

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45j10-i-ml

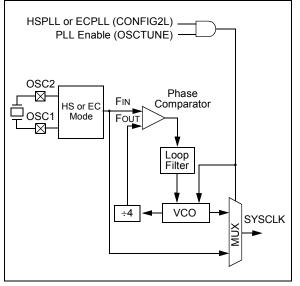
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number			Pin Buffer		Description		
Fiii Naille	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O 	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog input 12.		
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog input 10.		
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog input 8.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output		
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.		
RB5/KBI1/C1OUT RB5 KBI1 C1OUT	38	15	15	I/O I O	TTL TTL —	Digital I/O. Interrupt-on-change pin. Comparator 1 output.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.


2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.4 PLL Frequency Multiplier

A Phase Locked Loop (PLL) circuit is provided as an option for users who want to use a lower frequency oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals, or users who require higher clock speeds from an internal oscillator. For these reasons, the HSPLL and ECPLL modes are available.

The HSPLL and ECPLL modes provide the ability to selectively run the device at 4 times the external oscillating source to produce frequencies up to 40 MHz. The PLL is enabled by setting the PLLEN bit in the OSCTUNE register (Register 3-1).

FIGURE 3-4: PLL BLOCK DIAGRAM

REGISTER 3-1: OSCTUNE: PLL CONTROL REGISTER

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	PLLEN ⁽¹⁾	—	—	—	—	—	—	
bit 7 bit 0								

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	Unimplemented: Read as '0'
bit 6	PLLEN: Frequency Multiplier PLL Enable bit ⁽¹⁾
	1 = PLL enabled

0 = PLL disabled

- bit 5-0 Unimplemented: Read as '0'
- Note 1: Available only for ECPLL and HSPLL oscillator configurations; otherwise, this bit is unavailable and reads as '0'.

3.8 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 24-10). It is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 24-10), following POR, while the controller becomes ready to execute instructions.

TABLE 3-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Oscillator Mode	OSC1 Pin	OSC2 Pin
EC, ECPLL	Floating, pulled by external clock	At logic low (clock/4 output)
HS, HSPLL	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

Note: See Table 5-2 in Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

6.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 6.5 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each; PIC18F45J10 family devices implement all 16 banks. Figure 6-6 shows the data memory organization for the PIC18F45J10 family devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 6.3.2** "Access Bank" provides a detailed description of the Access RAM.

6.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 6-7.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 6-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

6.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 6.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before.

6.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 22.2 "Extended Instruction Set**".

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Example Situation:

ADDWF f, d, a FSR2H:FSR2L = 120h

Locations in the region from the FSR2 Pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh).

Locations in Bank 0 from 060h to 07Fh are mapped, as usual, to the middle half of the Access Bank.

Special Function Registers at F80h through FFFh are mapped to 80h through FFh, as usual.

Bank 0 addresses below 5Fh can still be addressed by using the BSR.

7.5 Writing to Flash Program Memory

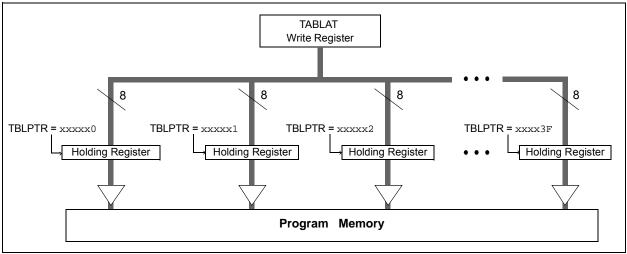

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer. The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: Unlike previous devices, the PIC18F45J10 family of devices does not reset the holding registers after a write occurs. The holding registers must be cleared or overwritten before a programming sequence. In order to maintain the endurance of the cells, each Flash byte should not be programmed more then twice between erase operations. Either a Bulk or Row Erase of the target row is required before attempting to modify the contents a third time.

