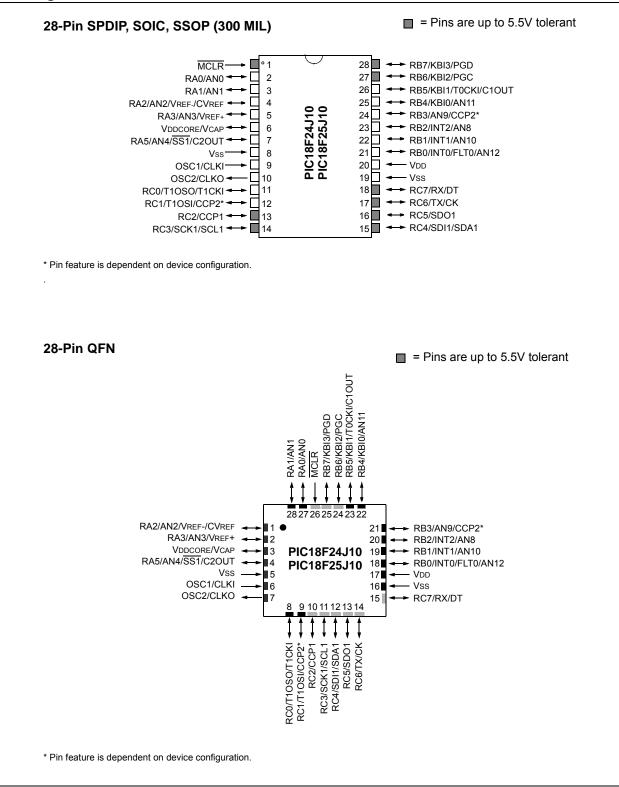


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

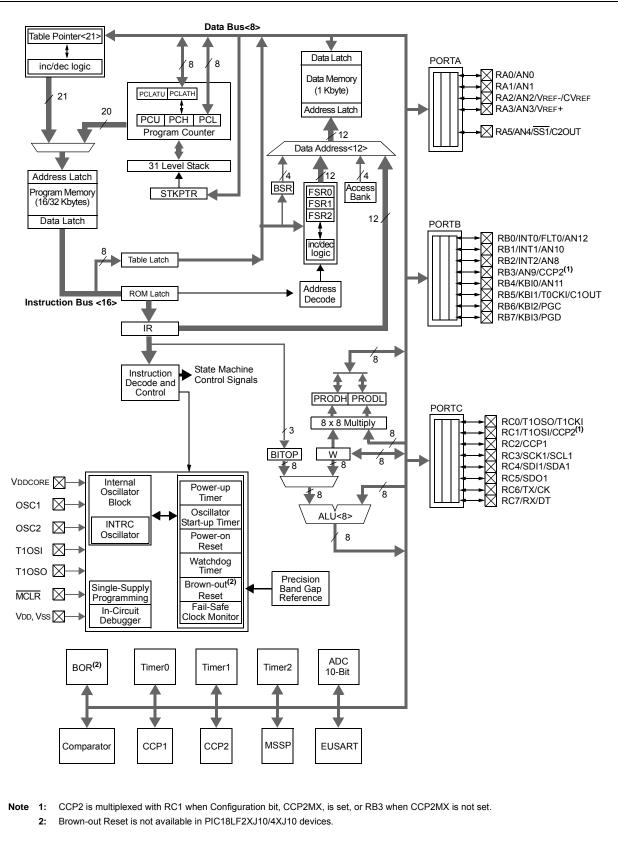

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44j10-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams



