

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25j10t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin High-Performance, RISC Microcontrollers

Special Microcontroller Features:

- Operating Voltage Range: 2.0V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- · On-Chip 2.5V Regulator
- 4x Phase Lock Loop (PLL) available for Crystal and Internal Oscillators
- Self-Programmable under Software Control
- Low-Power, High-Speed CMOS Flash Technology
- C Compiler Optimized Architecture:
- Optional extended instruction set designed to optimize re-entrant code
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug (ICD) with Three Breakpoints via Two Pins
- · Power-Managed modes with Clock Switching:
 - Run: CPU on, peripherals on
 - Idle: CPU off, peripherals on
 - Sleep: CPU off, peripherals off

Flexible Oscillator Structure:

- Two Crystal modes, up to 40 MHz
- Two External Clock modes, up to 40 MHz
- Internal 31 kHz Oscillator
- Secondary Oscillator using Timer1 @ 32 kHz
- Two-Speed Oscillator Start-up
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25 mA (PORTB and PORTC)
- · Three Programmable External Interrupts
- · Four Input Change Interrupts
- · One Capture/Compare/PWM (CCP) module
- One Enhanced Capture/Compare/PWM (ECCP) module:
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Two Master Synchronous Serial Port (MSSP) modules supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- One Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN/J2602
 - Auto-wake-up on Start bit
 - Auto-Baud Detect (ABD)
- 10-Bit, up to 13-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
 - Self-calibration feature
- · Dual Analog Comparators with Input Multiplexing

Program Memory		ram Memory					MSSP			F	ors	
Device	Flash (bytes)	# Single-Word Instructions	SRAM Data Memory (bytes)	I/O	10-Bit A/D (ch)	CCP/ ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparato	Timers 8/16-Bit
PIC18F24J10	16K	8192	1024	21	10	2/0	1	Y	Y	1	2	1/2
PIC18F25J10	32K	16384	1024	21	10	2/0	1	Y	Y	1	2	1/2
PIC18F44J10	16K	8192	1024	32	13	1/1	2	Y	Y	1	2	1/2
PIC18F45J10	32K	16384	1024	32	13	1/1	2	Y	Y	1	2	1/2

Pin Name	Pi	n Numb	er	Pin	Buffer	Description
Fininame	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0				I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port (see also \overline{WR} and \overline{CS} pins).
AN5				Ι	Analog	Analog input 5.
RE1/WR/AN6	9	26	26		0	
RE1	Ū			I/O	ST	Digital I/O.
WR				Ι	TTL	Write control for Parallel Slave Port
410					A	(see CS and RD pins).
AN6				I	Analog	Analog input 6.
RE2/CS/AN7 RE2	10	27	27	I/O	ST	Digital I/O
CS				1/0	TTL	Digital I/O. Chip Select control for Parallel Slave Port
				•		(see related \overline{RD} and \overline{WR} pins).
AN7				-	Analog	Analog input 7.
Vss	12, 31		6, 29	Р	—	Ground reference for logic and I/O pins.
		31				
Vdd	11, 32		7, 28	Р	—	Positive supply for logic and I/O pins.
N/		28, 29				
VDDCORE/VCAP VDDCORE	6	23	23	Р		Positive supply for logic and I/O pins.
VCAP				P	_	Ground reference for logic and I/O pins.
NC		13	12, 13,			No connect.
-			33, 34			
Legend: TTL = TTL co	mpatibl	e input			C	MOS = CMOS compatible input or output
ST = Schmit		er input v	with CM	OS lev		= Input
O = Output	t				P	= Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

6.1.3 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.6.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

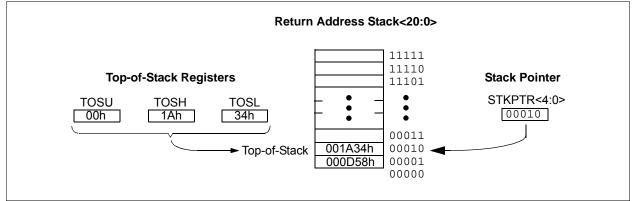
The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.4 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the top-of-stack Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

6.1.4.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

6.3.5 STATUS REGISTER

The STATUS register, shown in Register 6-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu'). It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 22-2 and Table 22-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

