

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25j10-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	23
3.0	Oscillator Configurations	27
4.0	Power-Managed Modes	35
5.0	Reset	41
6.0	Memory Organization	51
7.0	Flash Program Memory	71
8.0	8 x 8 Hardware Multiplier	81
9.0	Interrupts	83
10.0	I/O Ports	97
11.0	Timer0 Module	115
12.0	Timer1 Module	119
13.0	Timer2 Module	125
14.0	Capture/Compare/PWM (CCP) Modules	
15.0	Enhanced Capture/Compare/PWM (ECCP) Module	135
16.0	Master Synchronous Serial Port (MSSP) Module	149
17.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	193
18.0	10-Bit Analog-to-Digital Converter (A/D) Module	215
19.0	Comparator Module	
20.0		
21.0	Special Features of the CPU	235
22.0	Instruction Set Summary	
23.0	Development Support	299
24.0	Electrical Characteristics	303
	Packaging Information	
	ndix A: Revision History	
Appe	ndix B: Migration Between High-End Device Families	350
Index	<	353
	Nicrochip Web Site	
Custo	omer Change Notification Service	363
	omer Support	
	ler Response	
PIC1	8F45J10 family Product Identification System	365

5.5 Configuration Mismatch (CM)

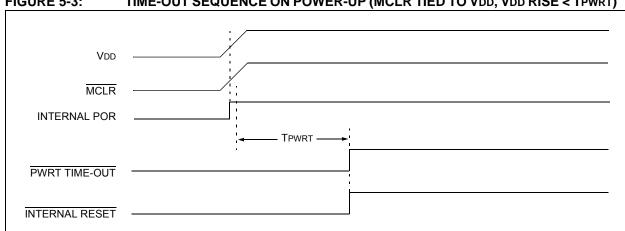
The Configuration Mismatch (CM) Reset is designed to detect and attempt to recover from random, memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread, single-bit changes throughout the device and result in catastrophic failure.

In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

A CM Reset behaves similarly to a Master Clear Reset, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F45J10 family devices incorporate an on-chip Power-up Timer (PWRT) to help regulate the Power-on Reset process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.


The Power-up Timer (PWRT) of the PIC18F45J10 family devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC parameter 33 for details.

5.6.1 TIME-OUT SEQUENCE

If enabled, the PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 all depict time-out sequences on power-up with the Power-up Timer enabled.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the PWRT will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 5-5). This is useful for testing purposes, or to synchronize more than one PIC18F device operating in parallel.

FIGURE 5-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

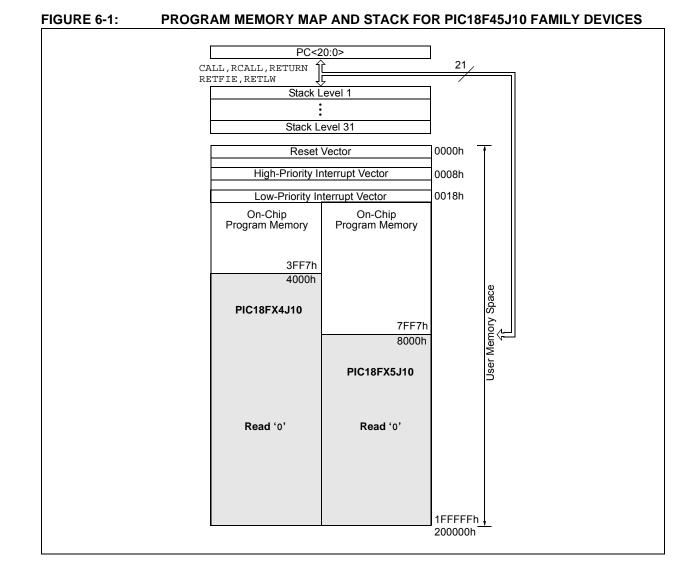
6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**.


