
Microchip Technology - PIC18F45J10T-E/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f45j10t-e-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f45j10t-e-pt-4429752
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F45J10 FAMILY

Pin Diagrams (Continued)

44-Pin QFN(1)

RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/T0CKI/C1OUT
RB4/KBI0/AN11
RB3/AN9/CCP2*
RB2/INT2/AN8
RB1/INT1/AN10
RB0/INT0/FLT0/AN12
VDD
VSS

RD7/PSP7/P1D
RD6/PSP6/P1C
RD5/PSP5/P1B
RD4/PSP4
RC7/RX/DT
RC6/TX/CK
RC5/SDO1
RC4/SDI1/SDA1
RD3/PSP3/SS2
RD2/PSP2/SDO2

MCLR
RA0/AN0
RA1/AN1

RA2/AN2/VREF-/CVREF

RA3/AN3/VREF+
VDDCORE/VCAP

RA5/AN4/SS1/C2OUT
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

VDD
VSS

OSC1/CLKI
OSC2/CLKO

RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2*

RC2/CCP1/P1A
RC3/SCK1/SCL1

RD0/PSP0/SCK2/SCL2
RD1/PSP1/SDI2/SDA2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21
PI

C
18

F4
4J

10

40-Pin PDIP (600 MIL)

PI
C

18
F4

5J
10

* Pin feature is dependent on device configuration.
.

* Pin feature is dependent on device configuration.
Note 1: For the QFN package, it is recommended that the bottom pad be connected to VSS.

10
11

2
3

6

1

18 19 20 21 2212 13 14 15

38

8
7

44 43 42 41 40 39
16 17

29
30
31
32
33

23
24
25
26
27
28

36 3435

9

PIC18F44J10

37
M

C
LR

R
B

7/
K

B
I3

/P
G

D
R

B
6/

K
B

I2
/P

G
C

R
B5

/K
B

I1
/T

0C
K

I/C
1O

U
T

R
B

4/
K

B
I0

/A
N

11N
C

R
C

6/
TX

/C
K

R
C

5/
SD

O
1

R
C

4/
SD

I1
/S

D
A

1
R

D
3/

PS
P

3/
SS

2
R

D
2/

PS
P

2/
SD

O
2

R
D

1/
PS

P
1/

SD
I2

/S
D

A
2

R
D

0/
PS

P
0/

SC
K2

/S
C

L2
R

C
3/

SC
K

1/
S

C
L1

R
C

2/
C

C
P1

/P
1A

R
C

1/
T1

O
S

I/C
C

P
2*

R
C

0/
T1

O
S

O
/T

1C
K

I

OSC2/CLKO
OSC1/CLKI
VSS

VDD
RE2/CS/AN7
RE1/WR/AN6
RE0/RD/AN5
RA5/AN4/SS1/C2OUT
VDDCORE/VCAP

RC7/RX/DT
RD4/PSP4

RD5/PSP5/P1B
RD6/PSP6/P1C

VSS

VDD
RB0/INT0/FLT0/AN12

RB1/INT1/AN10
RB2/INT2/AN8

R
B

3/
AN

9/
C

C
P

2*

RD7/PSP7/P1D 5
4 VSS

VDD

VDD

R
A

3/
AN

3/
VR

E
F+

R
A

2/
A

N
2/

VR
E

F-
/C

VR
E

F-
R

A
1/

A
N

1
R

A
0/

A
N

0

PIC18F45J10

= Pins are up to 5.5V tolerant

= Pins are up to 5.5V tolerant
© 2009 Microchip Technology Inc. DS39682E-page 3

PIC18F45J10 FAMILY
4.0 POWER-MANAGED MODES
The PIC18F45J10 family devices provide the ability to
manage power consumption by simply managing clock-
ing to the CPU and the peripherals. In general, a lower
clock frequency and a reduction in the number of circuits
being clocked constitutes lower consumed power. For
the sake of managing power in an application, there are
three primary modes of operation:

• Run mode
• Idle mode
• Sleep mode

These modes define which portions of the device are
clocked and at what speed. The Run and Idle modes
may use any of the three available clock sources
(primary, secondary or internal oscillator block); the
Sleep mode does not use a clock source.

