

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44j10t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number			Pin Buffer		Description		
Fiii Naille	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O 	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog input 12.		
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog input 10.		
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog input 8.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output		
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.		
RB5/KBI1/C1OUT RB5 KBI1 C1OUT	38	15	15	I/O I O	TTL TTL —	Digital I/O. Interrupt-on-change pin. Comparator 1 output.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number			Pin	Buffer	Description		
Fiil Name	PDIP	QFN	TQFP	Туре	Туре	Description		
	10	20	20			PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled.		
RD0/PSP0/SCK2/ SCL2	19	38	38					
RD0 PSP0 SCK2				1/0 1/0 1/0	ST TTL ST	Digital I/O. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode.		
SCL2				I/O	ST	Synchronous serial clock input/output for I ² C™ mode.		
RD1/PSP1/SDI2/SDA2 RD1 PSP1 SDI2 SDA2	20	39	39	I/O I/O I I/O	ST TTL ST ST	Digital I/O. Parallel Slave Port data. SPI data in. I ² C data I/O.		
RD2/PSP2/SDO2 RD2 PSP2 SDO2	21	40	40	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. SPI data out.		
RD3/PSP3/ SS2 RD3 PSP3 SS2	22	41	41	I/O I/O I	ST TTL TTL	Digital I/O. Parallel Slave Port data. SPI slave select input.		
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		
RD7/PSP7/P1D RD7 PSP7	30	5	5	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		

TABLE 1-3: PIC18F44J10/45J10 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

= Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.6.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 3-2) controls several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

The System Clock Select bits, SCS<1:0>, select the clock source. The available clock sources are the primary clock (defined by the FOSC<2:0> Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator. The clock source changes after one or more of the bits are written to, following a brief clock transition interval.

The OSTS (OSCCON<3>) and T1RUN (T1CON<6>) bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer (OST) has timed out and the primary clock is providing the device clock in primary clock modes. The T1RUN bit indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these bits will be set at any time. If neither of these bits is set, the INTRC is providing the clock, or the internal oscillator has just started and is not yet stable.

The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

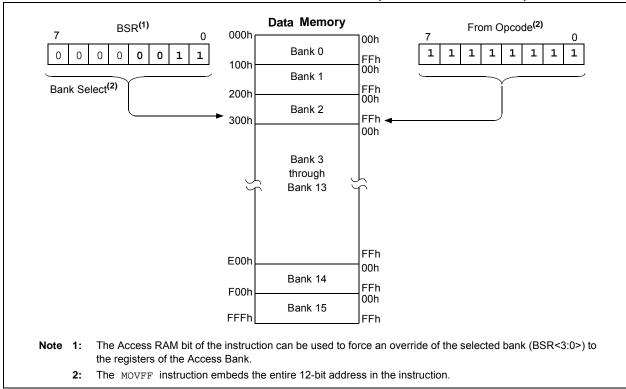
The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "**Power-Managed Modes**".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction or a very long delay may occur while the Timer1 oscillator starts.

3.6.1.1 System Clock Selection and the FOSC2 Configuration Bit

The SCS bits are cleared on all forms of Reset. In the device's default configuration, this means the primary oscillator defined by FOSC<1:0> (that is, one of the HC or EC modes) is used as the primary clock source on device Resets.

The default clock configuration on Reset can be changed with the FOSC2 Configuration bit. The effect of this bit is to set the clock source selected when SCS<1:0> = 00. When FOSC2 = 1 (default), the oscillator source defined by FOSC<1:0> is selected whenever SCS<1:0> = 00. When FOSC2 = 0, the INTRC oscillator is selected whenever SCS<1:0> = 00. Because the SCS bits are cleared on Reset, the FOSC2 setting also changes the default oscillator mode on Reset.


Regardless of the setting of FOSC2, INTRC will always be enabled on device power-up. It will serve as the clock source until the device has loaded its configuration values from memory. It is at this point that the FOSC Configuration bits are read and the oscillator selection of operational mode is made.

Note that either the primary clock or the internal oscillator will have two bit setting options, at any given time, depending on the setting of FOSC2.