REGISTER 6-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	—	Ν	OV	Z	DC ⁽¹⁾	C ⁽²⁾
bit 7							bit (
Legend:							
R = Read		W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7-5	Unimpleme	nted: Read as '0	3				
bit 4	N: Negative	bit					
	This bit is us (ALU MSB =	sed for signed ari = 1).	thmetic (2's co	omplement). It i	ndicates whe	ther the result wa	as negative
	1 = Result w 0 = Result w	vas negative vas positive					
bit 3	OV: Overflor	w bit					
	which cause	sed for signed ari es the sign bit (bit	7) to change	state.			bit magnitude
		v occurred for sig flow occurred	ned arithmeti	c (in this arithm	etic operation)	
bit 2	Z: Zero bit						
		ult of an arithmeti ult of an arithmeti			0		
bit 1	•	arry/Borrow bit ⁽¹⁾					
		ADDLW, SUBLW ar out from the 4th l			urrod		
		-out from the 4th			uneu		
bit 0	C: Carry/Bo						
		ADDLW, SUBLW ar	nd SUBWF inst	ructions:			
		out from the Mos					
	0 = No carry	-out from the Mo	st Significant	bit of the result	occurred		
Note 1:		polarity is reverse ate (RRF, RLF) ins					
2:	For borrow, the	polarity is reverse tate (RRF, RLF) in	d. A subtracti	on is executed l	by adding the	2's complement	of the second

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	Ι	ANA	A/D Input Channel 0 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
RA1/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	Ι	TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	I	ANA	A/D Input Channel 1 and Comparator C2- input. Default input configuration on POR; does not affect digital output.
RA2/AN2/ Vref-/CVref	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled.
	AN2	1	Ι	ANA	A/D Input Channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
	VREF-	1	Ι	ANA	A/D and comparator voltage reference low input.
	CVREF	x	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
	AN3	1	Ι	ANA	A/D Input Channel 3 and Comparator C1+ input. Default input configuration on POR.
	VREF+	1	Ι	ANA	A/D and comparator voltage reference high input.
RA5/AN4/SS1/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
C2OUT		1	Ι	TTL	PORTA<5> data input; disabled when analog input enabled.
	AN4	1	Ι	ANA	A/D Input Channel 4. Default configuration on POR.
	SS1	1	Ι	TTL	Slave select input for MSSP1 (MSSP1 module).
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.
OSC2/CLKO	OSC2	x	0	ANA	Main oscillator feedback output connection (HS mode).
	CLKO	x	0	DIG	System cycle clock output (Fosc/4) in RC and EC Oscillator modes.
OSC1/CLKI	OSC1	x	Ι	ANA	Main oscillator input connection.
	CLKI	x	Ι	ANA	Main clock input connection.

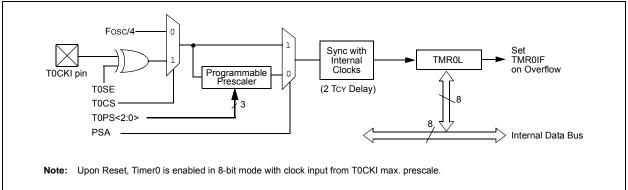
TABLE 10-3: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

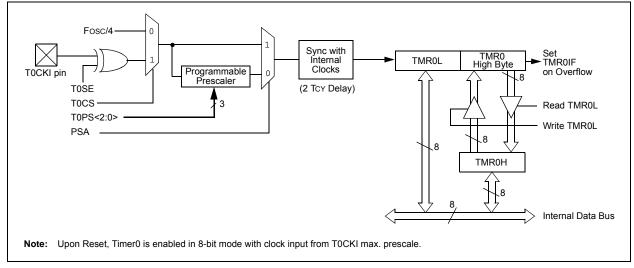
11.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 11.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RB5/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

11.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

16.4.3.2 Address Masking

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which makes it possible to Acknowledge up to 31 addresses in 7-Bit Addressing mode and up to 63 addresses in 10-Bit Addressing mode (see Example 16-2).

The I²C Slave behaves the same way, whether address masking is used or not. However, when address masking is used, the I²C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPxBUF.

In 7-Bit Addressing mode, Address Mask bits, ADMSK<5:1> (SSPxCON2<5:1>), mask the corresponding address bits in the SSPxADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPxADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Addressing mode, ADMSK<5:2> bits mask the corresponding address bits in the SSPxADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPxADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SSPxADD<n> = x). Also note that although in 10-Bit Addressing mode, the upper address bits reuse part of the SSPxADD register bits, the address mask bits do not interact with those bits. They only affect the lower address bits.

Note 1: ADMSK1 masks the two Least Significant bits of the address.