6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F24J10 and PIC18F44J10 each have 16 Kbytes of Flash memory and can store up to 8,192 single-word instructions. The PIC18F25J10 and PIC18F45J10 each have 32 Kbytes of Flash memory and can store up to 16,384 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for the PIC18F45J10 family devices is shown in Figure 6-1.

6.1.4.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.5 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1 •	
RETURN, FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.6 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.6.1 Computed GOTO

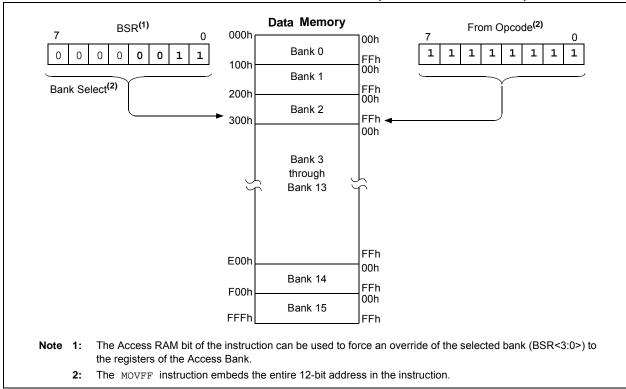
A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE


	MOVF	OFFSET, W
	CALL	TABLE
ORG	nn00h	
TABLE	ADDWF	PCL
	RETLW	nnh
	RETLW	nnh
	RETLW	nnh
	•	
	•	
	•	

6.1.6.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

FIGURE 6-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 128 bytes of memory (00h-7Fh) in Bank 0 and the last 128 bytes of memory (80h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

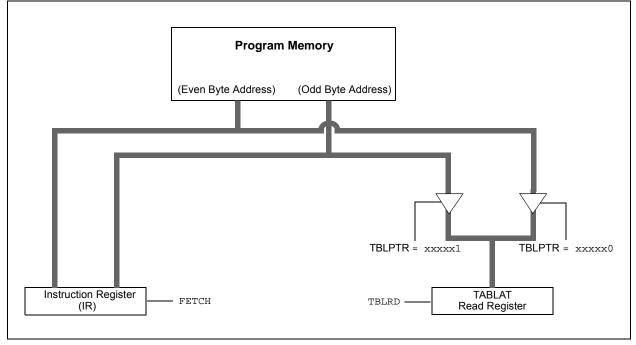
however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 80h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 80h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.5.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.


7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW		Load TBLPTR with the base address of the word
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_ODD		

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	i
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT	hours	
	RETURN		; No, done
	CLRF	hours	; Reset hours
	RETURN		; Done

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
TMR1L	Timer1 Register Low Byte								48
TMR1H	Timer1 Register High Byte								48
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	48

Legend: Shaded cells are not used by the Timer1 module.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

V+ PIC18F4XJ10 QC FET QA FET Driver Driver P1A Load P1B FET FET Driver Driver P1C QD QB V-P1D