The power-managed modes include several
power-saving features offered on previous PIC®

microcontrollers. One is the clock switching feature,
offered in other PIC18 devices, allowing the controller
to use the Timer1 oscillator in place of the primary
oscillator. Also included is the Sleep mode, offered by
all PIC microcontrollers, where all device clocks are
stopped.

4.1 Selecting Power-Managed Modes
Selecting a power-managed mode requires two
decisions: if the CPU is to be clocked or not and which
clock source is to be used. The IDLEN bit
(OSCCON<7>) controls CPU clocking, while the
SCS<1:0> bits (OSCCON<1:0>) select the clock
source. The individual modes, bit settings, clock
sources and affected modules are summarized in
Table 4-1.

4.1.1 CLOCK SOURCES
The SCS<1:0> bits allow the selection of one of three
clock sources for power-managed modes. They are:

• the primary clock, as defined by the FOSC<1:0>
Configuration bits

• the secondary clock (Timer1 oscillator)
• the internal oscillator

4.1.2 ENTERING POWER-MANAGED
MODES

Switching from one power-managed mode to another
begins by loading the OSCCON register. The
SCS<1:0> bits select the clock source and determine
which Run or Idle mode is to be used. Changing these
bits causes an immediate switch to the new clock
source, assuming that it is running. The switch may
also be subject to clock transition delays. These are
discussed in Section 4.1.3 “Clock Transitions and
Status Indicators” and subsequent sections.

Entry to the power-managed Idle or Sleep modes is
triggered by the execution of a SLEEP instruction. The
actual mode that results depends on the status of the
IDLEN bit.

Depending on the current mode and the mode being
switched to, a change to a power-managed mode does
not always require setting all of these bits. Many
transitions may be done by changing the oscillator
select bits, or changing the IDLEN bit, prior to issuing a
SLEEP instruction. If the IDLEN bit is already
configured correctly, it may only be necessary to
perform a SLEEP instruction to switch to the desired
mode.

TABLE 4-1: POWER-MANAGED MODES

Mode
OSCCON bits Module Clocking

Available Clock and Oscillator Source
IDLEN<7>(1) SCS<1:0> CPU Peripherals

Sleep 0 N/A Off Off None – All clocks are disabled
PRI_RUN N/A 10 Clocked Clocked Primary – HS, EC;

this is the normal full-power execution mode
SEC_RUN N/A 01 Clocked Clocked Secondary – Timer1 Oscillator
RC_RUN N/A 11 Clocked Clocked Internal Oscillator
PRI_IDLE 1 10 Off Clocked Primary – HS, EC
SEC_IDLE 1 01 Off Clocked Secondary – Timer1 Oscillator
RC_IDLE 1 11 Off Clocked Internal Oscillator
Note 1: IDLEN reflects its value when the SLEEP instruction is executed.
© 2009 Microchip Technology Inc. DS39682E-page 35

PIC18F45J10 FAMILY

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 5-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

TPWRT

VDD

MCLR

INTERNAL POR

PWRT TIME-OUT

INTERNAL RESET

VDD

MCLR

INTERNAL POR

PWRT TIME-OUT

INTERNAL RESET

TPWRT

VDD

MCLR

INTERNAL POR

PWRT TIME-OUT

INTERNAL RESET

0V 1V

3.3V

TPWRT
© 2009 Microchip Technology Inc. DS39682E-page 45

PIC18F45J10 FAMILY

6.1.4.2 Return Stack Pointer (STKPTR)
The STKPTR register (Register 6-1) contains the Stack
Pointer value, the STKFUL (Stack Overflow) status bit
and the STKUNF (Stack Underflow) status bits. The
value of the Stack Pointer can be 0 through 31. The
Stack Pointer increments before values are pushed
onto the stack and decrements after values are popped
off the stack. On Reset, the Stack Pointer value will be
zero. The user may read and write the Stack Pointer
value. This feature can be used by a Real-Time
Operating System (RTOS) for return stack
maintenance.

