

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44j10-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18F24J10/25J10 (28-PIN) BLOCK DIAGRAM Data Bus<8> Table Pointer<21> Data Latch 8 8 inc/dec logic X RA0/AN0 Data Memory RA1/AN1 (1 Kbyte) PCLATU PCLATH 21 RA2/AN2/VREF-/CVREF Address Latch RA3/AN3/VREF+ 20 PCU PCH PCL Program Counter RA5/AN4/SS1/C2OUT Data Address<12> 31 Level Stack Address Latch 12 BSR Access Program Memory (16/32 Kbytes) FSR0 STKPTR Bank FSR1 FSR2 Data Latch 12 **PORTB** RB0/INT0/FLT0/AN12 inc/de RB1/INT1/AN10 logic Table Latch RB2/INT2/AN8 RB3/AN9/CCP2⁽¹⁾ RB4/KBI0/AN11 Address RB5/KBI1/T0CKI/C1OUT Decode Instruction Bus <16> RB6/KBI2/PGC RB7/KBI3/PGD IR 8 State Machine Instruction Control Signals Decode and Control PRODH PRODL **PORTC** RC0/T1OSO/T1CKI RC1/T1OSI/CCP2⁽¹⁾ 8 x 8 Multiply RC2/CCP1 **BITOP** W RC3/SCK1/SCL1 RC4/SDI1/SDA1 RC5/SDO1 VDDCORE X Internal Power-up RC6/TX/CK Oscillator 8 RC7/RX/DT Block OSC1 \boxtimes Oscillator ALÚ<8> Start-up Timei INTRC \boxtimes -OSC2 Oscillator Power-on 8 Reset T10SI Watchdog T10S0 🔀 Precision Brown-out(2) Single-Supply \boxtimes MCLR Reset Programming Reference Fail-Safe In-Circuit VDD, VSS Clock Monitor Debugger ADC BOR⁽²⁾ Timer0 Timer1 Timer2 10-Bit MSSP CCP1 CCP2 **EUSART** Comparator Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set, or RB3 when CCP2MX is not set. Brown-out Reset is not available in PIC18LF2XJ10/4XJ10 devices.

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Piı	n Numb	oer	Pin	Buffer	Description
riii Naiile	PDIP	QFN	TQFP	Type	Type	Description
RD0/PSP0/SCK2/	19	38	38			PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled.
SCL2	10	50				
RD0 PSP0 SCK2				I/O I/O I/O	ST TTL ST	Digital I/O. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode.
SCL2				I/O	ST	Synchronous serial clock input/output for I ² C™ mode.
RD1/PSP1/SDI2/SDA2 RD1 PSP1 SDI2 SDA2	20	39	39	I/O I/O I	ST TTL ST ST	Digital I/O. Parallel Slave Port data. SPI data in. I ² C data I/O.
RD2/PSP2/SDO2 RD2 PSP2 SDO2	21	40	40	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. SPI data out.
RD3/PSP3/SS2 RD3 PSP3 SS2	22	41	41	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port data. SPI slave select input.
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

I = Input

O = Output

P = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

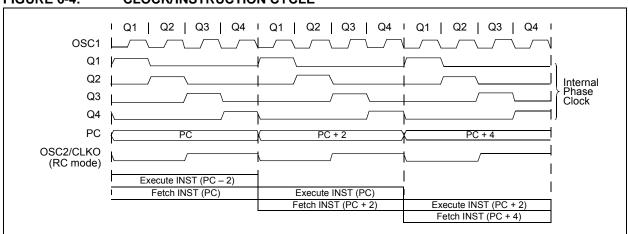
2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

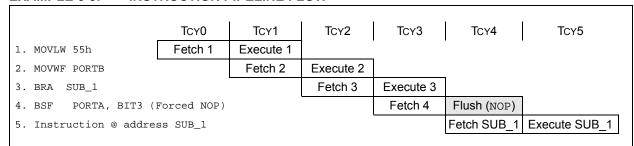
6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-4.


6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).