FIGURE 15-7: EXAMPLE OF FULL-BRIDGE APPLICATION

15.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

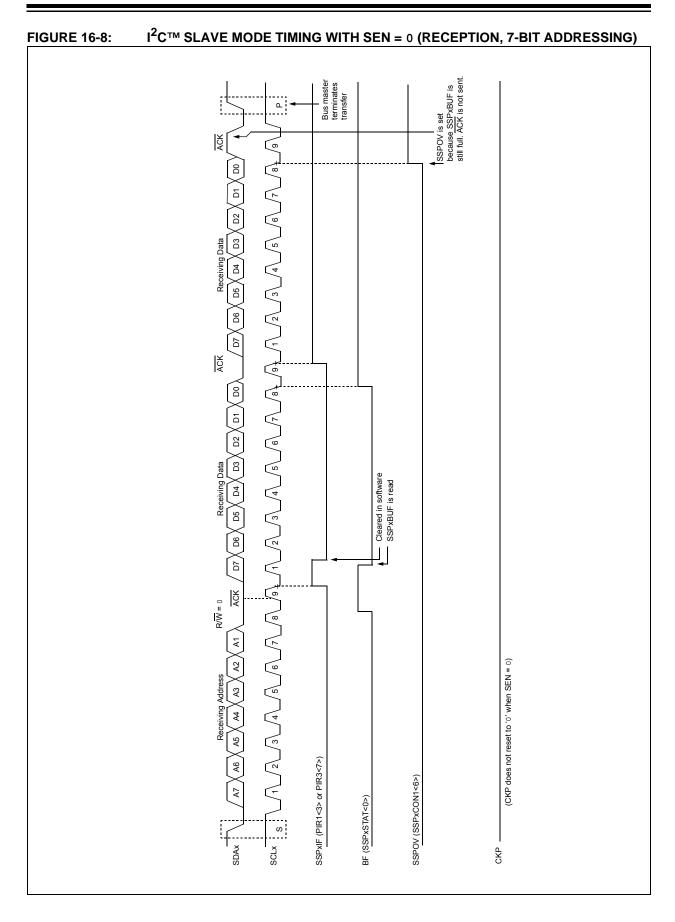
Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in the time interval, 4 Tosc * (Timer2 Prescale Value), before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS<1:0> bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 15-8.

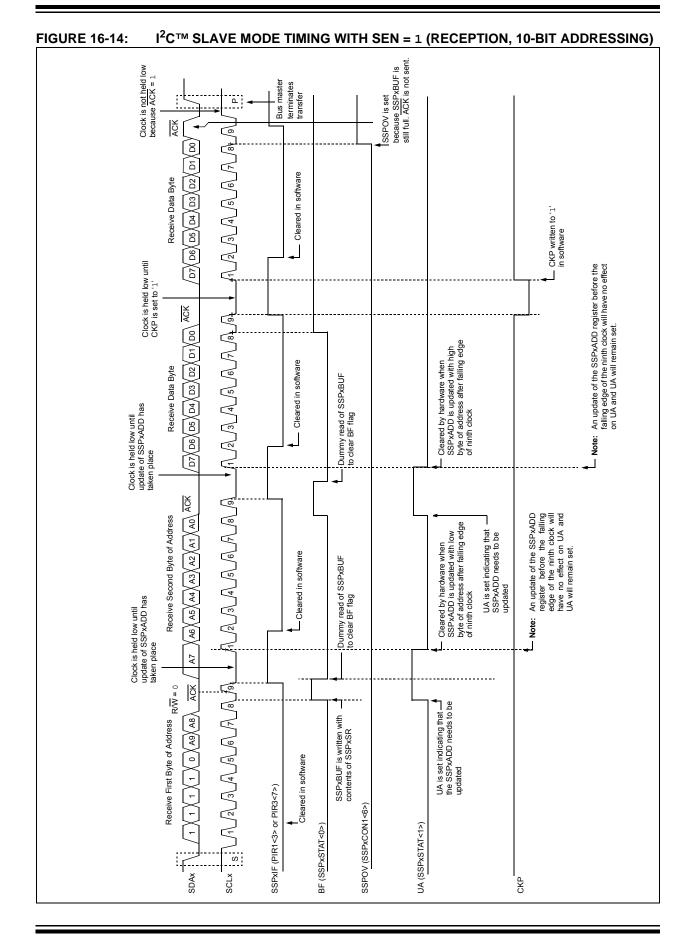
Note that in the Full-Bridge Output mode, the ECCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

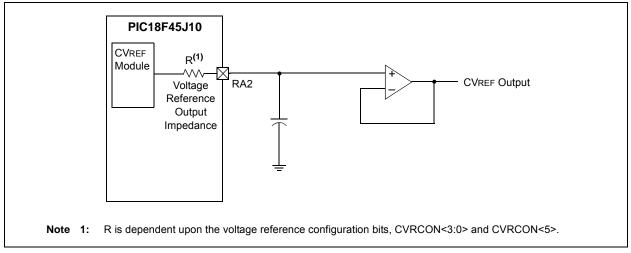
Figure 15-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 15-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:


- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.