IABLE 1-1: DEVICE FEATURES									
Features	PIC18F24J10	PIC18F25J10	PIC18F44J10	PIC18F45J10					
Operating Frequency	DC – 40 MHz								
Program Memory (Bytes)	16384	32768	16384	32768					
Program Memory (Instructions)	8192	16384	8192	16384					
Data Memory (Bytes)	1024	1024	1024	1024					
Interrupt Sources	19	19	20	20					
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E					
Timers	3	3	3	3					
Capture/Compare/PWM Modules	2	2	1	1					
Enhanced Capture/Compare/PWM Modules	0	0	1	1					
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART					
Parallel Communications (PSP)	No	No	Yes	Yes					
10-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels					
Resets (and Delays)	POR, BOR ⁽¹⁾ , RESET Instruction, Stack Full, Stack Underflow (PWRT, <u>OS</u> T), MCLR, WDT	POR, BOR ⁽¹⁾ , RESET Instruction, Stack Full, Stack Underflow (PWRT, <u>OS</u> T), MCLR, WDT	POR, BOR ⁽¹⁾ , RESET Instruction, Stack Full, Stack Underflow (PWRT, <u>OS</u> T), MCLR, WDT	POR, BOR ⁽¹⁾ , RESET Instruction, Stack Full, Stack Underflow (PWRT, <u>OS</u> T), MCLR, WDT					
Programmable Brown-out Reset	Yes	Yes	Yes	Yes					
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled								
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP					

TABLE 1-1: DEVICE FEATURES

Note 1: BOR is not available in PIC18LF2XJ10/4XJ10 devices.

FIGURE 1-1: PIC18F24J10/25J10 (28-PIN) BLOCK DIAGRAM

4.3 Sleep Mode

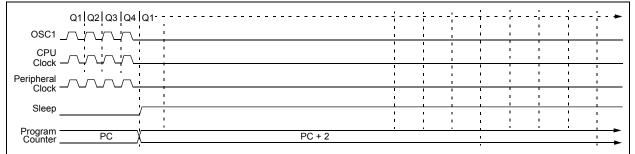
The power-managed Sleep mode is identical to the legacy Sleep mode offered in all other PIC microcontrollers. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-4). All clock source status bits are cleared.

Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

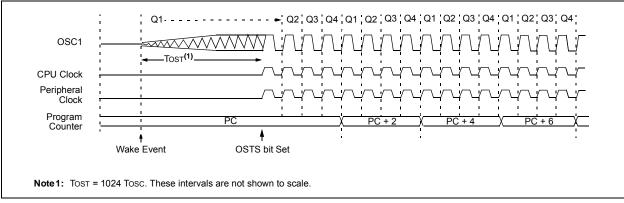
When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-5), or it will be clocked from the internal oscillator if either the Two-Speed Start-up or the Fail-Safe Clock Monitor are enabled (see **Section 21.0 "Special Features of the CPU"**). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

4.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.


If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS<1:0> bits; however, the CPU will not be clocked. The clock source status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.


Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (parameter 38, Table 24-10) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up.

While in any Idle mode or the Sleep mode, a WDT time-out will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