FIGURE 7-5: TABLE WRITES TO FLASH PROGRAM MEMORY

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

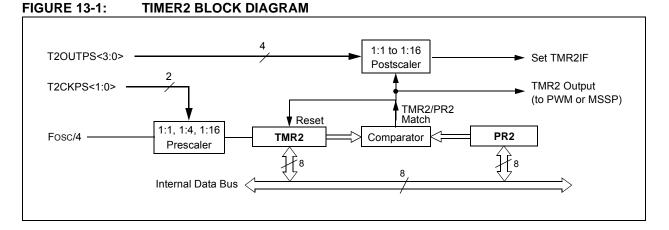
- 1. If the section of program memory to be written to has been programmed previously, then the memory will need to be erased before the write occurs (see Section 7.4.1 "Flash Program Memory Erase Sequence").
- 2. Write the 64 bytes into the holding registers with auto-increment.
- Set the EECON1 register for the write operation:
 set WREN to enable byte writes.
- 4. Disable interrupts.

- 5. Write 55h to EECON2.
- 6. Write 0AAh to EECON2.
- 7. Set the WR bit. This will begin the write cycle.
- The CPU will stall for duration of the write (about 2 ms using internal timer).
- 9. Re-enable interrupts.
- 10. Verify the memory (table read).

An example of the required code is shown in Example 7-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

13.2 Timer2 Interrupt


Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

13.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 16.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
TMR2	2 Timer2 Register								48
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	48
PR2	2 Timer2 Period Register								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

REGISTER 15-3: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

	•••••						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 7	ECCPASE: E	CCP Auto-Shu	tdown Event S	tatus bit			
		wn event has o Itputs are opera		outputs are in	shutdown stat	e	
bit 6-4	111 = FLT0, 0 110 = FLT0 o 101 = FLT0 o 100 = FLT0 011 = Either 010 = Compa 001 = Compa	ECCP Auto- Comparator 1 c r Comparator 2 r Comparator 1 Comparator 1 c arator 2 output arator 1 output hutdown is disa	or Comparator 2 br 2	urce Select bits 2			
bit 3-2	1x = Pins A a 01 = Drive Pi	: Pins A and C nd C are tri-sta ns A and C to ' ns A and C to '	te (40/44-pin c 1'	te Control bits levices); PWM	output is tri-sta	te (28-pin devic	ces)
bit 1-0	1x = Pins B a 01 = Drive Pi		1'	te Control bits ⁽¹)		

Note 1: Reserved on 28-pin devices; maintain these bits clear.

17.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits, BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>), also control the baud rate. In Synchronous mode, BRGH is ignored. Table 17-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 17-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 17-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 17-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

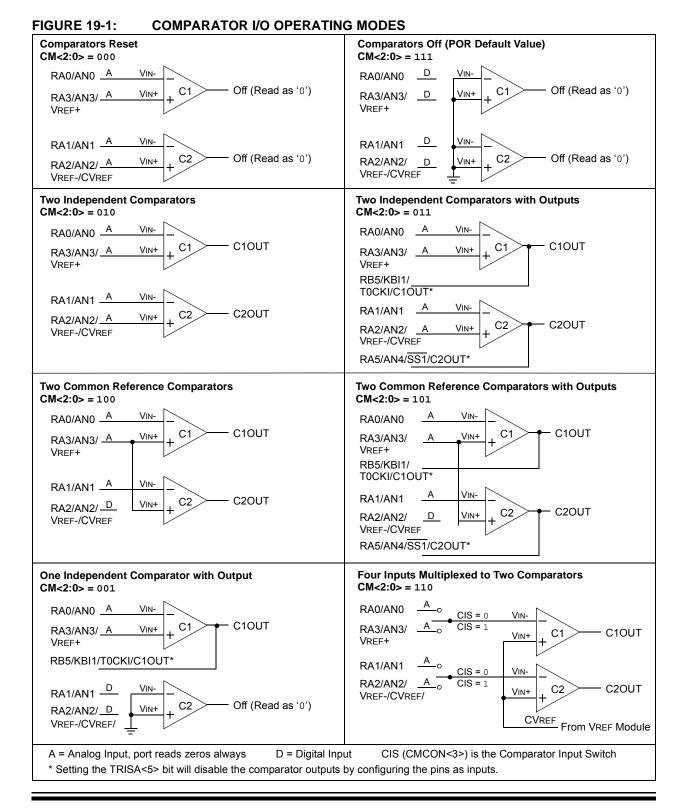
17.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