After the PC is pushed onto the stack 31 times (without
popping any values off the stack), the STKFUL bit is
set. The STKFUL bit is cleared by software or by a
POR.

The action that takes place when the stack becomes
full depends on the state of the STVREN (Stack Over-
flow Reset Enable) Configuration bit. (Refer to
Section 21.1 “Configuration Bits” for a description of
the device Configuration bits.) If STVREN is set
(default), the 31st push will push the (PC + 2) value
onto the stack, set the STKFUL bit and reset the
device. The STKFUL bit will remain set and the Stack
Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the
31st push and the Stack Pointer will increment to 31.
Any additional pushes will not overwrite the 31st push
and the STKPTR will remain at 31.

When the stack has been popped enough times to
unload the stack, the next pop will return a value of zero
to the PC and sets the STKUNF bit, while the Stack
Pointer remains at zero. The STKUNF bit will remain
set until cleared by software or until a POR occurs.

6.1.4.3 PUSH and POP Instructions
Since the Top-of-Stack is readable and writable, the
ability to push values onto the stack and pull values off
the stack without disturbing normal program execution
is a desirable feature. The PIC18 instruction set
includes two instructions, PUSH and POP, that permit
the TOS to be manipulated under software control.
TOSU, TOSH and TOSL can be modified to place data
or a return address on the stack.

The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack.

The POP instruction discards the current TOS by decre-
menting the Stack Pointer. The previous value pushed
onto the stack then becomes the TOS value.

Note: Returning a value of zero to the PC on an
underflow has the effect of vectoring the
program to the Reset vector, where the
stack conditions can be verified and
appropriate actions can be taken. This is
not the same as a Reset, as the contents
of the SFRs are not affected.

REGISTER 6-1: STKPTR: STACK POINTER REGISTER

R/C-0 R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STKFUL(1) STKUNF(1) — SP4 SP3 SP2 SP1 SP0

bit 7 bit 0

Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 STKFUL: Stack Full Flag bit(1)

1 = Stack became full or overflowed
0 = Stack has not become full or overflowed

bit 6 STKUNF: Stack Underflow Flag bit(1)

1 = Stack underflow occurred
0 = Stack underflow did not occur

bit 5 Unimplemented: Read as ‘0’
bit 4-0 SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.
DS39682E-page 54 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

FIGURE 6-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND

BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

Example Instruction: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When ‘a’ = 0 and f ≥ 60h:
The instruction executes in
Direct Forced mode. ‘f’ is inter-
preted as a location in the
Access RAM between 060h
and 0FFh. This is the same as
locations 060h to 07Fh
(Bank 0) and F80h to FFFh
(Bank 15) of data memory.

Locations below 60h are not
available in this addressing
mode.

When ‘a’ = 0 and f ≤ 5Fh:
The instruction executes in
Indexed Literal Offset mode. ‘f’
is interpreted as an offset to the
address value in FSR2. The
two are added together to
obtain the address of the target
register for the instruction. The
address can be anywhere in
the data memory space.

Note that in this mode, the
correct syntax is now:
ADDWF [k], d
where ‘k’ is the same as ‘f’.

When ‘a’ = 1 (all values of f):
The instruction executes in
Direct mode (also known as
Direct Long mode). ‘f’ is inter-
preted as a location in one of
the 16 banks of the data
memory space. The bank is
designated by the Bank Select
Register (BSR). The address
can be in any implemented
bank in the data memory
space.

000h

060h

100h

F00h

F80h

FFFh

Valid Range

00h

60h
80h

FFh

Data Memory

Access RAM

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

000h

080h

100h

F00h

F80h

FFFh
Data Memory

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

FSR2H FSR2L

ffffffff001001da

ffffffff001001da

000h

080h

100h

F00h

F80h

FFFh
Data Memory

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

for ‘f’

BSR
00000000

080h
© 2009 Microchip Technology Inc. DS39682E-page 69

PIC18F45J10 FAMILY

9.2 PIR Registers
The PIR registers contain the individual flag bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are three Peripheral Interrupt
Request (Flag) registers (PIR1, PIR2, PIR3).