Other options to prevent shoot-through current may exist.

.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹) SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		,		e it is still transn	nitting the previ	ous word (mus	t be cleared ir
bit 6	SSPOV: R	eceive Overflow Ir	dicator bit ⁽¹⁾				
	overflo the SS softwa 0 = No ove	erflow	PxSR is lost. (only transmi	Overflow can or tting data, to a	ly occur in Slav	ve mode. The ι	iser must read
bit 5	1 = Enable	aster Synchronou s serial port and c es serial port and c	onfigures SC	Kx, SDOx, SDIx		erial port pins	
bit 4	CKP: Clock	k Polarity Select b	it				
		te for clock is a hi te for clock is a lo	Ģ				
bit 3-0	0101 = SP 0100 = SP 0011 = SP 0010 = SP 0001 = SP	>: Master Synchro I Slave mode, cloo I Slave mode, cloo I Master mode, cloo I Master mode, clo I Master mode, clo I Master mode, clo I Master mode, clo	ck = SCKx pir ck = SCKx pir ock = TMR2 c ock = FOSC/6 ock = FOSC/10	n, <u>SSx</u> pin contro n, SSx pin contro putput/2 4	ol disabled, \overline{SS}	x can be used	as I/O pin
Note 1:		e, the overflow bit SPxBUF register.	is not set sind	ce each new rec	ception (and tra	insmission) is ir	nitiated by

- 2: When enabled, these pins must be properly configured as input or output.
- 3: Bit combinations not specifically listed here are either reserved or implemented in I²C[™] mode only.

FIGURE 20-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	49
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	49
TRISA	_	_	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0	50

Legend: Shaded cells are not used with the comparator voltage reference.

TABLE 22-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit
	d = 0: store result in WREG
	d = 1: store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).
f _s	12-bit register file address (000h to FFFh). This is the source address.
f _d	12-bit register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:
*	
	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions.
PG	
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch. Power-down bit.
PD	
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
S	Fast Call/Return mode select bit s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TO	Time-out bit.
TOS	Top-of-Stack.
u	Unused or unchanged.
WDT	Watchdog Timer.
WREG	Working register (accumulator).
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for
	compatibility with all Microchip software tools.
Z _S	7-bit offset value for indirect addressing of register files (source).
zd	7-bit offset value for indirect addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an indexed address.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.
→	Assigned to.
< >	Register bit field.
e	In the set of.
italics	User-defined term (font is Courier New).

RRM	NCF	Rotate Right f (No Carry)							
Synt	ax:	RRNCF	f	[;] {,d {,a}}					
Oper	rands:	d ∈ [0,	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$						
Ope	ration:	(f <n>) – (f<0>) –</n>		est <n 1<br="" –="">est<7></n>	L>,				
Statu	is Affected:	N, Z							
Enco	oding:	0100		00da	fff	f	ffff		
Desc	pription:	one bit f is placed b If 'a' is ' selected is '1', th per the If 'a' is ' set is er in Index mode w Section Bit-Orie	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
14/	1	4	_		egister				
Word		1							
Cycl		1							
QU	ycle Activity: Q1	Q2		Q3	2		Q4		
	Decode	Read register	'f'	Proce	ess	-	Vrite to stination		
<u>Exar</u>	n <u>ple 1:</u> Before Instruc REG	RRNCF tion = 110		REG, 1, 0111	, 0				
	After Instruction REG		0 1	1011					
Exar	<u>nple 2:</u>	RRNCF		REG, 0	, 0				
	Before Instruc W REG After Instructio	= ? = 110	1 (0111					
	W REG			1011 0111					