 The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 16-2: ADDRESS MASKING EXAMPLES

7-Bit Addressing:

SSPxADD<7:1>= A0h (1010000) (SSPxADD<0> is assumed to be '0')

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

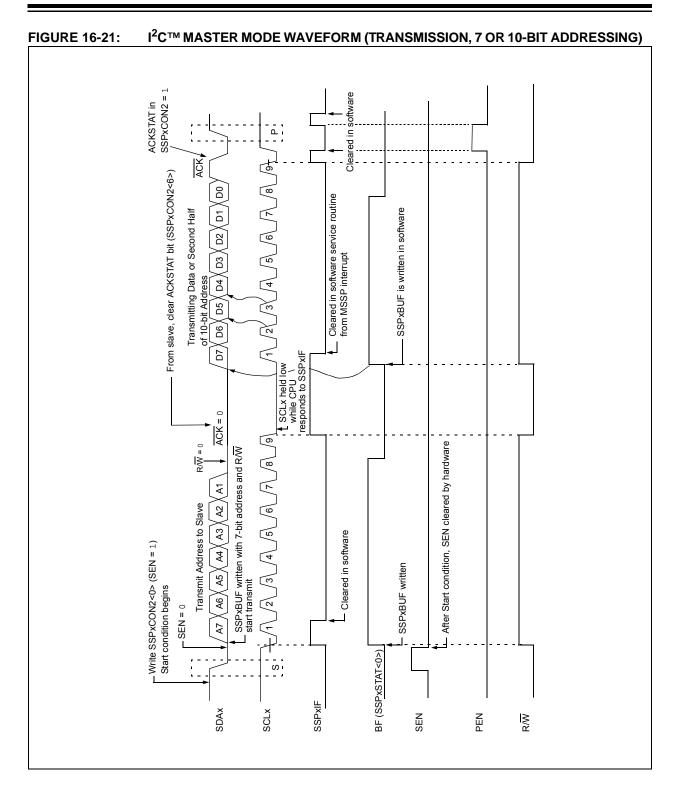
SSPxADD<7:0>= A0h (10100000) (the two MSbs of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

16.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.


In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 16.4.7 "Baud Rate"** for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

18.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

18.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 24-25 for more information).

Table 18-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

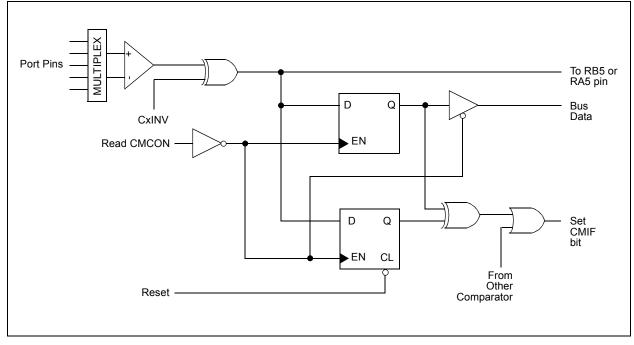
TABLE 18-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	ADCS<2:0>	Device Frequency
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	40.0 MHz
64 Tosc	110	40.0 MHz
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

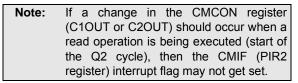
18.4 Configuring Analog Port Pins


The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

NOTES:


FIGURE 19-3: COMPARATOR OUTPUT BLOCK DIAGRAM

19.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

19.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

19.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

21.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 21-4) is accomplished by creating a sample clock signal which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 21-5). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 21.4.1 "Special Considerations for Using Two-Speed Start-up" for more details. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IRCF<2:0> immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IRCF<2:0> prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

21.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTRC clock when a clock failure is detected; this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

21.5.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with the OST oscillator, start-up delays if running in HS mode). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTRC oscillator. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

^{© 2009} Microchip Technology Inc.