Note 1: Interrupt flag bits are set when an interrupt
condition occurs regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE (INTCON<7>).

2: User software should ensure the
appropriate interrupt flag bits are cleared
prior to enabling an interrupt and after
servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
PSPIF(1) ADIF RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)

1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software)
0 = The A/D conversion is not complete

bit 5 RCIF: EUSART Receive Interrupt Flag bit
1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The EUSART receive buffer is empty

bit 4 TXIF: EUSART Transmit Interrupt Flag bit
1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)
0 = The EUSART transmit buffer is full

bit 3 SSP1IF: Master Synchronous Serial Port 1 Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 2 CCP1IF: ECCP1/CCP1 Interrupt Flag bit
Capture mode:
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare mode:
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM mode:
Unused in this mode.

bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed (must be cleared in software)
0 = TMR1 register did not overflow

Note 1: This bit is not implemented on 28-pin devices and should be read as ‘0’.
DS39682E-page 88 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0
OSCFIF CMIF — — BCLIF — — CCP2IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit
1 = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)
0 = Device clock operating

bit 6 CMIF: Comparator Interrupt Flag bit
1 = Comparator input has changed (must be cleared in software)
0 = Comparator input has not changed

bit 5-4 Unimplemented: Read as ‘0’
bit 3 BCLIF: Bus Collision Interrupt Flag bit (MSSP1 module)

1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred

bit 2-1 Unimplemented: Read as ‘0’
bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture mode:
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare mode:
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM mode:
Unused in this mode.

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0
SSP2IF BCL2IF — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SSP2IF: Master Synchronous Serial Port 2 Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 6 BCL2IF: Bus Collision Interrupt Flag bit (MSSP2 module)
1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred

bit 5-0 Unimplemented: Read as ‘0’
© 2009 Microchip Technology Inc. DS39682E-page 89

PIC18F45J10 FAMILY

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

RTCinit
MOVLW 80h ; Preload TMR1 register pair
MOVWF TMR1H ; for 1 second overflow
CLRF TMR1L
MOVLW b’00001111’ ; Configure for external clock,
MOVWF T1CON ; Asynchronous operation, external oscillator
CLRF secs ; Initialize timekeeping registers
CLRF mins ;
MOVLW .12
MOVWF hours
BSF PIE1, TMR1IE ; Enable Timer1 interrupt
RETURN

RTCisr
BSF TMR1H, 7 ; Preload for 1 sec overflow
BCF PIR1, TMR1IF ; Clear interrupt flag
INCF secs, F ; Increment seconds
MOVLW .59 ; 60 seconds elapsed?
CPFSGT secs
RETURN ; No, done
CLRF secs ; Clear seconds
INCF mins, F ; Increment minutes
MOVLW .59 ; 60 minutes elapsed?
CPFSGT mins
RETURN ; No, done
CLRF mins ; clear minutes
INCF hours, F ; Increment hours
MOVLW .23 ; 24 hours elapsed?
CPFSGT hours
RETURN ; No, done
CLRF hours ; Reset hours
RETURN ; Done

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 47
PIR1 PSPIF(1) ADIF RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF 49
PIE1 PSPIE(1) ADIE RCIE TXIE SSP1IE CCP1IE TMR2IE TMR1IE 49
IPR1 PSPIP(1) ADIP RCIP TXIP SSP1IP CCP1IP TMR2IP TMR1IP 49
TMR1L Timer1 Register Low Byte 48
TMR1H Timer1 Register High Byte 48

T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 48
Legend: Shaded cells are not used by the Timer1 module.
Note 1: These bits are not implemented on 28-pin devices and should be read as ‘0’.
DS39682E-page 124 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

The CCPRxH register and a 2-bit internal latch are
used to double-buffer the PWM duty cycle. This
double-buffering is essential for glitchless PWM
operation.