FIGURE 4-4: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TMR0H	Timer0 Regis	ter High Byte							0000 0000	48, 117
TMR0L	Timer0 Regis	ter Low Byte	_	_					xxxx xxxx	48, 117
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	48, 115
OSCCON	IDLEN	_	_	_	OSTS	_	SCS1	SCS0	0 q-00	32, 48
WDTCON	—	—			—	—	—	SWDTEN	0	48, 242
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR ⁽¹⁾	0-11 11q0	42, 46, 94
TMR1H	Timer1 Regis	ster High Byte							xxxx xxxx	48, 124
TMR1L	Timer1 Regis	ster Low Byte							xxxx xxxx	48, 124
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	48, 119
TMR2	Timer2 Regis	ster			•		•	•	0000 0000	48, 126
PR2	Timer2 Perio	d Register							1111 1111	48, 126
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	48, 125
SSP1BUF	MSSP1 Rece	eive Buffer/Tra	nsmit Register						xxxx xxxx	48, 158
SSP1ADD	MSSP1 Address Register in I ² C™ Slave mode. MSSP1 Baud Rate Reload Register in I ² C Master mode.							0000 0000	48, 159	
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	48, 150, 160
SSP1CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	48, 151, 161
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	48, 162
	GCEN	ACKSTAT	ADMSK5 ⁽³⁾	ADMSK4 ⁽³⁾	ADMSK3(3)	ADMSK2(3)	ADMSK1(3)	SEN	0000 0000	48, 163
ADRESH	A/D Result R	egister High B	yte						xxxx xxxx	48, 223
ADRESL	A/D Result R	egister Low By	/te						xxxx xxxx	48, 223
ADCON0	ADCAL	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0-00 0000	48, 218
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	48, 218
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	48, 218
CCPR1H	Capture/Com	pare/PWM Re	gister 1 High I	Byte					xxxx xxxx	49, 128
CCPR1L	Capture/Com	pare/PWM Re	gister 1 Low E	Byte					xxxx xxxx	49, 128
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	49, 128,
CCPR2H	Capture/Com	pare/PWM Re	gister 2 High I	Byte					xxxx xxxx	49, 128
CCPR2L	Capture/Compare/PWM Register 2 Low Byte								xxxx xxxx	49, 128
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	49, 128
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	49, 196
ECCP1DEL	PRSEN	PDC6 ⁽²⁾	PDC5 ⁽²⁾	PDC4 ⁽²⁾	PDC3 ⁽²⁾	PDC2 ⁽²⁾	PDC1 ⁽²⁾	PDC0 ⁽²⁾	0000 0000	49, 144
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽²⁾	PSSBD0 ⁽²⁾	0000 0000	49, 146
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	49, 232
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	49, 226

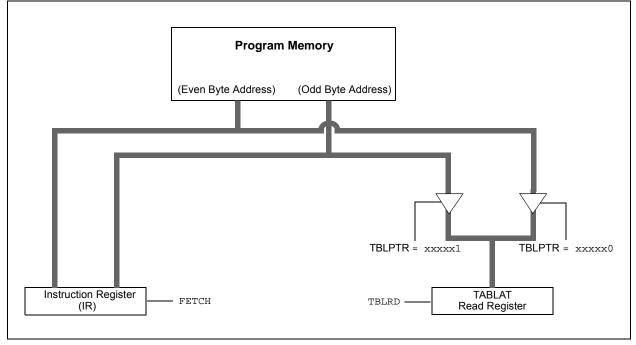
TABLE 6-3: REGISTER FILE SUMMARY (PIC18F24J10/25J10/44J10/45J10) (CONT
--

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition Note

See Section 5.4 "Brown-out Reset (BOR) (PIC18F2XJ10/4XJ10 Devices Only)". 1:

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-

Alternate names and definitions for these bits when the MSSP module is operating in I^2C^{TM} Slave mode. See Section 16.4.3.2 "Address Masking" for details. 3:

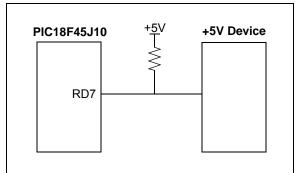

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY


EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW		Load TBLPTR with the base address of the word
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_ODD		

10.1.3 INTERFACING TO A 5V SYSTEM

Though the VDDMAX of the PIC18F45J10 family is 3.6V, these devices are still capable of interfacing with 5V systems, even if the VIH of the target system is above 3.6V. This is accomplished by adding a pull-up resistor to the port pin (Figure 10-2), clearing the LAT bit for that pin and manipulating the corresponding TRIS bit (Figure 10-1) to either allow the line to be pulled high or to drive the pin low. Only port pins that are tolerant of voltages up to 5.5V can be used for this type of interface (refer to Section 10.1.2 "Input Pins and Voltage Considerations").