	• • •							
SETF	Set f							
Syntax:	SETF f{,	a}						
Operands:	$0 \le f \le 255$							
	a ∈[0,1]							
Operation:	$FFh \rightarrow f$							
Status Affected:	None							
Encoding:	0110	0110 100a ffff ffff						
Description:	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1	1						
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	_	Q4				
Decode	Read	Proce		Write				
	register 'f'	Data	a re	gister 'f'				
Example:	SETF	REG	, 1					
REG								
After Instructio	n –							

REG

= FFh

Syntax: Dperands: Dperation: Status Affected:	TBLWT (* None if TBLWT (TABLAT) TBLPTR - if TBLWT (TABLAT) (TBLPTR) if TBLWT (TABLAT) (TBLPTR) if TBLWT (TBLPTR)	*, - No Chan *+, → Holding + 1 → TE *-, → Holding	g Register ge; g Register 3LPTR;		
Dperation:	if TBLWT (TABLAT) TBLPTR - if TBLWT (TABLAT) (TBLPTR) if TBLWT (TABLAT) (TBLPTR) if TBLWT	→ Holding - No Chan *+, → Holding + 1 → TE *-, → Holding	ge; g Register 3LPTR;		
	(TABLAT) TBLPTR - if TBLWT (TABLAT) (TBLPTR) if TBLWT (TABLAT) (TBLPTR) if TBLWT	→ Holding - No Chan *+, → Holding + 1 → TE *-, → Holding	ge; g Register 3LPTR;		
Status Affected:	if TBLWT	$-1 \rightarrow TF$,	
Status Affected:			SLPTR;		
Status Affected:	(TABLAT)	$+1 \rightarrow TE$	-		
	None	·	5 0		
Encoding:	0000	0000	0000	11nn	
				nn=0 *	
				=1 *+ =2 *-	
				=3 +*	
	TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 7.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-MByte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • pre-increment				
Words:	1				
Cycles:	2				
Q Cycle Activity:					
	Q1	Q2	Q3	Q4	
	Decode	No	No	No	
		operation	operation	operation	
	No	No	No	No	

TBLWT Table Write (Continued)

Example 1:	TBLWT	*+;	

Before Instruction		
TABLAT	=	55h
TBLPTR	=	00A356h
HOLDING REGISTE	R	
(00A356h)	=	FFh
After Instructions (table w	rite comp	letion)
TABLAT	=	55h
TBLPTR	=	00A357h
HOLDING REGISTE	R	00/100/11
(00A356h)	=	55h
(00A33011)	_	5511
Example 2: TBLWT +*;		
Before Instruction		
TABLAT	=	34h
TBLPTR	=	01389Ah
HOLDING REGISTE	R	01000/11
(01389Ah)	=	FFh
HOLDING REGISTE		
	.r. =	FFh
(01389Bh)	_	
After Instruction (table wri	te compl	etion)
TABLAT	=	34h
TBLPTR	=	01389Bh
HOLDING REGISTE	R	01000BII
(01389Ah)	=	FFh
HOLDING REGISTE		
(01389Bh)	=	34h

24.1 DC Characteristics: Supply Voltage PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial)

PIC18F45J10 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
D001	Vdd	Supply Voltage	VDDCORE	_	3.6	V	PIC18LF4XJ10, PIC18LF2XJ10
D001	Vdd	Supply Voltage	2.7 ⁽¹⁾	—	3.6	V	PIC18F4X/2XJ10
D001B	VDDCORE	External Supply for Microcontroller Core	2.0	—	2.7	V	Valid only in parts designated "LF". See Section 21.3 "On-Chip Voltage Regulator" for details.
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V	
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.15	V	SeeSection 5.3 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See Section 5.3 "Power-on Reset (POR)" for details
D005	VBOR	Brown-out Reset (BOR) Voltage	2.35	2.5	2.7	V	