When the CCPRxH and 2-bit latch match TMR2,
concatenated with an internal 2-bit Q clock or 2 bits of
the TMR2 prescaler, the CCPx pin is cleared.

The maximum PWM resolution (bits) for a given PWM
frequency is given by the equation:

EQUATION 14-3:

TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

14.4.3 PWM AUTO-SHUTDOWN
(CCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP
module are also available to CCP1 in 28-pin devices. The
operation of this feature is discussed in detail in
Section 15.4.7 “Enhanced PWM Auto-Shutdown”.

Auto-shutdown features are not available for CCP2.

14.4.4 SETUP FOR PWM OPERATION
The following steps should be taken when configuring
the CCP module for PWM operation:

1. Set the PWM period by writing to the PR2
register.

2. Set the PWM duty cycle by writing to the
CCPRxL register and CCPxCON<5:4> bits.

3. Make the CCPx pin an output by clearing the
appropriate TRIS bit.

4. Set the TMR2 prescale value, then enable
Timer2 by writing to T2CON.

5. Configure the CCPx module for PWM operation.

Note: If the PWM duty cycle value is longer than
the PWM period, the CCP2 pin will not be
cleared.

FOSC
FPWM
---------------⎝ ⎠

⎛ ⎞log

2()log-----------------------------bits=PWM Resolution (max)

PWM Frequency 2.44 kHz 9.77 kHz 39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz

Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value FFh FFh FFh 3Fh 1Fh 17h
Maximum Resolution (bits) 10 10 10 8 7 6.58
© 2009 Microchip Technology Inc. DS39682E-page 133

PIC18F45J10 FAMILY

FIGURE 16-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

SDAx

SCLx

BCLxIF

SDAx released

SDAx line pulled low
by another source

Sample SDAx. While SCLx is high,
data doesn’t match what is driven

Bus collision has occurred.

Set bus collision
interrupt (BCLxIF)

by the master.

by master

Data changes
while SCLx = 0
© 2009 Microchip Technology Inc. DS39682E-page 187

PIC18F45J10 FAMILY

16.4.17.3 Bus Collision During a Stop

Condition
Bus collision occurs during a Stop condition if:

a) After the SDAx pin has been deasserted and
allowed to float high, SDAx is sampled low after
the BRG has timed out.

b) After the SCLx pin is deasserted, SCLx is
sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low.
When SDAx is sampled low, the SCLx pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with
SSPxADD<6:0> and counts down to 0. After the BRG
times out, SDAx is sampled. If SDAx is sampled low, a
bus collision has occurred. This is due to another
master attempting to drive a data ‘0’ (Figure 16-31). If
the SCLx pin is sampled low before SDAx is allowed to
float high, a bus collision occurs. This is another case
of another master attempting to drive a data ‘0’
(Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

SDAx

SCLx

BCLxIF

PEN

P

SSPxIF

TBRG TBRG TBRG

SDAx asserted low

SDAx sampled
low after TBRG,
set BCLxIF

‘0’

‘0’

SDAx

SCLx

BCLxIF

PEN

P

SSPxIF

TBRG TBRG TBRG

Assert SDAx SCLx goes low before SDAx goes high,
set BCLxIF

‘0’

‘0’
© 2009 Microchip Technology Inc. DS39682E-page 191

PIC18F45J10 FAMILY

NOTES:
DS39682E-page 230 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY
20.0 COMPARATOR VOLTAGE
REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor
ladder network that provides a selectable reference
voltage. Although its primary purpose is to provide a
reference for the analog comparators, it may also be
used independently of them.

A block diagram of the module is shown in Figure 20-1.
The resistor ladder is segmented to provide two ranges
of CVREF values and has a power-down function to
conserve power when the reference is not being used.
The module’s supply reference can be provided from
either device VDD/VSS or an external voltage reference.