A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

REGISTER 9-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
OSCFIE	CMIE	_	_	BCL1IE	_	_	CCP2IE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 6 CMIE: Comparator Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 5-4 **Unimplemented:** Read as '0'

bit 3 **BCL1IE:** Bus Collision Interrupt Enable bit (MSSP1 module)

1 = Enabled
0 = Disabled

bit 2-1 Unimplemented: Read as '0'

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enabled
0 = Disabled

REGISTER 9-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
SSP2IE	BCL2IE	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 SSP2IE: Master Synchronous Serial Port 2 Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 6 BCL2IE: Bus Collision Interrupt Enable bit (MSSP2 module)

1 = Enabled
0 = Disabled

bit 5-0 **Unimplemented:** Read as '0'

TABLE 10-9: PORTD I/O SUMMARY

				IIII III			
Pin	Function	TRIS Setting	I/O	I/O Type	Description		
RD0/PSP0/SCK2/	RD0	0	0	DIG	LATD<0> data output.		
SCL2		1		ST	PORTD<0> data input.		
	PSP0	x	0	DIG	PSP read data output (LATD<0>); takes priority over port data.		
		x	ı	TTL	PSP write data input.		
	SCK2	0	0	DIG	SPI clock output (MSSP2 module); takes priority over port data.		
		1	- 1	ST	SPI clock input (MSSP2 module).		
	SCL2	0	0	DIG	I ² C™ clock output (MSSP2 module); takes priority over port data.		
		1	I	I ² C/SMB	I ² C clock input (MSSP2 module); input type depends on module setting.		
RD1/PSP1/SDI2/	RD1	0	0	DIG	LATD<1> data output.		
SDA2		1	ı	ST	PORTD<1> data input.		
	PSP1	х	0	DIG	PSP read data output (LATD<1>); takes priority over port data.		
		х	ı	TTL	PSP write data input.		
	SDI2	1	I	ST	SPI data input (MSSP2 module).		
	SDA2	1	0	DIG	I ² C data output (MSSP2 module); takes priority over port data.		
		1	I	I ² C/SMB	I ² C data input (MSSP2 module); input type depends on module setting.		
RD2/PSP2/SDO2	RD2	0	0	DIG	LATD<2> data output.		
		1	I	ST	PORTD<2> data input.		
	PSP2	х	0	DIG	PSP read data output (LATD<2>); takes priority over port data.		
		х	I	TTL	PSP write data input.		
	SDO2	0	0	DIG	SPI data output (MSSP2 module); takes priority over port data.		
RD3/PSP3/SS2	RD3	0	0	DIG	LATD<3> data output.		
		1	ı	ST	PORTD<3> data input.		
	PSP3	x	0	DIG	PSP read data output (LATD<3>); takes priority over port data.		
		x	ı	TTL	PSP write data input.		
	SS2	1	ı	TTL	Slave select input for MSSP2 (MSSP2 module).		
RD4/PSP4	RD4	0	0	DIG	LATD<4> data output.		
		1	I	ST	PORTD<4> data input.		
	PSP4	х	0	DIG	PSP read data output (LATD<4>); takes priority over port data.		
		х	I	TTL	PSP write data input.		
RD5/PSP5/P1B	RD5	0	0	DIG	LATD<5> data output.		
		1	ı	ST	PORTD<5> data input.		
	PSP5	х	0	DIG	PSP read data output (LATD<5>); takes priority over port data.		
		х	I	TTL	PSP write data input.		
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, Channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.		
RD6/PSP6/P1C	RD6	0	0	DIG	LATD<6> data output.		
		1	ı	ST	PORTD<6> data input.		
	PSP6	х	0	DIG	PSP read data output (LATD<6>); takes priority over port data.		
		х	ı	TTL	PSP write data input.		
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, Channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.		
RD7/PSP7/P1D	RD7	0	0	DIG	LATD<7> data output.		
		1	1	ST	PORTD<7> data input.		
	PSP7	x	0	DIG	PSP read data output (LATD<7>); takes priority over port data.		
		x	ı	TTL	PSP write data input.		
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, Channel D; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.		

