

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24j10t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F45J10 FAMILY

	Pin Nu	mber					
Pin Name	SPDIP, SOIC, SSOP	QFN	Pin Type	Buffer Type	Description		
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/INT0/FLT0/AN12	21	18					
RB0			I/O	TTL	Digital I/O.		
INT0			I	ST	External Interrupt 0.		
FLT0			I	ST	PWM Fault input for CCP1.		
AN12			I	Analog	Analog input 12.		
RB1/INT1/AN10	22	19					
RB1			I/O	TTL	Digital I/O.		
INT1				ST	External Interrupt 1.		
AN10				Analog	Analog input 10.		
RB2/INT2/AN8	23	20					
RB2			I/O	TTL	Digital I/O.		
INT2				ST	External Interrupt 2.		
AN8				Analog	Analog input 8.		
RB3/AN9/CCP2	24	21	1/0				
RB3 AN9			I/O I	TTL Analog	Digital I/O. Analog Input 9.		
CCP2 ⁽¹⁾			1/O	ST	Capture 2 input/Compare 2 output/PWM2 output.		
RB4/KBI0/AN11	25	22	1/0	01			
RB4	25	22	I/O	TTL	Digital I/O.		
KBI0			1/0	TTL	Interrupt-on-change pin.		
AN11			i	Analog	Analog Input 11.		
RB5/KBI1/T0CKI/	26	23		0	5		
C1OUT			I/O	TTL	Digital I/O.		
RB5			I	TTL	Interrupt-on-change pin.		
KBI1			I	ST	Timer0 external clock input.		
TOCKI			0	—	Comparator 1 output.		
C1OUT							
RB6/KBI2/PGC	27	24					
RB6			I/O	TTL	Digital I/O.		
KBI2				TTL	Interrupt-on-change pin.		
PGC		a-	I/O	ST	In-Circuit Debugger and ICSP™ programming clock pin.		
RB7/KBI3/PGD	28	25			Divite 1/0		
RB7 KBI3			1/O 1	TTL TTL	Digital I/O. Interrupt-on-change pin.		
PGD			1/O	ST	In-Circuit Debugger and ICSP programming data pin.		
			"0	51			
	montible	innut			CMOS - CMOS compatible input or output		
Legend: TTL = TTL co ST = Schmitt			with CI	MOS lev	CMOS = CMOS compatible input or output els I = Input		

TABLE 1-2:	PIC18F24J10/25J10 PINOUT I/O DESCRIPTIONS (CONTINUED)
TADLE 1-2.	FIGTOFZ4JT0/20JT0 FINOUT I/O DESCRIFTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pir	n Numb	er	Pin	Buffer	Description
Tinname	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTA is a bidirectional I/O port.
RA0/AN0	2	19	19			
RA0				I/O	TTL	Digital I/O.
AN0				I	Analog	Analog Input 0.
RA1/AN1	3	20	20			
RA1				I/O	TTL	Digital I/O.
AN1				Ι	Analog	Analog Input 1.
RA2/AN2/VREF-/CVREF	4	21	21			
RA2				I/O	TTL	Digital I/O.
AN2				I	Analog	Analog Input 2.
VREF-				I	Analog	A/D reference voltage (low) input.
CVREF				0	Analog	Comparator reference voltage output.
RA3/AN3/VREF+	5	22	22			
RA3				I/O	TTL	Digital I/O.
AN3				I	Analog	5 1
Vref+				I	Analog	A/D reference voltage (high) input.
RA5/AN4/SS1/C2OUT	7	24	24			
RA5				I/O	TTL	Digital I/O.
AN4				I	Analog	Analog Input 4.
SS1				I	TTL	SPI slave select input.
C2OUT				0	—	Comparator 2 output.
Legend: TTL = TTL co						CMOS = CMOS compatible input or output
ST = Schmi		r input v	with CM	OS lev		= Input
O = Output	t				Р	P = Power

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

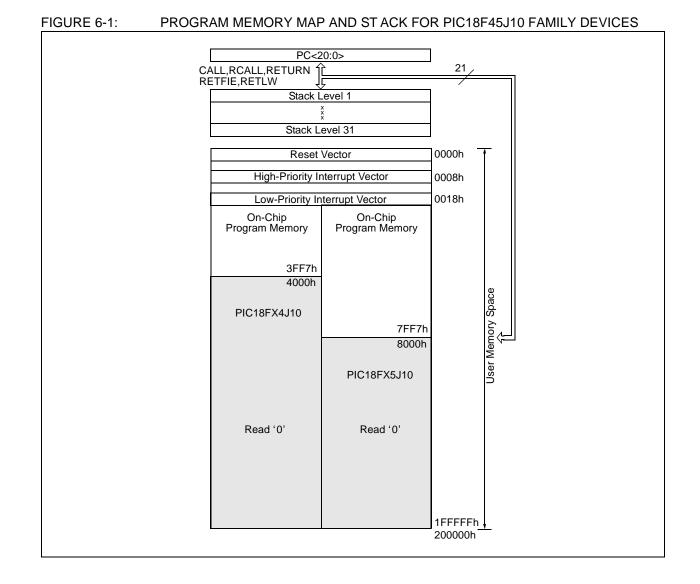
6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in Section 7.0 "Flash Program Memory" .


6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOPinstruction).