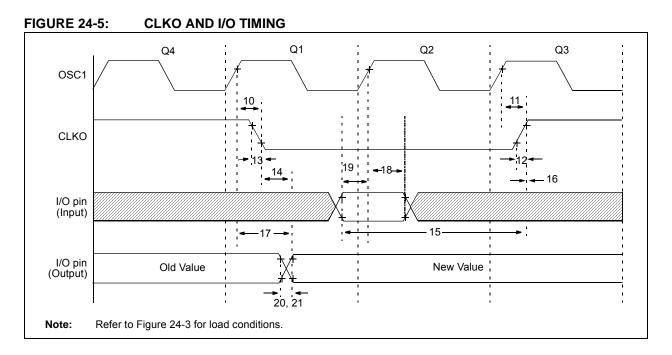
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

24.2 DC Characteristics:

Power-Down and Supply Current PIC18F24J10/25J10/44J10/45J10 (Industrial) PIC18LF24J10/25J10/44J10/45J10 (Industrial) (Continued)

PIC18F45J10 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param Device No.		Тур	Max	Units		Conditions			
	Supply Current (IDD) ⁽²⁾								
	All devices	4.2	8.5	mA	-40°C				
		3.9	8.0	mA	+25°C	VDD = 2.5V			
		3.6	7.3	mA	+85°C		Fosc = 1 MHz (PRI_RUN mode,		
	All devices	4.3	8.6	mA	-40°C		EC oscillator)		
		4.0	8.1	mA	+25°C	VDD = 3.3V	,		
		3.7	7.6	mA	+85°C				
	All devices	4.6	9.3	mA	-40°C				
		4.3	8.7	mA	+25°C	VDD = 2.5V			
		4.0	8.1	mA	+85°C		Fosc = 4 MHz (PRI_RUN mode,		
	All devices	4.7	9.4	mA	-40°C		EC oscillator)		
		4.4	8.8	mA	+25°C	VDD = 3.3V	,		
		4.1	8.2	mA	+85°C				
	All devices	11.0	22.0	mA	-40°C				
		10.5	21.0	mA	+25°C	VDD = 2.5V			
		10.0	20.0	mA	+85°C		Fosc = 40 MHz (PRI_RUN mode,		
	All devices	12.0	24.0	mA	-40°C		EC oscillator)		
		11.5	23.0	mA	+25°C	VDD = 3.3V	,		
		11.0	22.0	mA	+85°C]			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

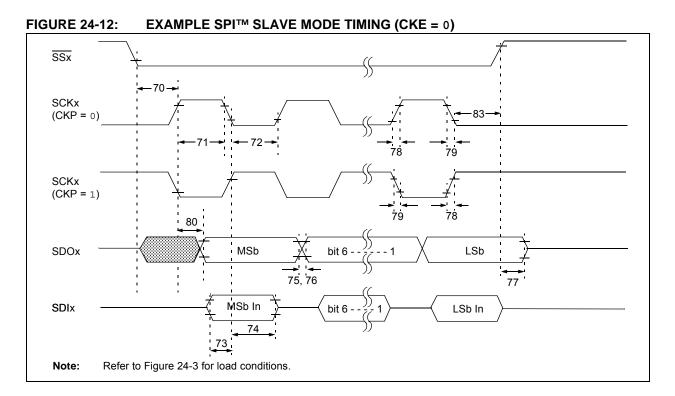

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 24-9: C	CLKO AND I/O TIMING REQUIREMENTS
---------------	----------------------------------

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKO ↓	—	75	200	ns	
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	
12	ТскR	CLKO Rise Time	—	15	30	ns	
13	ТскF	CLKO Fall Time	—	15	30	ns	
14	TckL2IoV	CLKO \downarrow to Port Out Valid	—	_	0.5 Tcy + 20	ns	
15	ТюV2скН	Port In Valid before CLKO ↑	0.25 TCY + 25		—	ns	
16	TckH2iol	Port In Hold after CLKO ↑	0		_	ns	
17	TosH2IoV	OSC1 \uparrow (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port Input Invalid	100		—	ns	
18A		(I/O in hold time)	200		_	ns	
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0		—	ns	
20	TioR	Port Output Rise Time	—	_	6	ns	
21	TIOF	Port Output Fall Time	—		5	ns	
22†	Tinp	INTx pin High or Low Time	Тсү		_	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time	Тсү		—	ns	

† These parameters are asynchronous events not related to any internal clock edges.