FIGURE 10-2: +5V SYSTEM HARDWARE INTERFACE

EXAMPLE 10-1: COMMUNICATING WITH THE +5V SYSTEM

BCF	LATD, '	7	;	set up LAT register so
			;	changing TRIS bit will
			;	drive line low
BCF	TRISD,	7	;	send a 0 to the 5V system
BCF	TRISD,	7	;	send a 1 to the 5V system

10.2 PORTA, TRISA and LATA Registers

PORTA is a 5-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 and RA3 may also be used as comparator inputs and RA5 may be used as the C2 comparator output by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

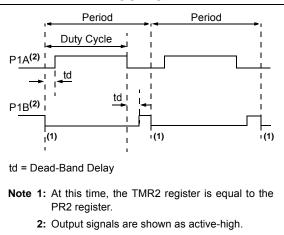
Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'.

All PORTA pins have TTL input levels and full CMOS output drivers.

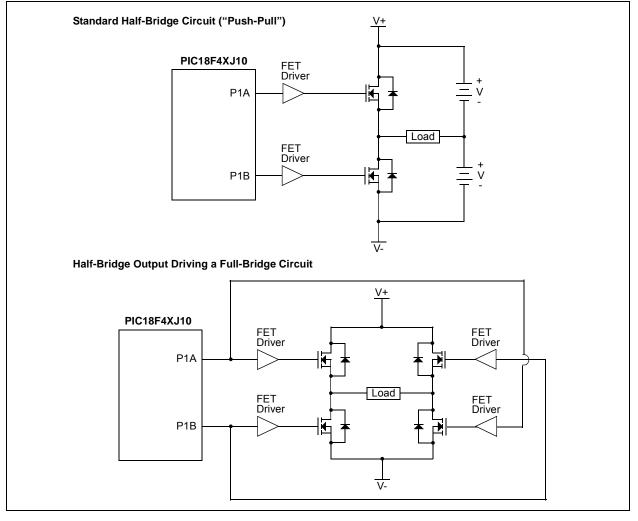
The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 10-2: INITIALIZING PORTA

CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	07h	;	Configure A/D
MOVWF	ADCON1	;	for digital inputs
MOVWF	07h	;	Configure comparators
MOVWF	CMCON	;	for digital input
MOVLW	0CFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs


15.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 15-4). This mode can be used for half-bridge applications, as shown in Figure 15-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.


In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, PDC<6:0>, sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 15.4.6 "Programmable Dead-Band Delay"** for more details of the dead-band delay operations.

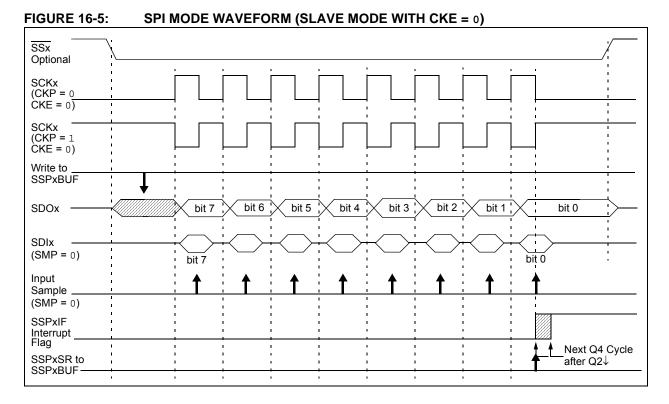

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTD<5> data latches, the TRISC<2> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 15-4: HALF-BRIDGE PWM OUTPUT

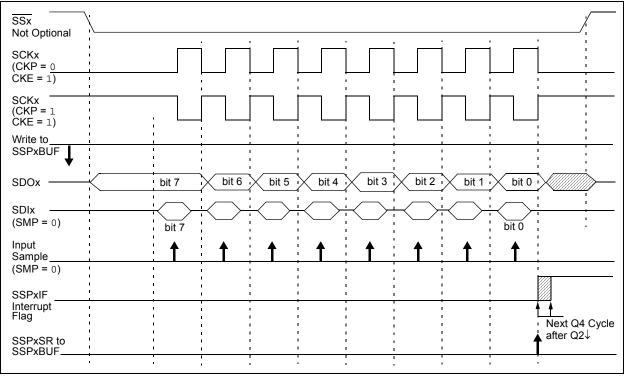


FIGURE 15-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

FIGURE 16-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

16.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 16-21).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

16.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

16.4.10.2 WCOL Status Flag

If the user writes to the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TcY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

16.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

16.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note:	The MSSP module must be in an Idle state
	before the RCEN bit is set or the RCEN bit
	will be disregarded.