The PIC18F24J10 and PIC18F44J10 each have 16 Kbytes of Flash memory and can store up to 8,192 single-word instructions. The PIC18F25J10 and PIC18F45J10 each have 32 Kbytes of Flash memory and can store up to 16,384 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for the PIC18F45J10 family devices is shown in Figure 6-1.

6.1.4.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.5 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label , FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1:	FAST REGISTER STACK CODE EXAMPLE
CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
х	
х	

х RETURN, FAST :RESTORE VALUES SAVED

;IN FAST REGISTER STACK

LOOK-UP TABLES IN PROGRAM 6.1.6 MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.6.1 Computed GOTO

A computed GOTOs accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCLinstruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2:	COMPUTED GOTOUSING
	AN OFFSET VALUE

	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh

6.1.6.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

SUB1

Х

9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit ⁽¹⁾
	 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = An A/D conversion completed (must be cleared in software)0 = The A/D conversion is not complete
bit 5	RCIF: EUSART Receive Interrupt Flag bit
	1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)0 = The EUSART receive buffer is empty
bit 4	TXIF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The EUSART transmit buffer is full
bit 3	SSP1IF: Master Synchronous Serial Port 1 Interrupt Flag bit
	1 = The transmission/reception is complete (must be cleared in software)0 = Waiting to transmit/receive
bit 2	CCP1IF: ECCP1/CCP1 Interrupt Flag bit
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	Compare mode:
	1 = A TMR1 register compare match occurred (must be cleared in software)0 = No TMR1 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	1 = TMR2 to PR2 match occurred (must be cleared in software)0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow

Note 1: This bit is not implemented on 28-pin devices and should be read as '0'.

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
OSCFIF	CMIF	_	_	BCLIF	_	—	CCP2IF
bit 7	·			·		·	bit 0
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7	OSCFIF: Os	cillator Fail Interr	upt Flag bit				
		oscillator failed, c	lock input ha	s changed to IN	TOSC (must l	be cleared in so	oftware)
		clock operating					
bit 6	1	parator Interrupt F	0				
		ator input has ch	U (be cleared in sc	oftware)		
	•	ator input has no	0				
bit 5-4	•	ited: Read as '0					
bit 3		Collision Interrup	•	,			
		ollision occurred collision occurred	•	ared in software)			
bit 2-1	0 .10 .000	ited: Read as '0	-				
bit 0	•	P2 Interrupt Flag					
	Capture mod	1 0	1 010				
		register capture	occurred (m	ust be cleared ir	software)		
	0 = No TMR	R1 register captur	e occurred		,		
	Compare mo						
		register compar		•	eared in softw	vare)	
	0 = NO IMR PWM mode:	R1 register compa	are match oc	currea			
	PVVIVI mode:						

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

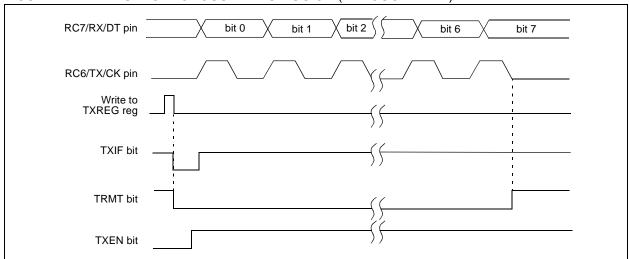
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
SSP2IF	BCL2IF	—	—	—	—	—	—
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SSP2IF: Master Synchronous Serial Port 2 Interrupt Flag bit
	1 = The transmission/reception is complete (must be cleared in software)0 = Waiting to transmit/receive
bit 6	BCL2IF: Bus Collision Interrupt Flag bit (MSSP2 module)
	1 = A bus collision occurred (must be cleared in software)
	0 = No bus collision occurred
bit 5-0	Unimplemented: Read as '0'

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc	= 40.000	0 MHz	Fosc	= 20.000	0 MHz	Fosc	Fosc = 10.000 MHz			Fosc = 8.000 MHz		
RATE (K)	(K) Actual %	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	—	_	_		_	_	_			_	_	_	
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	_	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	—	—	

TABLE 17-3:	BAUD RATES FOR ASYNCHRONOUS MODES	
IADLE II-J.	DAUD KATES FUR ASTINGTRUNUUS MUDES	


	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51			
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12			
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	_			
9.6	8.929	-6.99	6	—	_	—	—	—	_			
19.2	20.833	8.51	2	_	_	—	—	_	_			
57.6	62.500	8.51	0	—	_	—	—	—	_			
115.2	62.500	-45.75	0	—	—	—	—	—	_			

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_	_	_	_	_	_	_		_		_	_		
1.2	—	—	—	—	—	—	—		—	—	—	—		
2.4	-	_	_	—	_	—	2.441	1.73	255	2.403	-0.16	207		
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_		

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Foso	2 = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	_	_	_		_	_	0.300	-0.16	207			
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51			
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25			
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—			
19.2	19.231	0.16	12	—	_	_	—	_	—			
57.6	62.500	8.51	3	—	—	—	—	—	—			
115.2	125.000	8.51	1	—	_	_	—	_	_			

¤ 2009 Microchip Technology Inc.

PIC18F45J10 FAMILY

FIGURE 17-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 17-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	49
TXREG	EUSART T	ransmit Reg	ister						49
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	49
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	49
SPBRGH	GH EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				49

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.