20.1 Configuring the Comparator
Voltage Reference

The voltage reference module is controlled through the
CVRCON register (Register 20-1). The comparator
voltage reference provides two ranges of output
voltage, each with 16 distinct levels. The range to be

used is selected by the CVRR bit (CVRCON<5>). The
primary difference between the ranges is the size of the
steps selected by the CVREF Selection bits
(CVR<3:0>), with one range offering finer resolution.
The equations used to calculate the output of the
comparator voltage reference are as follows:

If CVRR = 1:
CVREF = ((CVR<3:0>)/24) x CVRSRC

If CVRR = 0:
CVREF = (CVRSRC x 1/4) + (((CVR<3:0>)/32) x
CVRSRC)

The comparator reference supply voltage can come
from either VDD and VSS, or the external VREF+ and
VREF- that are multiplexed with RA2 and RA3. The
voltage source is selected by the CVRSS bit
(CVRCON<4>).

The settling time of the comparator voltage reference
must be considered when changing the CVREF
output (see Table 24-3 in Section 24.0 “Electrical
Characteristics”).

REGISTER 20-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CVREN CVROE(1) CVRR CVRSS CVR3 CVR2 CVR1 CVR0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 CVREN: Comparator Voltage Reference Enable bit
1 = CVREF circuit powered on
0 = CVREF circuit powered down

bit 6 CVROE: Comparator VREF Output Enable bit(1)

1 = CVREF voltage level is also output on the RA2/AN2/VREF-/CVREF pin
0 = CVREF voltage is disconnected from the RA2/AN2/VREF-/CVREF pin

bit 5 CVRR: Comparator VREF Range Selection bit
1 = 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)
0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)

bit 4 CVRSS: Comparator VREF Source Selection bit
1 = Comparator reference source, CVRSRC = (VREF+) – (VREF-)
0 = Comparator reference source, CVRSRC = VDD – VSS

bit 3-0 CVR<3:0>: Comparator VREF Value Selection bits (0 ≤ (CVR<3:0>) ≤ 15)
When CVRR = 1:
CVREF = ((CVR<3:0>)/24) • (CVRSRC)
When CVRR = 0:
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) • (CVRSRC)

Note 1: CVROE overrides the TRISA<2> bit setting.
© 2009 Microchip Technology Inc. DS39682E-page 231

PIC18F45J10 FAMILY

TABLE 22-2: PIC18FXXXX INSTRUCTION SET

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

BYTE-ORIENTED OPERATIONS
ADDWF
ADDWFC
ANDWF
CLRF
COMF
CPFSEQ
CPFSGT
CPFSLT
DECF
DECFSZ
DCFSNZ
INCF
INCFSZ
INFSNZ
IORWF
MOVF
MOVFF

MOVWF
MULWF
NEGF
RLCF
RLNCF
RRCF
RRNCF
SETF
SUBFWB

SUBWF
SUBWFB

SWAPF
TSTFSZ
XORWF

f, d, a
f, d, a
f, d, a
f, a
f, d, a
f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
fs, fd

f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, a
f, d, a

f, d, a
f, d, a

f, d, a
f, a
f, d, a

Add WREG and f
Add WREG and Carry bit to f
AND WREG with f
Clear f
Complement f
Compare f with WREG, Skip =
Compare f with WREG, Skip >
Compare f with WREG, Skip <
Decrement f
Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f
Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f
Move fs (source) to 1st Word

fd (destination) 2nd Word
Move WREG to f
Multiply WREG with f
Negate f
Rotate Left f through Carry
Rotate Left f (No Carry)
Rotate Right f through Carry
Rotate Right f (No Carry)
Set f
Subtract f from WREG with
 Borrow
Subtract WREG from f
Subtract WREG from f with
 Borrow
Swap Nibbles in f
Test f, Skip if 0
Exclusive OR WREG with f

1
1
1
1
1
1 (2 or 3)
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1
2

1
1
1
1
1
1
1
1
1

1
1

1
1 (2 or 3)
1

0010
0010
0001
0110
0001
0110
0110
0110
0000
0010
0100
0010
0011
0100
0001
0101
1100
1111
0110
0000
0110
0011
0100
0011
0100
0110
0101