17.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 17-1:BAUD RATE FORMULAS


Co	Configuration Bits		DDC/EUSADT Mada	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous	$F_{000}/[16(n+1)]$		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n + 1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-bit/Synchronous			

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

19.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 19-1. Bits, CM<2:0> of the CMCON register, are used to select these modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 24.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

20.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 20-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

20.1 Configuring the Comparator Voltage Reference

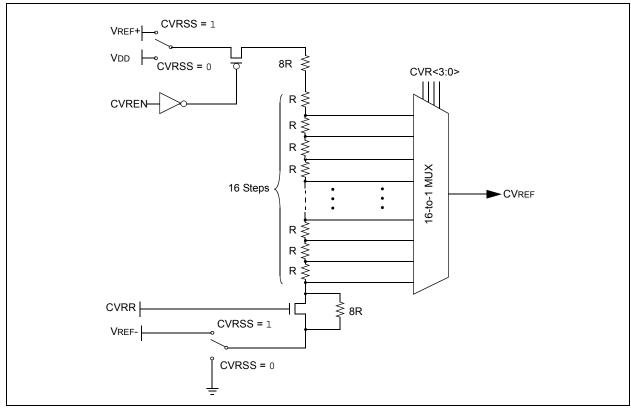
The voltage reference module is controlled through the CVRCON register (Register 20-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be

used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

<u>If CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) x CVRSRC <u>If CVRR = 0:</u> CVREF = (CVRSRC x 1/4) + (((CVR<3:0>)/32) x CVRSRC)

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 24-3 in **Section 24.0 "Electrical Characteristics"**).


REGISTER 20-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7 bit 0							

Legend:				
R = Readable bit	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	CVREN: Comparator Voltage Reference Enable bit
	1 = CVREF circuit powered on
	0 = CVREF circuit powered down
bit 6	CVROE: Comparator VREF Output Enable bit ⁽¹⁾
	 1 = CVREF voltage level is also output on the RA2/AN2/VREF-/CVREF pin 0 = CVREF voltage is disconnected from the RA2/AN2/VREF-/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	 1 = 0 to 0.667 CVRsRc, with CVRsRc/24 step size (low range) 0 = 0.25 CVRsRc to 0.75 CVRsRc, with CVRsRc/32 step size (high range)
bit 4	CVRSS: Comparator VREF Source Selection bit
	 1 = Comparator reference source, CVRSRC = (VREF+) - (VREF-) 0 = Comparator reference source, CVRSRC = VDD - VSS
bit 3-0	CVR<3:0>: Comparator VREF Value Selection bits $(0 \le (CVR<3:0>) \le 15)$ <u>When CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) • (CVRSRC)

Note 1: CVROE overrides the TRISA<2> bit setting.

FIGURE 20-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

20.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 20-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 24.0 "Electrical Characteristics"**.

20.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

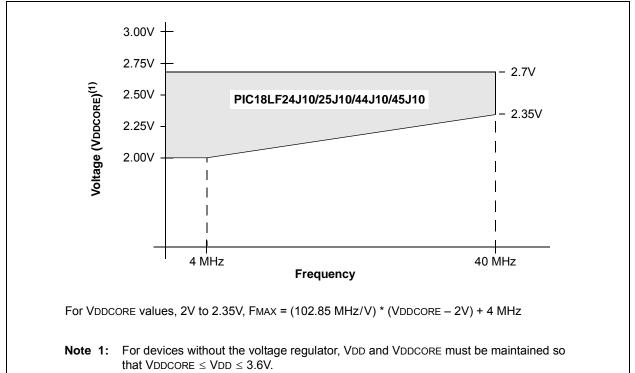
20.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