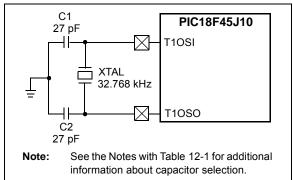
Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ${}^{1}C^{TM}/SMB = {}^{1}C/SMBus$ input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

FIGURE 12-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE) Timer1 Oscillator Timer1 Clock Input T10S0/T1CKI Synchronize Prescaler 0 Fosc/4 ■ Detect 1, 2, 4, 8 Internal Clock T10SI 2 Sleep Input T10SCEN⁽¹⁾ Timer1 TMR1CS On/Off T1CKPS<1:0> T1SYNC TMR10N TMR1 Clear TMR1 TMR1L TMR1IF High Byte on Overflow (CCP Special Event Trigger) Read TMR1L Write TMR1L 8 TMR1H Internal Data Bus Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.

12.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.


The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

12.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 OSCILLATOR

14.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

14.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1 or 2, depending on the mode selected. Timer1 is available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 14-1: ECCP/CCP MODE – TIMER RESOURCE

ECCP/CCP Mode	Timer Resource
Capture Compare	Timer1 Timer1
PWM	Timer2

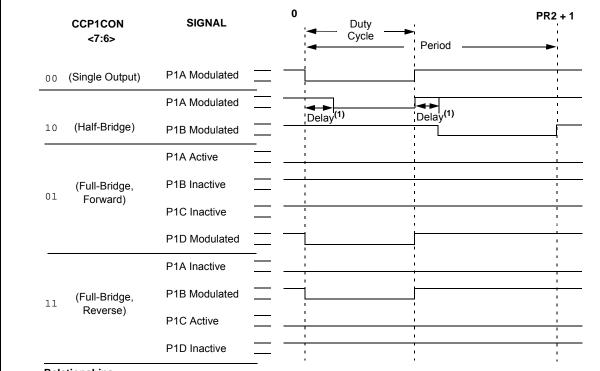
Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 14-1 and Figure 14-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

14.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation regardless of where it is located.

TABLE 14-2: INTERACTIONS BETWEEN ECCP1/CCP1 AND CCP2 FOR TIMER RESOURCES


CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module uses TMR1 as the time base.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1. Automatic A/D conversions on the trigger event can also be done. Operation of ECCP1/CCP1 will be affected.
Compare	Capture	ECCP1/CCP1 can be configured for the Special Event Trigger to reset TMR1. Operation of CCP2 will be affected.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset TMR1. Automatic A/D conversions on the CCP2 trigger event can be done.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

Note 1: Includes standard and Enhanced PWM operation.

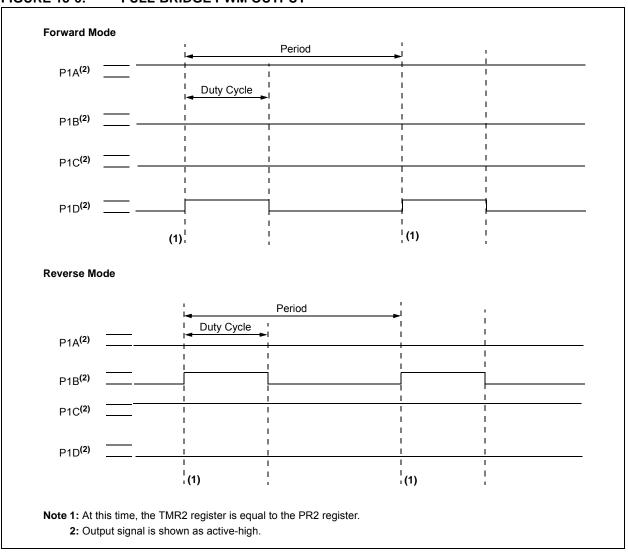
0 PR2 + 1 **SIGNAL** Duty CCP1CON Cycle <7:6> Period P1A Modulated (Single Output) 00 Delay⁽¹⁾ Delay⁽¹⁾ P1A Modulated (Half-Bridge) 10 P1B Modulated P1A Active P1B Inactive (Full-Bridge, Forward) P1C Inactive P1D Modulated P1A Inactive P1B Modulated (Full-Bridge, 11 Reverse) P1C Active P1D Inactive