0101
0101

0011
0110
0001

01da
00da
01da
101a
11da
001a
010a
000a
01da
11da
11da
10da
11da
10da
00da
00da
ffff
ffff
111a
001a
110a
01da
01da
00da
00da
100a
01da

11da
10da

10da
011a
10da

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

C, DC, Z, OV, N
C, DC, Z, OV, N
Z, N
Z
Z, N
None
None
None
C, DC, Z, OV, N
None
None
C, DC, Z, OV, N
None
None
Z, N
Z, N
None

None
None
C, DC, Z, OV, N
C, Z, N
Z, N
C, Z, N
Z, N
None
C, DC, Z, OV, N

C, DC, Z, OV, N
C, DC, Z, OV, N

None
None
Z, N

1, 2
1, 2
1,2
2
1, 2
4
4
1, 2
1, 2, 3, 4
1, 2, 3, 4
1, 2
1, 2, 3, 4
4
1, 2
1, 2
1

1, 2

1, 2

1, 2

1, 2

4
1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory
locations have a valid instruction.
DS39682E-page 252 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

22.1.1 STANDARD INSTRUCTION SET

ADDLW ADD Literal to W

Syntax: ADDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) + k → W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1111 kkkk kkkk

Description: The contents of W are added to the
8-bit literal ‘k’ and the result is placed in
W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: ADDLW 15h

Before Instruction
W = 10h

After Instruction
W = 25h

ADDWF ADD W to f

Syntax: ADDWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) + (f) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01da ffff ffff

Description: Add W to register ‘f’. If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 22.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ADDWF REG, 0, 0

Before Instruction
W = 17h
REG = 0C2h

After Instruction
W = 0D9h
REG = 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).
© 2009 Microchip Technology Inc. DS39682E-page 255

PIC18F45J10 FAMILY

POP Pop Top of Return Stack

Syntax: POP

Operands: None

Operation: (TOS) → bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.
This instruction is provided to enable
the user to properly manage the return
stack to incorporate a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

POP TOS
value

No
operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: PUSH

Operands: None

Operation: (PC + 2) → TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode PUSH
PC + 2 onto
return stack

No
operation

No
operation

Example: PUSH

Before Instruction
TOS = 345Ah
PC = 0124h

After Instruction
PC = 0126h
TOS = 0126h
Stack (1 level down) = 345Ah
DS39682E-page 278 © 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

RRNCF Rotate Right f (No Carry)

Syntax: RRNCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n – 1>,
(f<0>) → dest<7>

Status Affected: N, Z

Encoding: 0100 00da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the right. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank will be
selected, overriding the BSR value. If ‘a’
is ‘1’, then the bank will be selected as
per the BSR value (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 22.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: RRNCF REG, 1, 0

Before Instruction
REG = 1101 0111

After Instruction
REG = 1110 1011

Example 2: RRNCF REG, 0, 0

Before Instruction
W = ?
REG = 1101 0111

After Instruction
W = 1110 1011
REG = 1101 0111

register f

SETF Set f

Syntax: SETF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: FFh → f

Status Affected: None

Encoding: 0110 100a ffff ffff

Description: The contents of the specified register
are set to FFh.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 22.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: SETF REG, 1

Before Instruction
REG = 5Ah

After Instruction
REG = FFh
© 2009 Microchip Technology Inc. DS39682E-page 283

PIC18F45J10 FAMILY

TSTFSZ Test f, Skip if 0

Syntax: TSTFSZ f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: skip if f = 0

Status Affected: None

Encoding: 0110 011a ffff ffff

Description: If ‘f’ = 0, the next instruction fetched
during the current instruction execution
is discarded and a NOP is executed,
making this a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 22.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE TSTFSZ CNT, 1
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
If CNT = 00h,
PC = Address (ZERO)
If CNT ≠ 00h,
PC = Address (NZERO)

XORLW Exclusive OR Literal with W

Syntax: XORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) .XOR. k → W

Status Affected: N, Z

Encoding: 0000 1010 kkkk kkkk

Description: The contents of W are XORed with
the 8-bit literal ‘k’. The result is placed
in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: XORLW 0AFh