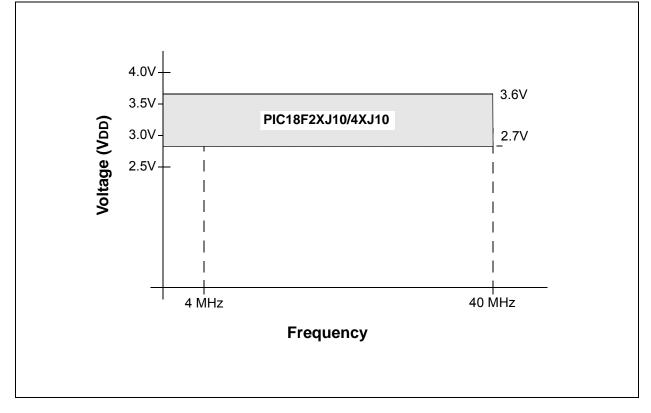
20.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 20-2 shows an example buffering technique.


ANDWF	AND W w	ith f		BC		Branch if	Carry			
Syntax:	ANDWF f {,d {,a}}		Synta	Syntax:		BC n				
Operands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ 1	127			
$d \in [0, 1]$ $a \in [0, 1]$			Operation	ation:	if Carry bit is '1', (PC) + 2 + 2n \rightarrow PC					
Operation:	(W) .AND. ((f) \rightarrow dest		Statu	s Affected:	None				
Status Affected:	N, Z			Enco	ding:	1110	0010 nni	nn nnnn		
Encoding:	0001	01da ff	ff ffff		ription:		bit is '1', then	the program		
Description:	 The contents of W are ANDed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed 		Word Cycle Q Cy If Ju	es: ycle Activity:	 will branch. The 2's complement number, '2n', is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. 1 1(2) Q2 Q3 Q4 					
		set Mode" for	details.		Decode	Read literal	Process	Write to PC		
Words:	1					'n'	Data			
Cycles:	1				No operation	No operation	No operation	No operation		
Q Cycle Activity:				lf No	Jump:	operation	operation	operation		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		Decode	Read literal 'n'	Process Data	No operation		
Example:	ANDWF	REG, 0, 0	I.	Exam	<u>iple:</u>	HERE	BC 5			
Before Instruc					Before Instruc	tion				
W REG After Instructio	= 17h = C2h on				PC After Instruction If Carry		dress (HERE)		
W REG	= 02h = C2h				If Carry PC If Carry PC	= ad = 0;	dress (HERE dress (HERE			

CLRF	Clear f			CLR\	NDT	Clear Wat	chdog Time	er
Syntax:	CLRF f{,a	a}		Synta	x:	CLRWDT		
Operands:	$0 \leq f \leq 255$			Opera	inds:	None		
	$a \in [0,1]$			Opera	ition:	$000h \rightarrow WE$	DT,	
Operation:	000h \rightarrow f,						DT postscaler,	
	$1 \rightarrow Z$					$1 \rightarrow TO,$ $1 \rightarrow PD$		
Status Affected:	Z			<u>.</u>	A. 65			
Encoding:	0110 101a ffff ffff			Affected:	TO, PD			
Description:	Clears the c	contents of the	e specified	Encod	ling:	0000	0000 00	00 0100
	register.		ali ta sala sta d	Descr	iption:		truction resets	
	,		nk is selected. ed to select the			0	Timer. It also re of the WDT. St	
	GPR bank (and PD, are		
			ed instruction	Words	S:	1		
		ed, this instru ₋iteral Offset /	ction operates	Cycle	s.	1		
		ever f \leq 95 (5	0	,	cle Activity:			
		2.3 "Byte-Or	,	QOy	Q1	Q2	Q3	Q4
			is in Indexed	Γ	Decode	No	Process	No
		et Mode" for	details.		200040	operation	Data	operation
Words:	1							
Cycles:	1			<u>Exam</u>	<u>ple:</u>	CLRWDT		
Q Cycle Activity:				E	Before Instruc	ction		
Q1	Q2	Q3	Q4		WDT Co		?	
Decode	Read	Process	Write	A	After Instruction WDT Co		00h	
	register 'f'	Data	register 'f'		WDT Co WDT Po		0011	
E venueles	<i>a.</i>		1		TO	=	1	
Example:	CLRF	FLAG_REG,	Ţ		PD	=	1	
Before Instruc FLAG RI		h						
After Instructio		11						
FLAG_RI		n						