TABLE 24-16: EXAMPLE SPI™ MODE REQUIREMENTS (CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	, \overline{SSx} ↓ to SCKx ↓ or SCKx ↑ Input		Тсү		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	ck Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge		40		ns	
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 TCY + 40		ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Е

Effect on Standard PIC Instructions	6
Effects of Power-Managed Modes on	5
Various Clock Sources	2
Electrical Characteristics	
Enhanced Capture/Compare/PWM (ECCP)	5
Associated Registers 148	8
Capture and Compare Modes136	6
Capture Mode. See Capture (ECCP Module).	
Outputs and Configuration136	
Pin Configurations for ECCP1 Modes	3
PWM Mode. See PWM (ECCP Module).	_
Standard PWM Mode	
Timer Resources	
Enhanced PWM Mode. See PWM (ECCP Module) 137	(
Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART). See EUSART.	
Equations	
A/D Acquisition Time	n
A/D Minimum Charging Time	n
Errata	
EUSART	-
Asynchronous Mode	3
12-Bit Break Transmit and Receive	
Associated Registers, Receive	ô
Associated Registers, Transmit	4
Auto-Wake-up on Sync Break	
Receiver205	5
Setting Up 9-Bit Mode with	
Address Detect	
Transmitter	3
Baud Rate Generator	-
Operation in Power-Managed Mode	
Baud Rate Generator (BRG)	
Associated Registers	
Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes	
High Baud Rate Select (BRGH Bit)	
Sampling	
Synchronous Master Mode	
Associated Registers, Receive	1
Associated Registers, Transmit	C
Reception211	1
Transmission209	
Synchronous Slave Mode212	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception	
Transmission	2
ADDFSR	2
ADDI SK	
and Using MPLAB IDE Tools	
CALLW	
Considerations for Use	
MOVSF	3
MOVSS	4
PUSHL	4
SUBFSR	5
SUBULNK295	5
Syntax291	
External Clock Input (EC Modes)	3

F

Fail-Safe Clock Monitor	,
Interrupts in Power-Managed Modes	
POR or Wake-up from Sleep	
WDT During Oscillator Failure	
Fast Register Stack	55
Firmware Instructions	249
Flash Configuration Words	235
Flash Program Memory	71
Associated Registers	
Control Registers	
EECON1 and EECON2	
TABLAT (Table Latch)	
TBLPTR (Table Pointer)	
Erase Sequence	
Erasing	
Operation During Code-Protect	
Reading	
Table Pointer	
Boundaries Based on Operation	74
Table Pointer Boundaries	
Table Reads and Table Writes	
Write Sequence	
Writing To	
Protection Against Spurious Writes	
Unexpected Termination	
Write Verify	
FSCM. See Fail-Safe Clock Monitor.	
FOOM. SEE FAIL-OALE CIUCK MUTILUT.	

G

GOTO)
н	

Hardware Multiplier	
Introduction	
Operation	
Performance Comparison	

I

I/O Ports	
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	185
Associated Registers	192
Baud Rate Generator	178
Bus Collision	
During a Repeated Start Condition	190
During a Stop Condition	191
Clock Arbitration	179
Clock Stretching	171
10-Bit Slave Receive Mode (SEN = 1)	171
10-Bit Slave Transmit Mode	171
7-Bit Slave Receive Mode (SEN = 1)	171
7-Bit Slave Transmit Mode	171
Clock Synchronization and the CKP Bit	172
Effects of a Reset	186
General Call Address Support	175
I ² C Clock Rate w/BRG	178
Master Mode	
Baud Rate Generator	178
Operation	177
Reception	182
Repeated Start Condition Timing	181
Start Condition Timing	
Transmission	182