Before Instruction
W = B5h

After Instruction
W = 1Ah
© 2009 Microchip Technology Inc. DS39682E-page 289

PIC18F45J10 FAMILY

23.7 MPLAB ICE 2000

High-Performance
In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended
to provide the product development engineer with a
complete microcontroller design tool set for PIC
microcontrollers. Software control of the MPLAB ICE
2000 In-Circuit Emulator is advanced by the MPLAB
Integrated Development Environment, which allows
editing, building, downloading and source debugging
from a single environment.

The MPLAB ICE 2000 is a full-featured emulator
system with enhanced trace, trigger and data monitor-
ing features. Interchangeable processor modules allow
the system to be easily reconfigured for emulation of
different processors. The architecture of the MPLAB
ICE 2000 In-Circuit Emulator allows expansion to
support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has
been designed as a real-time emulation system with
advanced features that are typically found on more
expensive development tools. The PC platform and
Microsoft® Windows® 32-bit operating system were
chosen to best make these features available in a
simple, unified application.

23.8 MPLAB REAL ICE In-Circuit
Emulator System

MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.

The MPLAB REAL ICE probe is connected to the design
engineer’s PC using a high-speed USB 2.0 interface and
is connected to the target with either a connector
compatible with the popular MPLAB ICD 2 system
(RJ11) or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5).

MPLAB REAL ICE is field upgradeable through future
firmware downloads in MPLAB IDE. In upcoming
releases of MPLAB IDE, new devices will be supported,
and new features will be added, such as software break-
points and assembly code trace. MPLAB REAL ICE
offers significant advantages over competitive emulators
including low-cost, full-speed emulation, real-time
variable watches, trace analysis, complex breakpoints, a
ruggedized probe interface and long (up to three meters)
interconnection cables.

23.9 MPLAB ICD 2 In-Circuit Debugger
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a
powerful, low-cost, run-time development tool,
connecting to the host PC via an RS-232 or high-speed
USB interface. This tool is based on the Flash PIC
MCUs and can be used to develop for these and other
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes
the in-circuit debugging capability built into the Flash
devices. This feature, along with Microchip’s In-Circuit
Serial ProgrammingTM (ICSPTM) protocol, offers cost-
effective, in-circuit Flash debugging from the graphical
user interface of the MPLAB Integrated Development
Environment. This enables a designer to develop and
debug source code by setting breakpoints, single step-
ping and watching variables, and CPU status and
peripheral registers. Running at full speed enables
testing hardware and applications in real time. MPLAB
ICD 2 also serves as a development programmer for
selected PIC devices.

23.10 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an SD/MMC card for
file storage and secure data applications.
© 2009 Microchip Technology Inc. DS39682E-page 301

PIC18F45J10 FAMILY

FIGURE 24-14: I2C™ BUS START/STOP BITS TIMING

TABLE 24-18: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

FIGURE 24-15: I2C™ BUS DATA TIMING

Param.
No. Symbol Characteristic Min Max Units Conditions

90 TSU:STA Start Condition 100 kHz mode 4700 — ns Only relevant for Repeated
Start conditionSetup Time 400 kHz mode 600 —

91 THD:STA Start Condition 100 kHz mode 4000 — ns After this period, the first
clock pulse is generatedHold Time 400 kHz mode 600 —

92 TSU:STO Stop Condition 100 kHz mode 4700 — ns
Setup Time 400 kHz mode 600 —

93 THD:STO Stop Condition 100 kHz mode 4000 — ns
Hold Time 400 kHz mode 600 —

Note: Refer to Figure 24-3 for load conditions.

91

92

93
SCLx

SDAx

Start
Condition

Stop
Condition

90

Note: Refer to Figure 24-3 for load conditions.

90

91 92

100

101

103

106 107

109 109
110

102

SCLx

SDAx
In

SDAx
Out
© 2009 Microchip Technology Inc. DS39682E-page 329