FIGURE 15-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 15-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

Relationships:

- Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)
- Duty Cycle = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)
- Delay = 4 * Tosc * (ECCP1DEL<6:0>)


Note 1: Dead-band delay is programmed using the ECCP1DEL register (see Section 15.4.6 "Programmable Dead-Band Delay").

15.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 15-6.

P1A, P1B, P1C and P1D outputs are multiplexed with the PORTC<2> and PORTD<7:5> data latches. The TRISC<2> and TRISD<7:5> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

FIGURE 15-6: FULL-BRIDGE PWM OUTPUT

REGISTER 15-3: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 **ECCPASE:** ECCP Auto-Shutdown Event Status bit

1 = A shutdown event has occurred; ECCP outputs are in shutdown state

0 = ECCP outputs are operating

bit 6-4 ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits

111 = FLT0. Comparator 1 or Comparator 2

110 = FLT0 or Comparator 2

101 = FLT0 or Comparator 1

100 = FLT0

011 = Either Comparator 1 or 2

010 = Comparator 2 output

001 = Comparator 1 output

000 = Auto-shutdown is disabled

bit 3-2 **PSSAC<1:0>:** Pins A and C Shutdown State Control bits

1x = Pins A and C are tri-state (40/44-pin devices); PWM output is tri-state (28-pin devices)

01 = Drive Pins A and C to '1'

00 = Drive Pins A and C to '0'

bit 1-0 **PSSBD<1:0>:** Pins B and D Shutdown State Control bits⁽¹⁾

1x = Pins B and D tri-state

01 = Drive Pins B and D to '1'

00 = Drive Pins B and D to '0'

Note 1: Reserved on 28-pin devices; maintain these bits clear.

FIGURE 16-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

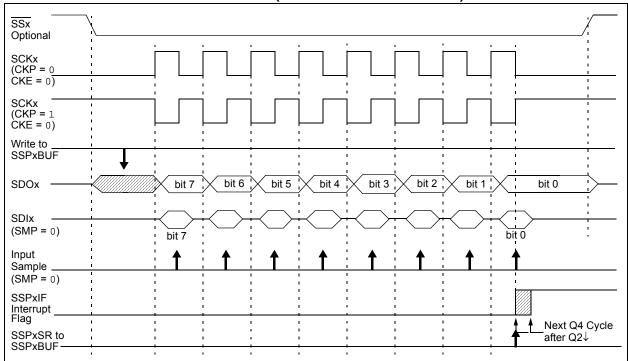
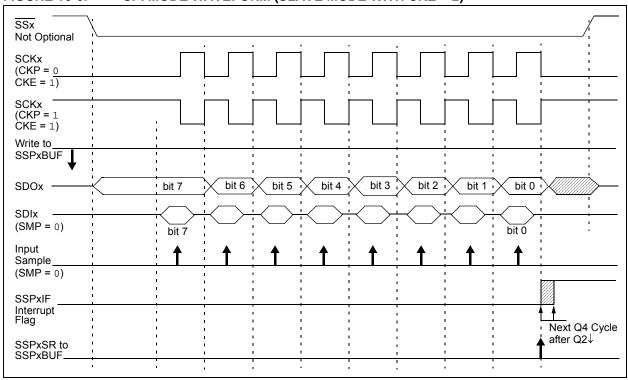