The Baud Rate Generator begins counting, and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

16.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

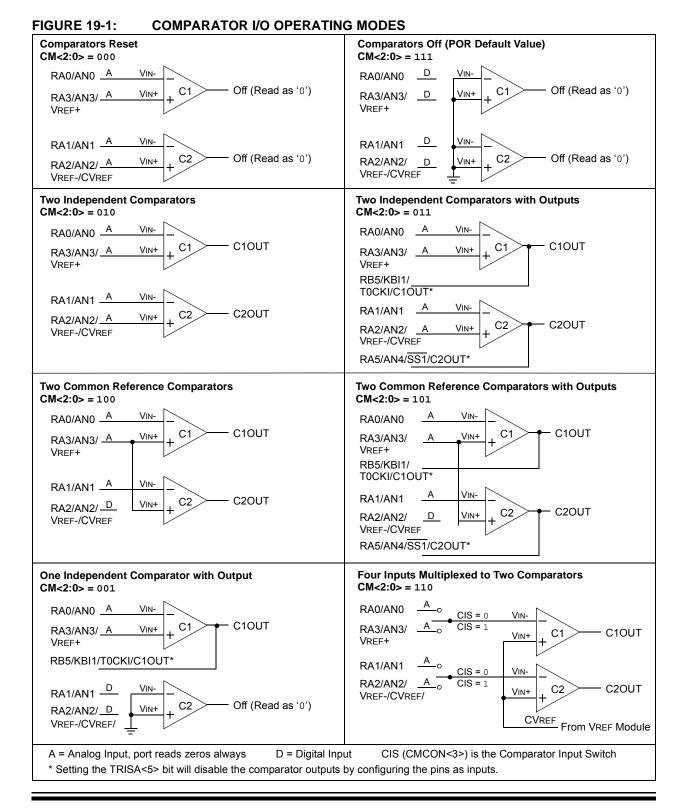
16.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

16.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7		· · ·				•	bit C
Legend:							
R = Readal	ble bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D R 1 = Right justi 0 = Left justifie		elect bit				
bit 6	Unimplement	ted: Read as '0	,				
bit 5-3	111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD		Time Select I	pits			
bit 2-0	000 = 0 TAD ⁽¹⁾ ADCS<2:0>: A/D Conversion Clock Select bits 111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾ 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾ 010 = Fosc/32 001 = Fosc/8 000 = Fosc/2						


REGISTER 18-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

19.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 19-1. Bits, CM<2:0> of the CMCON register, are used to select these modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 24.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

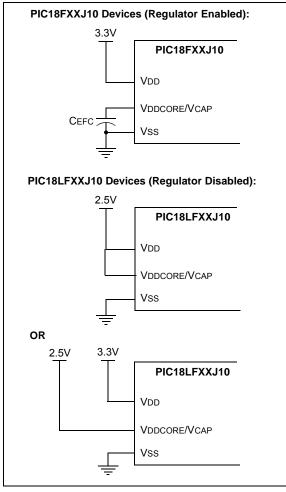
REGISTER 21-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