CLRF	Clear f			CLRV	/DT	Clear Wat	chdog Time	er
Syntax:	CLRF f{,a	a}		Syntax	:	CLRWDT		
Operands:	$0 \leq f \leq 255$			Opera	nds:	None		
	$a \in [0,1]$			Operat	ion:	000h \rightarrow WE	DT,	
Operation:	000h \rightarrow f,			·			DT postscaler,	
	$1 \rightarrow Z$					$1 \rightarrow TO,$ $1 \rightarrow PD$		
Status Affected:	Z			<u> </u>				
Encoding:	0110	101a ff	ff ffff		Affected:	TO, PD		
Description:	Clears the c	contents of the	e specified	Encod	ng:	0000	0000 00	00 0100
	register.			Descri	ption:		truction resets	
	,		nk is selected. ed to select the			0	Timer. It also r	
	GPR bank (and PD, are		
			ed instruction	Words		1		
		ed, this instru ₋iteral Offset /	ction operates	Cycles		1		
		ever f \leq 95 (5	0	,	le Activity:			
		2.3 "Byte-Or	,	QOY	Q1	Q2	Q3	Q4
			is in Indexed		Decode	No	Process	No
		et Mode" for	details.		200040	operation	Data	operation
Words:	1							
Cycles:	1			Examp	le:	CLRWDT		
Q Cycle Activity:				В	efore Instruc	ction		
Q1	Q2	Q3	Q4		WDT Co		?	
Decode	Read	Process	Write	A	fter Instructio WDT Co		00h	
	register 'f'	Data	register 'f'		WDT Co WDT Po		0011	
-					TO	=	1	
Example:	CLRF	FLAG_REG,	Ţ		PD	=	1	
Before Instruc FLAG RI		h						
After Instructio		11						
FLAG_RI		n						

RETFIE	Return from Inter	rupt	RETLW	Return Li	teral to W		
Syntax:	RETFIE {s}		Syntax:	RETLW k			
Operands:	S ∈ [0,1]		Operands:	$0 \le k \le 255$			
Operation:	$(TOS) \rightarrow PC,$ 1 \rightarrow GIE/GIEH or PE if s = 1,	IE/GIEL;	Operation:	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged			
	$(WS) \rightarrow W,$	10	Status Affected:	None			
	$(STATUSS) \rightarrow STATU$ (BSRS) \rightarrow BSR,	53,	Encoding:	0000	1100 kk	kk kkkk	
	PCLATU, PCLATH a	e unchanged	Description:	W is loaded	d with the eigh	t-bit literal 'k'.	
Status Affected:	GIE/GIEH, PEIE/GIE	L				baded from the	
Encoding:	0000 0000	0001 000s		•	tack (the retur ddress latch (F	,	
Description:	Return from interrupt			remains un	•	,	
	and Top-of-Stack (TC the PC. Interrupts are		Words:	1			
	setting either the high	•	Cycles:	2			
	global interrupt enabl		Q Cycle Activity:				
	contents of the shade STATUSS and BSRS	-	Q1	Q2	Q3	Q4	
	their corresponding re	egisters, W,	Decode	Read	Process	POP PC	
	STATUS and BSR. If			literal 'k'	Data	from stack, Write to W	
Words:	of these registers occ 1	uis (delauit).	No	No	No	No	
Cycles:	2		operation	operation	operation	operation	
			- .				
Q Cycle Activity: Q1	Q2 Q3	Q4	Example:				
Decode	No No	POP PC	CALL TABLE	; W conta:	ins table		
	operation operati	on from stack		; offset y			
		Set GIEH or		; W now ha ; table va			
No	No No	GIEL	:				
operation	operation operati	-	TABLE ADDWF PCL	; W = off:	20t		
		<u>.</u>	RETLW k0	; Begin ta			
Example:	RETFIE 1		RETLW kl :	;			
After Interru			:				
PC W	= VV		RETLW kn	; End of t	table		
BSR STATU GIE/GI		SRS FATUSS	Before Instruc				
	,		W After Instructio	= 07h on			
			W	= value of	f kn		

TST	FSZ	Test f, Skip if 0							
Synta	ax:	TSTFSZ f {	,a}						
Opera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Oper	ation:	skip if f = 0							
Statu	s Affected:	None							
Enco	ding:	0110	011a fff	f ffff					
Description: If 'f' = 0, the next instruction fetched during the current instruction executio is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.									
Word	s:	1							
Cycle	es:	•							
QC	ycle Activity:	,							
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	No					
		register 'f'	Data	operation					
lf ski	ip: Q1	Q2	03	Q4					
	No	No	Q3 No	No					
	operation	operation	operation	operation					
lf sk	ip and followed		struction:						
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
	No operation	No operation	No operation	No operation					
<u>Exam</u>	<u>nple:</u>	NZERO	NZERO :						
	Before Instruc PC	= Ad	dress (HERE)					
	After Instructic If CNT PC If CNT PC	= 00 = Ad ≠ 00	dress (ZERO						

XOF	RLW	Exclusiv	ve OR Li	teral w	/ith W					
Synt	ax:	XORLW	XORLW k							
Oper	rands:	$0 \le k \le 25$	55							
Oper	ration:	(W) .XOR	$k \to W$							
Statu	us Affected:	N, Z	N, Z							
Enco	oding:	0000	1010	kkkk	kkkk					
Desc	cription:	The conte the 8-bit li in W.			Red with Ilt is placed					
Word	ds:	1								
Cycl	es:	1								
QC	cycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read literal 'k'	Proce Data		Write to W					
<u>Exar</u>	<u>nple:</u>	XORLW	0AFh							
	Before Instruc	tion								
	W	= B5h								
	After Instruction	on								