FIGURE 16-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

FIGURE 20-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

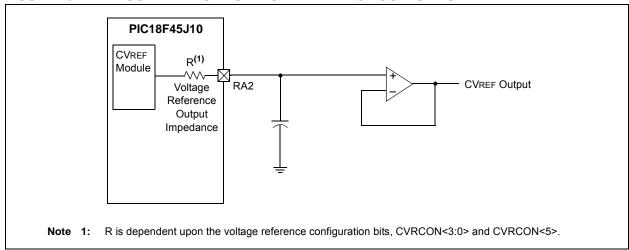


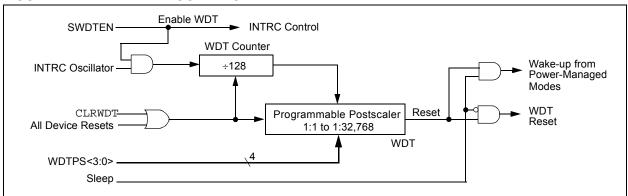
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	49
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	49
TRISA	_	_	TRISA5	-	TRISA3	TRISA2	TRISA1	TRISA0	50

Legend: Shaded cells are not used with the comparator voltage reference.

21.2 Watchdog Timer (WDT)

For PIC18F45J10 family devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.


The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexor, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes) depending on voltage, temperature and Watchdog postscaler. The WDT and postscaler are cleared whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - **2:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

21.2.1 CONTROL REGISTER

The WDTCON register (Register 21-9) is a readable and writable register. The SWDTEN bit enables or disables WDT operation.

FIGURE 21-1: WDT BLOCK DIAGRAM

REGISTER 21-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER

u-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-1 **Unimplemented**: Read as '0'

bit 0 **SWDTEN:** Software Controlled Watchdog Timer Enable bit⁽¹⁾

1 = Watchdog Timer is on0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 21-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	48
WDTCON	_	_	_	_	_	_	_	SWDTEN	48

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

BCF	Bit Clear f						
Syntax:	BCF f, b {,a}						
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0, 1]$						
Operation:	$0 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1001 bbba ffff ffff						
Description:	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates						

Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words:

Q Cycle Activity:

Cycles:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

in Indexed Literal Offset Addressing

Section 22.2.3 "Byte-Oriented and

mode whenever $f \le 95$ (5Fh). See

Example: BCF FLAG_REG, 7, 0

Before Instruction

FLAG_REG = C7h

After Instruction

FLAG_REG = 47h BN **Branch if Negative**

Syntax: BN n

 $-128 \le n \le 127$ Operands:

Operation: if Negative bit is '1', $(PC) + 2 + 2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0110 nnnn nnnn

If the Negative bit is '1', then the Description:

program will branch.

The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next

instruction, the new address will be PC + 2 + 2n. This instruction is then a

two-cycle instruction.

Words: Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	ʻn'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	No
	ʻn'	Data	operation

Example: HERE BN Jump

Before Instruction

PC address (HERE)

After Instruction

If Negative PC

address (Jump)

address (HERE + 2)

CLRF	Clear f
Syntax:	CLRF f {,a}
Operands:	$0 \le f \le 255$ $a \in [0, 1]$
Operation:	$000h \to f,$ $1 \to Z$
Status Affected:	Z
Encoding:	0110 101a ffff ffff
Description:	Clears the contents of the specified register. If 'a' is '0', the Access Bank is selected. If 'a' is '1' the BSR is used to select the

If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and

Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.

Words: 1 Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: CLRF FLAG_REG, 1

Before Instruction

FLAG_REG = 5Ah

After Instruction

FLAG_REG = 00h

CLRWDT Clear Watchdog Timer

Syntax: CLRWDT Operands: None

Operation: $000h \rightarrow WDT$,

000h → WDT postscaler,

 $1 \to \overline{\frac{\text{TO}}{\text{PD}}},$

Status Affected: $\overline{\text{TO}}$, $\overline{\text{PD}}$

Encoding: 0000 0000 0000 0100

Description: CLRWDT instruction resets the Watchdog Timer. It also resets the postscaler of the WDT. Status bits, TO

and PD, are set.

Words: 1
Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	No	Process	No
	operation	Data	operation

Example: CLRWDT

Before Instruction

WDT Counter = ?