CPF	SGT	Compare	Compare f with W, Skip if f > W						
Synta	ax:	CPFSGT	f {,a}						
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0 , 1]							
Oper	ation:	(f) – (W), skip if (f) > ((unsigned c							
Statu	s Affected:	None							
Enco	ding:	0110	010a fff	f ffff					
Description: Compares the contents of data memor location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than th contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selecter If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed									
Word	lo.	1	set Mode" for	uetalis.					
Cycle	es:	1(2) Note: 3 cy	cles if skip and 2-word instrue						
QC	ycle Activity:								
1	Q1	Q2	Q3 Process	Q4 No					
	Decode	Read register 'f'	Data	operation					
lf sk	ip:		Dulu	operation					
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
IT SK	ip and followed Q1	d by 2-word in: Q2	struction: Q3	Q4					
1	No	No	No	No					
	operation	operation	operation	operation					
	No	No	No	No					
	operation	operation	operation	operation					
Example:		HERE NGREATER GREATER	NGREATER :						
	Before Instruc	tion							
	PC		dress (HERE)					
	W	= ?							
	After Instruction								
	If REG	> W;							
	PC If REG	= Ad ≤ W;	dress (GREAT	ľER)					
	PC	,	dress (NGREA	ATER)					

SLT	Compare	Compare f with W, Skip if f < W							
ix:	CPFSLT	f {,a}							
ands:	0 ≤ f ≤ 255 a ∈ [0 , 1]								
ation:		skip if (f) < (W)							
s Affected:	None								
ding:	0110	000a	ffff	f fff					
ription:	location 'f' performing If the contection contents of instruction executed in two-cycle in If 'a' is '0', If 'a' is '1', t	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default)							
s:	1								
25:		•	•						
•	00	02 02							
		-	ee.	Q4 No					
Decode	register 'f'			operation					
ip:	-								
Q1	Q2	Q3		Q4					
No	No	No		No					
				operation					
	-			Q4					
				No					
operation	operation		ion	operation					
No	No	No		No					
operation	operation	operat	ion	operation					
<u>iple:</u>	HERE NLESS LESS	NLESS :							
PC W	= Ao = ? m < W = Ao	; ddress (1							
	x: ands: ation: s Affected: ding: ription: s: s: s: vcle Activity: <u>Q1</u> Decode p: <u>Q1</u> No operation p and followed <u>Q1</u> No operation p and followed <u>PC</u> W	IX:CPFSLTands: $0 \le f \le 255$ $a \in [0, 1]$ ation: $(f) - (W)$, skip if $(f) <$ (unsigned)ation: $(f) - (W)$, skip if $(f) <$ (unsigned)s Affected:Noneding: 0110 ription:Compares location 'f' performing If the contection executed in two-cycle i If 'a' is '0', If 'a' is '1', GPR banks:1s:1s:1es:1(2) Note:NoNote:Q1Q2DecodeRead register 'f'p:Q1Q1Q2NoNo operationp and followed by 2-word in Q1Q1Q2NoNo operationpand followed by 2-word in Q1Q1Q2NoNo operationperforming operationnple:HERE NLESS LESSBefore Instruction PC= Ac W PCM= ?After Instruction If REG< W PC	IX:CPFSLTf {,a}ands: $0 \le f \le 255$ $a \in [0, 1]$ ation:(f) - (W), skip if (f) < (W) (unsigned comparisons)skip if (f) < (W) (unsigned comparisons)s Affected:Noneding: 0110 $000a$ ription:Compares the content location 'f' to the comperforming an unsigned executed instead, main two-cycle instruction if 'a' is '0', the Access if 'a' is '1', the BSR is GPR bank (default).s:1s:1s:1es:1(2) Note:Note:3 cycles if sl by a 2-wordycle Activity:Q1Q2Q1Q2Q3DecodeRead register 'f'Q1Q2Q3NoNoNo operationp:Q1Q2Q1Q2Q3NoNoNo operationpand followed by 2-word instruction: Q1Q2Q1Q2Q3NoNoNo operationpand followed by 2-word instruction: Q1Q2Q1Q2Q3NoNoNo operationprestionoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationperferAddress (F WREGW; PCAddress (I PC	IX:CPFSLTf {.a}ands: $0 \le f \le 255$ $a \in [0, 1]$ ation:(f) - (W), skip if (f) < (W) (unsigned comparison)s Affected:Noneding: 0110 $000a$ ffffription:Compares the contents of contents of to the contents of the content of the					

