location 'f' to the contents of data location 'f' to the contents of 'f' are less the contents of W, then the fetch instruction is discarded and a executed instead, making this two-cycle instruction. If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to GPR bank (default).s:1s:1(2) Note:Note:3 cycles if skip and for by a 2-word instructionycle Activity:Q1Q2Q1Q2Q3DecodeRead register 'f'Q1Q2Q3NoNoNo operationy and followed by 2-word instruction: Q1Q1Q1Q2Q3NoNoNo operationprand followed by 2-word instruction: Q1Q1Q1Q2Q3NoNoNo operationprant followed by 2-word instruction: operationoperation operationpress:LESS:Before Instruction W:PC=Address(HERE) WPC=Address(LESS)			

PIC18F45J10 FAMILY

SUBWFB	Su	btract	W from f wit	h Borrow
Syntax:	SU	BWFB	f {,d {,a}}	
Operands:	0 ≤	f ≤ 255		
		[0,1]		
		[0,1]	_	
Operation:	• •	. ,	$(\overline{C}) \rightarrow dest$	
Status Affected:	N, (OV, C, E	DC, Z	
Encoding:	0	101	10da fff	f ffff
Description: Words: Cycles:	fron mei in V in ro If 'a GP If 'a set in Ii mod Sec Bit	n registe thod). If V. If 'd' is egister ' ' is '0', t ' is '1', t R bank ' is '0' a is enab ndexed de wher ction 22 Oriente	and the Carry er 'f' (2's compl 'd' is '0', the result if s '1', the result if f (default). the Access Ban he BSR is used (default). and the extende led, this instruc Literal Offset A never $f \le 95$ (5F 2.2.3 "Byte-Ori ed Instructions set Mode" for o	ement sult is stored is stored back it is selected. It to select the in instruction tion operates ddressing in). See ented and is in Indexed
Q Cycle Activity:	•			
Q1		Q2	Q3	Q4
Decode	F	Read	Process	Write to
	reg	ister 'f'	Data	destination
Example 1:	SI	UBWFB	REG, 1, 0	
Before Instruc REG	tion =	19h	(0001 100)1)
W	=	0Dh	(0001 100 (0000 110	
C	=	1		
After Instructio REG	n =	0Ch	(0000 101	L1)
W	=	0Dh	(0000 110	01)
C Z	=	1 0		
Ν	=	0	; result is po	ositive
Example 2:	SI	JBWFB	REG, 0, 0	
Before Instruc REG	tion =	1Bh	(0001 101	11)
W	=	1Ah	(0001 101	
C After Instructio	=	0		
After Instructio REG	=	1Bh	(0001 101	L1)
W C	=	00h 1		
Z	=	1	; result is ze	ero
Ν	=	0		
Example 3:		JBWFB	REG, 1, 0	
Before Instruc REG	tion =	03h	(0000 001	11)
W	=	0Eh	(0000 110	
C After Instructio	=	1		
After Instructic REG	=	F5h	(1111 010	00)
W	=	0Eh	; [2's comp] (0000 110	
С	=	0	(0000 110	
Z N	=	0 1	; result is ne	egative

SWAP	F	Swap f				
Syntax:		SWAPF f	{,d {,a}}			
Operan	ds:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$				
Operatio	on:	(f<3:0>) → (f<7:4>) →		,		
Status A	Affected:	None				
Encodir	ng:	0011	10da	ffff	ffff	
Descrip	tion:	'f' are exch is placed in placed in re If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 22 Bit-Oriente	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:		1				
Cycles:		1				
Q Cycl	e Activity:					
_	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Proce Dat		Write to estination	
Example	<u>e:</u>	SWAPF F	REG, 1,	0		
	fore Instruc REG er Instructic REG	= 53h				

24.2 DC Characteristics: Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

	5J10 Family strial)		rd Oper	-		as otherwise state $A \leq +85^{\circ}C$ for indu		
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ⁽²⁾							
	All devices	3.8	7.7	mA	-40°C			
		3.7	7.5	mA	+25°C	VDD = 2.5V		
		3.7	7.5	mA	+85°C		Fosc = 31 kHz (RC_RUN mode, Internal oscillator source)	
	All devices	3.9	7.9	mA	-40°C			
		3.7	7.5	mA	+25°C	VDD = 3.3V	,	
		3.7	7.5	mA	+85°C			
	All devices	64	167	μA	-40°C			
		77	193	μA	+25°C	VDD = 2.5V		
		95	269	μA	+85°C		Fosc = 31 kHz (RC_IDLE mode,	
	All devices	65	266	μA	-40°C	• –	Internal oscillator source)	
		79	294	μA	+25°C		,	
		98	360	μΑ	+85°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

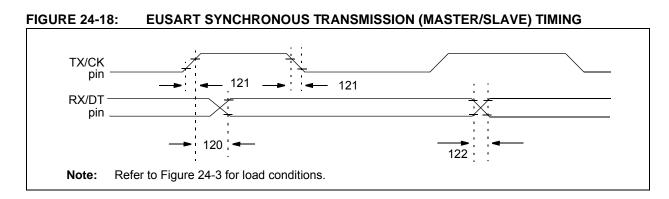
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