After Instruction

 $\begin{array}{llll} \text{WDT Counter} & = & 00h \\ \underline{\text{WDT Postscaler}} & = & 0 \\ \underline{\overline{\text{TO}}} & = & 1 \\ \hline{\text{PD}} & = & 1 \end{array}$

© 2009 Microchip Technology Inc.

TSTFSZ Test f, Skip if 0

Syntax: TSTFSZ f $\{,a\}$ Operands: $0 \le f \le 255$

 $a \in [0, 1]$ skip if f = 0

Status Affected: None

Operation:

Encoding: 0110

Description:

If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction.

If 'a' is '0', the Access Bank is selected.

If 'a' is '1', the BSR is used to select the

011a

ffff

ffff

GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See

Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.

Words: 1

Cycles: 1(2)

Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	No
	register 'f'	Data	operation

If skip:

Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation

If skip and followed by 2-word instruction:

Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No	No	No	No
operation	operation	operation	operation

Example: HERE TSTFSZ CNT, 1

NZERO :

Before Instruction

PC = Address (HERE)

After Instruction

If CNT = 00h,

PC = Address (ZERO)

If CNT ≠ 00h,

PC = Address (NZERO)

XORLW Exclusive OR Literal with W

Status Affected: N, Z

Encoding: 0000 1010 kkkk kkkk

Description: The contents of W are XORed with the 8-bit literal 'k'. The result is placed

in W.

Words: 1
Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to W
	literal 'k'	Data	

Example: XORLW 0AFh

Before Instruction

W = B5h

After Instruction

W = 1Ah

22.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Lite	Add Literal to FSR			
Synta	ax:	ADDFSR	ADDFSR f, k			
Oper	ands:	$0 \le k \le 63$	$0 \leq k \leq 63$			
		$f \in [0, 1, 2]$				
Oper	ation:	$FSR(f) + k \rightarrow FSR(f)$				
Statu	s Affected:	None	None			
Enco	ding:	1110	1000	ffk	.k	kkkk
Desc	ription:	The 6-bit contents				
Word	s:	1	1			
Cycle	es:	1	1			
Q Cycle Activity:						
	Q1	Q2	Q3			Q4
	Decode	Read	Proce	SS	W	/rite to

Example: ADDFSR 2, 23h

literal 'k'

Data

FSR

Before Instruction

FSR2 = 03FFh

After Instruction

FSR2 = 0422h

ADDULNK	Add Literal to FSR2 and Return				
Syntax:	ADDULN	K k			
Operands:	$0 \le k \le 63$				
Operation:	$FSR2 + k \rightarrow FSR2$,				
	$(TOS) \rightarrow PC$				
Status Affected:	None				
Encoding:	1110	1000	11kk	kkkk	
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				
Words:	1				

Q Cycle Activity:

Cycles:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instruction

FSR2 = 03FFh PC = 0100h

After Instruction

FSR2 = 0422hPC = (TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

MOVSS Move Indexed to Indexed

 $\label{eq:syntax} \begin{array}{lll} \text{Syntax:} & \text{MOVSS} & [z_s], [z_d] \\ \text{Operands:} & 0 \leq z_s \leq 127 \\ & 0 \leq z_d \leq 127 \end{array}$

Operation: $((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$

Status Affected: None

Encoding: 1st word (source) 2nd word (dest.) Description

1110	1011	1zzz	zzzzs
1111	xxxx	XZZZ	zzzz _d

The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ',

respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh).

The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the

destination register.

If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP.

Words: 2 Cycles: 2

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Example: MOVSS [05h], [06h]

Before Instruction

FSR2 = 80h
Contents
of 85h = 33h
Contents
of 86h = 11h
After Instruction

FSR2 = 80h Contents of 85h = 33h Contents of 86h = 33h

PUSHL Store Literal at FSR2, Decrement FSR2

Syntax: PUSHL k

Operands: $0 \le k \le 255$ Operation: $k \to (FSR2)$,

 $FSR2 - 1 \rightarrow FSR2$

Status Affected: None

Encoding: 1111 1010 kkkk kkkk

Description: The 8-bit literal 'k' is written to the data memory address specified by FSR2. FSR2 is decremented by 1 after the operation.