FIGURE 24-2: PIC18F45J10 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

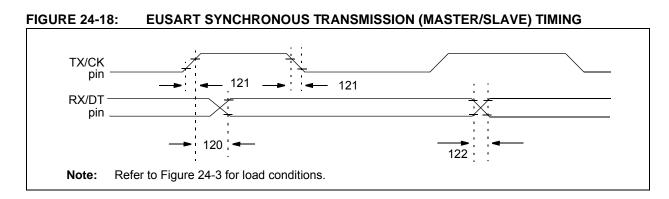
24.2 DC Characteristics: Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

PIC18F4 (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	All devices	4.1	8.3	mA	-40°C				
		3.8	7.7	mA	+25°C	VDD = 2.5V			
		3.8	7.7	mA	+85°C		Fosc = 32 kHz (SEC_RUN mode,		
	All devices	4.1	8.3	mA	-40°C	VDD = 3.3V	Timer1 as clock)		
		3.8	7.7	mA	+25°C		,		
		3.8	7.7	mA	+85°C				
	All devices	66	169	μA	-40°C				
		79	195	μA	+25°C	VDD = 2.5V			
		97	271	μA	+85°C		Fosc = 32 kHz (SEC_IDLE mode,		
	All devices	67	268	μΑ	-40°C		Timer1 as clock)		
		81	296	μΑ	+25°C	VDD = 3.3V	,		
		100	362	μA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

DC CH	ARACTE	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	100	1K	_	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132B	Vpew	Voltage for Self-Timed Erase or Write:					
		VDD	2.7	_	3.6	V	PIC18FXXJ10
		VDDCORE	2.25	_	2.7	V	PIC18LFXXJ10
D133A	Tiw	Self-Timed Write Cycle Time	_	2.8	—	ms	
D133B	TIE	Self-Timed Page Erased Cycle Time	_	33.0	—	ms	
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	10	_	mA	

TABLE 24-1: MEMORY PROGRAMMING REQUIREMENTS

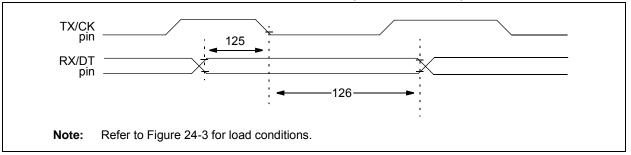

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 24-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid	_	40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)		20	ns	
122	TDTRF	Data Out Rise Time and Fall Time		20	ns	

FIGURE 24-19: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

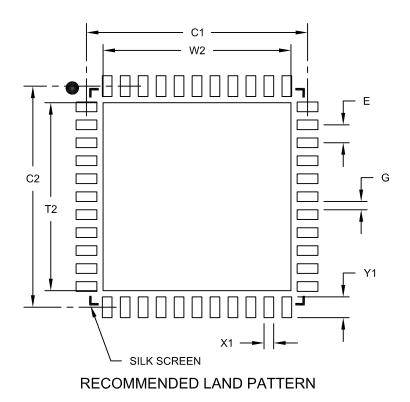


TABLE 24-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE) Data Hold before $CK \downarrow (DT hold time)$	10		ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Dimension Limits				
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A