24.3	DC Characteristics:	PIC18F45J10 Family	(Industrial)	(Continued)
------	---------------------	--------------------	--------------	-------------


DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated Operating temperature ~40°C \leq TA \leq +85°C for industrial					
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
D080	Vol	Output Low Voltage I/O Ports (PORTB, PORTC)	_	0.4	v	IOL = 8.5 mA, VDD 3.3V -40°C to +85°C	
		I/O Ports (PORTA, PORTD, PORTE)	—	0.4	V	Io∟ = 3.4 mA, VDD 3.3V -40°C to +85°C	
D083		OSC2/CLKO (EC mode)	-	0.4	V	Io∟ = 1.6 mA, VDD 3.3V -40°C to +85°C	
	Voh	Output High Voltage ⁽³⁾					
D090		I/O Ports (PORTB, PORTC)	2.4	-	V	ІОн = -6 mA, VDD 3.3V -40°C to +85°C	
		I/O Ports (PORTA, PORTD, PORTE)	2.4	-	V	ІОн = -2 mA, VDD 3.3V -40°C to +85°C	
D092		OSC2/CLKO (EC mode)	2.4	-	V	IOH = 1.0 mA, VDD 3.3V -40°C to +85°C	
		Capacitive Loading Specs on Output Pins					
D100 ⁽⁴⁾	Cosc2	OSC2 Pin	_	15	pF	In HS mode when external clock is used to drive OSC1	
D101	Сю	All I/O Pins	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCLx, SDAx	_	400	pF	I ² C [™] Specification	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

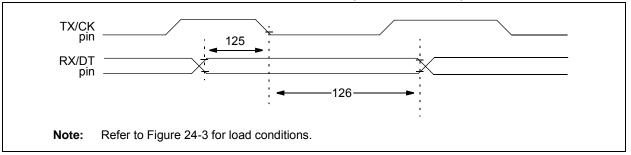

4: Refer to Table 10-2 for the pins that have corresponding tolerance limits.

TABLE 24-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid	_	40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)		20	ns	
122	TDTRF	Data Out Rise Time and Fall Time		20	ns	

FIGURE 24-19: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

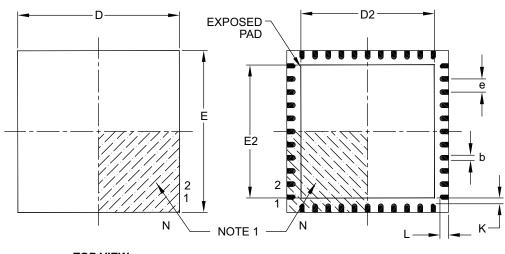
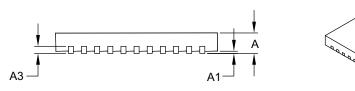


TABLE 24-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE) Data Hold before $CK \downarrow (DT hold time)$	10		ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	ns	


44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	44		
Pitch	e		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00 0.02 0.05		
Contact Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.30 6.45 6.80		
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20 – –		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

APPENDIX B: MIGRATION BETWEEN HIGH-END DEVICE FAMILIES

Devices in the PIC18F45J10 family and PIC18F4520 families are very similar in their functions and feature sets. However, there are some potentially important differences which should be considered when

migrating an application across device families to achieve a new design goal. These are summarized in Table B-1. The areas of difference which could be a major impact on migration are discussed in greater detail later in this section.

TABLE B-1: NOT	TABLE DIFFERENCES BETWEEN PIC18F45J10 AND PIC18F4520 FAMILIES
----------------	---

Characteristic	PIC18F45J10 Family	PIC18F4520 Family
Operating Frequency	40 MHz @ 2.15V	40 MHz @ 4.2V
Supply Voltage	2.0V-3.6V	2.0V-5.5V
Operating Current	Low	Lower
Program Memory Endurance	1,000 write/erase cycles (typical)	100,000 write/erase cycles (typical)
I/O Sink/Source at 25 mA	PORTB and PORTC only	All ports
Input Voltage Tolerance on I/O pins	5.5V on digital only pins	VDD on all I/O pins
I/O	32	36
Pull-ups	PORTB	PORTB
Oscillator Options	Limited options (EC, HS, fixed 32 kHz INTRC)	More options (EC, HS, XT, LP, RC, PLL, flexible INTRC)
Program Memory Retention	10 years (minimum)	40 years (minimum)
Programming Time (Normalized)	156 μs/byte (10 ms/64-byte block)	15.6 μs/byte (1 ms/64-byte block)
Programming Entry	Low Voltage, Key Sequence	VPP and LVP
Code Protection	Single block, all or nothing	Multiple code protection blocks
Configuration Words	Stored in last 4 words of Program Memory space	Stored in Configuration Space, starting at 300000h
Start-up Time from Sleep	200 μs (typical)	10 μs (typical)
Power-up Timer	Always on	Configurable
Data EEPROM	Not available	Available
Brown-out Reset	Simple BOR ⁽¹⁾	Programmable BOR
LVD	Not available	Available
A/D Calibration	Required	Not required
In-Circuit Emulation	Not available	Available
TMR3	Not available	Available
Second MSSP	Available ⁽²⁾	Not available

Note 1: Brown-out Reset is not available on PIC18LFXXJ10 devices.

2: Available on 40/44-pin devices only.