					-		-
U-0	U-0	U-0	U-0	R/WO-1	R/WO-1	R/WO-1	R/WO-1
_(1)	(1)	(1)	(1)	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7						•	bit 0
Legend:							
R = Readat	ole bit	WO = Write C	nce bit	U = Unimplem	nented bit, read	l as '0'	
R = Readable bitWO = Write Once bitU = Unimplemented bit, read as '0'-n = Value when device is unprogrammed'1' = Bit is set'0' = Bit is cleared							
bit 7-4	Unimplemer	nted: Read as ':	լ՝ (1)				
bit 3-0	WDTPS<3:0	>: Watchdog Ti	mer Postscale	Select bits			
	1111 = 1:32 ,	768					
	1110 = 1:16 ,	384					
	1101 = 1:8,1	92					
	1100 = 1:4,0	96					
	1011 = 1:2,0	-					
	1010 = 1:1,0						
	1001 = 1:512						
	1000 = 1:256	-					
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1:1						

Note 1: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

21.3 On-Chip Voltage Regulator

Note:	The on-chip voltage regulator is only							
	available in parts designated with an "F",							
	such as PIC18F45J10.							


In parts designated "LF", the microcontroller core is powered from an external source that is separate from VDD. This voltage is supplied on the VDDCORE pin.

In "F" devices, a low-ESR capacitor must be connected to the VDDCORE/VCAP pin for proper device operation. In parts designated with an "LF" part number (i.e., PIC18**LF**45J10), power to the core must be supplied on VDDCORE/VCAP. It is always good design practice to have sufficient capacitance on all supply pins. Examples are shown in Figure 21-2.

Note: In parts designated with an "LF", such as PIC18LF45J10, VDDCORE must never exceed VDD.

The specifications for core voltage and capacitance are listed inTable 24-4 of **Section 24.0** "**Electrical Characteristics**".

FIGURE 21-2: CONNECTIONS FOR THE ON-CHIP REGULATOR

21.3.1 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F45J10 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a BOR Reset. This event is captured by the BOR flag bit (RCON<0>).

The operation of the BOR is described in more detail in Section 5.4 "Brown-out Reset (BOR) (PIC18F2XJ10/4XJ10 Devices Only)" and Section 5.4.1 "Detecting BOR". The brown-out voltage levels are specific in Section 23.1 "DC Characteristics: Supply Voltage".

21.3.2 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

21.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 21-4) is accomplished by creating a sample clock signal which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 21-5). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 21.4.1 "Special Considerations for Using Two-Speed Start-up" for more details. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IRCF<2:0> immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IRCF<2:0> prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

21.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTRC clock when a clock failure is detected; this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

21.5.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with the OST oscillator, start-up delays if running in HS mode). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTRC oscillator. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

^{© 2009} Microchip Technology Inc.

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Natas
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL (OPERA	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd Word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st Word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	/IORY ←	> PROGRAM MEMORY OPERATIO	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 22-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

TBLRD		Table Read						
Synta	ax:	TBLRD (*; *	(*;*+;*-;+*)					
Oper	ands:	None						
Operation:		if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT, TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR, (Prog Mem (TBLPTR)) \rightarrow TABLAT						
Statu	s Affected:	None						
Encoding:		0000	000	0	0000		10nn nn=0 * =1 *+ =2 *- =3 +*	
Description:		of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement						
		• pre-increment						
Words: Cycles:		1 2						
Q Cycle Activity:								
	Q1	Q2			Q3		Q4	
	Decode	No	n	0.00	No		No	
	No operation	operatic No operat (Read Prog Memory	ion gram		eration No eration	No	operation operation ite TABLAT)	

TBLRD Table Read (Continued)

Example 1:	TBLRD *+	;	
Before Instruction	on		
TABLAT		=	55h
	(00A356h)	=	00A356h 34h
After Instruction	· /	-	3411
TABLAT		=	34h
TBLPTR		=	00A357h
Example 2:			
Example 2.	TBLRD +*	;	
Before Instruction	IDDIND .	;	
Before Instruction	IDDIND .	; =	AAh
Before Instruction TABLAT TBLPTR	on	=	01A357h
Before Instruction TABLAT TBLPTR MEMORY	(01A357h)	=	
Before Instruction TABLAT TBLPTR MEMORY	(01A357h) (01A358h)	= = =	01A357h 12h
Before Instruction TABLAT TBLPTR MEMORY MEMORY	(01A357h) (01A358h)	= = =	01A357h 12h