This instruction allows users to push values

onto a software stack.

Words: 1
Cycles: 1
Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read 'k'	Process	Write to
		data	destination

Example: PUSHL 08h

Before Instruction

FSR2H:FSR2L = 01ECh Memory (01ECh) = 00h

After Instruction

FSR2H:FSR2L = 01EBh Memory (01ECh) = 08h

PORTA		Program Memory		
Associated Registers	100	and Extended Instruction Set		
LATA Register	98	Flash Configuration Words		52
PORTA Register	98	Instructions		57
TRISA Register	98	Two-Word		57
PORTB		Interrupt Vector	51	, 52
Associated Registers	103	Look-up Tables		55
LATB Register	101	Map and Stack (diagram)		51
PORTB Register	101	Memory Maps		
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) .	101	Hard Vectors and Configuration Words		52
TRISB Register		Reset Vector		
PORTC		Program Verification and Code Protection		247
Associated Registers	106	Programming, Device Instructions		
LATC Register		PSP. See Parallel Slave Port.		
PORTC Register		Pulse-Width Modulation. See PWM (CCP Module)		
RC3/SCK1/SCL1 Pin		and PWM (ECCP Module).		
TRISC Register		PUSH		278
PORTD		PUSH and POP Instructions		
Associated Registers	109	PUSHL		
LATD Register		PWM (CCP Module)		
Parallel Slave Port (PSP) Function		Associated Registers		134
PORTD Register		Auto-Shutdown (CCP1 Only)		
TRISD Register		CCPR1H:CCPR1L Registers		
PORTE	107	Duty Cycle		
Associated Registers	112	Example Frequencies/Resolutions		
LATE Register		Period		
		Setup for Operation		
PORTE Register				
PSP Mode Select (PSPMODE Bit)		TMR2-to-PR2 Match		
TRISE Register		PWM (ECCP Module)		
Power-Managed Modes		Direction Change in Full-Bridge Output Mode .		
and EUSART Operation		Effects of a Reset		
and Multiple Sleep Commands		Enhanced PWM Auto-Shutdown		
and PWM Operation		Full-Bridge Application Example		
and SPI Operation		Full-Bridge Mode		
Clock Transitions and Status Indicators		Half-Bridge Mode		
Entering		Half-Bridge Output Mode Applications Example		
Exiting Idle and Sleep Modes		Operation in Power-Managed Modes		
by Reset		Operation with Fail-Safe Clock Monitor		
by WDT Time-out		Output Configurations		
Without an Oscillator Start-up Delay		Output Relationships (Active-High)		
Idle Modes		Output Relationships (Active-Low)		
PRI_IDLE		Programmable Dead-Band Delay		
RC_IDLE		Setup for PWM Operation		
SEC_IDLE		Start-up Considerations		146
Run Modes		0		
PRI_RUN	36	Q		
RC_RUN	37	Q Clock	. 133,	138
SEC_RUN	36	R		
Selecting	35	N		
Sleep Mode	38	RAM. See Data Memory.		
Summary (table)	35	RBIF Bit		
Power-on Reset (POR)		RC_IDLE Mode		
Power-up Timer (PWRT)	44	RC_RUN Mode		
Time-out Sequence	44	RCALL		279
Power-up Delays		RCON Register		
Power-up Timer (PWRT)		Bit Status During Initialization		46
Prescaler		Reader Response		364
Timer2	138	Register File		
Prescaler, Timer0		Register File Summary		
Prescaler, Timer2		Registers		
PRI IDLE Mode		ADCON0 (A/D Control 0)		215
PRI_RUN Mode		ADCON1 (A/D Control 1)		
Program Counter		ADCON2 (A/D Control 2)		
•		BAUDCON (Baud Rate Control)		
PCL, PCH and PCU Registers		CCP1CON (ECCP1 Control)		
PCLATH and PCLATU Registers	33	CCPxCON (CCPx Control)		
		001 A0014 (001 A 00111101)		. 21