= 1Ah

W

24.2 DC Characteristics: Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

	5J10 Family strial)		rd Oper ng temp	•	•	ss otherwise state $A \leq +85^{\circ}C$ for indus	,	
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ⁽²⁾							
	All devices	6.2	14	mA	-40°C		Fosc = 4 MHz,	
		5.7	13	mA	+25°C	VDD = 2.5V	16 MHz internal	
		5.7	13	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	6.6	15	mA	-40°C		Fosc = 4 MHz.	
		6.1	14	mA	+25°C	VDD = 3.3V	16 MHz internal	
		6.1	14	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	11.0	22	mA	-40°C		Fosc = 10 MHz,	
		10.5	21	mA	+25°C	VDD = 2.5V	40 MHz internal	
		10.0	20	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	12.0	24	mA	-40°C		Fosc = 10 MHz,	
		11.5	23	mA	+25°C	VDD = 3.3V	40 MHz internal	
		11.0	22	mA	+85°C]	(PRI_RUN HS+PLL)	

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 24-2: COMPARATOR SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D300	VIOFF	Input Offset Voltage		±5.0	±25	mV	
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	—	—	dB	
D303	TRESP	Response Time ^{(1)*}	_	150	400	ns	
D304	TMC2OV	Comparator Mode Change to Output Valid*	—	—	10	μS	
D305	Virv	Internal Reference Voltage	—	1.2	—	V	

* These parameters are characterized but not tested.

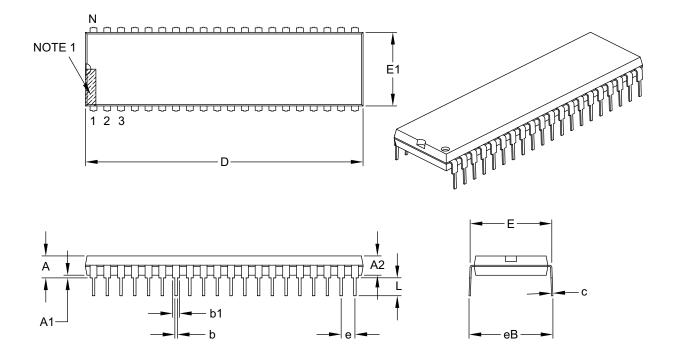
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 24-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < V_{DD} < 3.6V$, $-40^{\circ}C < T_A < +85^{\circ}C$ (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	_	_	1/2	LSb	
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω	
310	TSET	Settling Time ⁽¹⁾	—	_	10	μS	

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'.

TABLE 24-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS


Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
	Vrgout	Regulator Output Voltage	—	2.5		V	
	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.

These parameters are characterized but not tested. Parameter numbers not yet assigned for these specifications.

*

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES						
Di	Dimension Limits			MAX			
Number of Pins	N		40				
Pitch	е		.100 BSC				
Top to Seating Plane	А	-	-	.250			
Molded Package Thickness	A2	.125	-	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.590	-	.625			
Molded Package Width	E1	.485	-	.580			
Overall Length	D	1.980	-	2.095			
Tip to Seating Plane	L	.115	-	.200			
Lead Thickness	С	.008	-	.015			
Upper Lead Width	b1	.030	-	.070			
Lower Lead Width	b	.014	-	.023			
Overall Row Spacing §	eB	_	-	.700			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

PIC18F45J10 FAMILY PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X <u>/XX XXX</u> Temperature Package Pattern Range	 Examples: a) PIC18LF45J10-I/P 301 = Industrial temp., PDIP package, QTP pattern #301. b) PIC18LF24J10-I/SO = Industrial temp., SOIC package.
Device	PIC18F24J10/25J10, PIC18F44J10/45J10, PIC18F24J10/25J10T ⁽¹⁾ , PIC18F44J10/45J10T ⁽¹⁾ ; VDD range 2.7V to 3.6V PIC18LF24J10/25J10, PIC18LF44J10/45J10, PIC18LF24J10/25J10T ⁽¹⁾ , PIC18LF44J10/45J10T ⁽¹⁾ ; VDDCORE range 2.0V to 2.7V	c) PIC18LF44J10-I/P = Industrial temp., PDIP package.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN SS = SSOP	Note 1: T = in tape and reel TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	