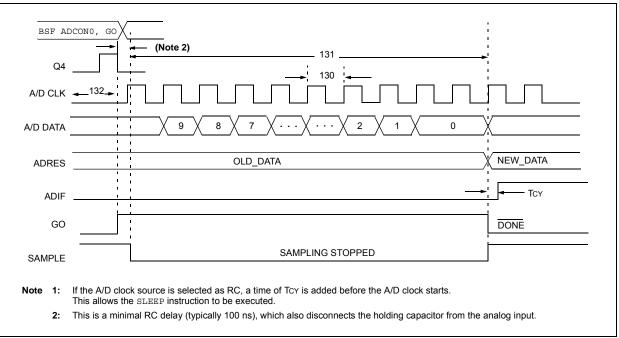

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution	_		10	bit	$\Delta \text{VREF} \geq 3.0 \text{V}$
A03	EIL	Integral Linearity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	_	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	_	_	<±3	LSb	$\Delta VREF \ge 3.0V$
A10	_	Monotonicity	G	uarantee	d ⁽¹⁾	_	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	1.8 3	_		V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High	Vss	_	Vrefh	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	Vdd - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—		2.2	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—		5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 24-24: A/D CONVERTER CHARACTERISTICS: PIC18F24J10/25J10/44J10/45J10 (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.

3: Maximum allowed impedance is 8.8 kΩ. This requires higher acquisition time than described in the A/D chapter.

FIGURE 24-20: A/D CONVERSION TIMING

Transition for Wake From Idle to Run Mode
Transition for Wake From Sleep
Transition From RC_RUN Mode to
PRI_RUN Mode
Transition to RC_RUN Mode
Timing Diagrams and Specifications
A/D Conversion Requirements
AC Characteristics
Internal RC Accuracy
Capture/Compare/PWM Requirements
(Including ECCP Module)
CLKO and I/O Requirements
EUSART Synchronous Receive
Requirements
EUSART Synchronous Transmission
Requirements
Example SPI Mode Requirements
(CKE = 0)
Example SPI Mode Requirements
(CKE = 1)
Example SPI Slave Mode Requirements (CKE = 1) 328
External Clock Requirements
I ² C Bus Data Requirements (Slave Mode)
I^2C Bus Start/Stop Bits Requirements
(Slave Mode)
Master SSP I ² C Bus Data Requirements
Master SSP 1 C Bus Data Requirements
Requirements
Parallel Slave Port Requirements
•
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up
Timer, Power-up Timer and Brown-out
Reset Requirements
Timer0 and Timer1 External Clock
Requirements
Top-of-Stack Access
TRISE Register
PSPMODE Bit
TSTFSZ
Two-Speed Start-up
Two-Word Instructions
Example Cases
TXSTA Register
BRGH Bit 197

V

•	
Voltage Reference Specifications	
Voltage Regulator (On-Chip)	
W	
Watchdog Timer (WDT)	235, 242
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	180, 181, 182, 185
WCOL Status Flag	180, 181, 182, 185
WWW Address	
WWW, On-Line Support	6
Х	
XORLW	
XORWF	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
App	lication (optional):	
Wou	Id you like a reply?YN	
Devi	ce: PIC18F45J10 Family	Literature Number: DS39682E
Que	stions:	
1.	What are the best features of this do	cument?
-		
2.	How does this document meet your h	nardware and software development needs?
3.	Do you find the organization of this d	ocument easy to follow? If not, why?
•		
4	Albet additions to the decument de v	authink would appear the structure and subject?
4.	what additions to the document do y	ou think would enhance the structure and subject?
•		
5.	What deletions from the document or	ould be made without affecting the overall usefulness?
0.		
6.	Is there any incorrect or misleading in	nformation (what and where)?
	, .	
-		
7.	How would you improve this docume	nt?
-		