3.6.2 OSCILLATOR TRANSITIONS

PIC18F45J10 family devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

FIGURE 6-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 128 bytes of memory (00h-7Fh) in Bank 0 and the last 128 bytes of memory (80h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 80h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 80h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.5.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.5 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 6.5.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

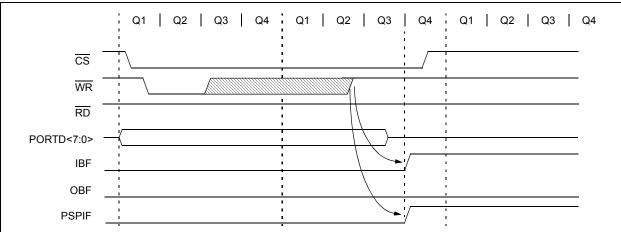
Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General Purpose Register File") or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction. The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

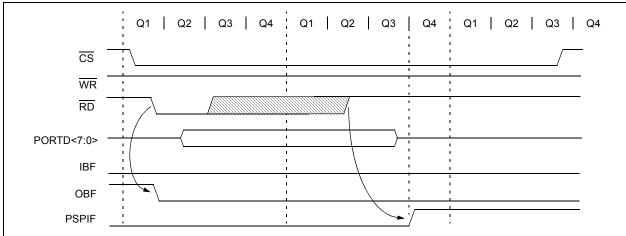
A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING


Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 6-5.


EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTIN	UE		;	YES, continue

FIGURE 10-4: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 10-5: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	50
LATD ⁽¹⁾	PORTD Da	PORTD Data Latch Register (Read and Write to Data Latch)							50
TRISD ⁽¹⁾	PORTD Da	PORTD Data Direction Control Register						50	
PORTE ⁽¹⁾	—	_	_	—	—	RE2	RE1	RE0	50
LATE ⁽¹⁾	—		—	-	—	PORTE Da (Read and	ta Latch Re Write to Da	0	50
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	50
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	48

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers and/or bits are not implemented on 28-pin devices and should be read as '0'.

12.5 Resetting Timer1 Using the ECCP/CCP Special Event Trigger

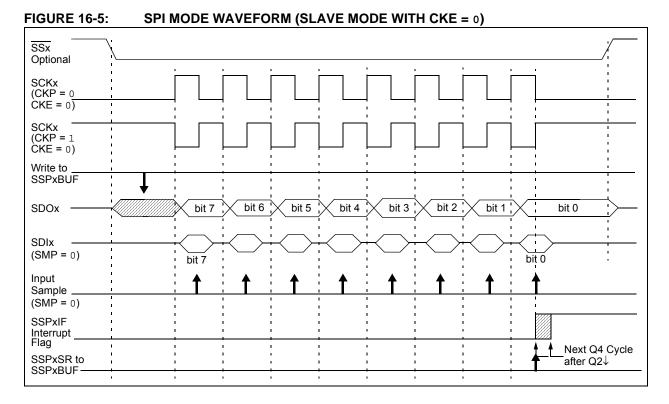
If ECCP1/CCP1 or CCP2 is configured to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.2.1** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

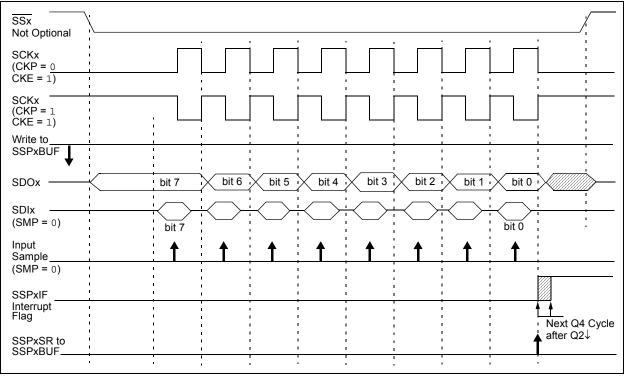
If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the
	ECCP1/CCPx module will not set the
	TMR1IF interrupt flag bit (PIR1<0>).


12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator"** above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.


The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

FIGURE 16-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

16.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 16.4.7 "Baud Rate"** for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

16.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD<6:0> and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 16-31). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

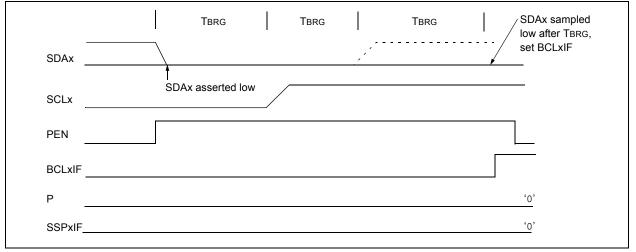
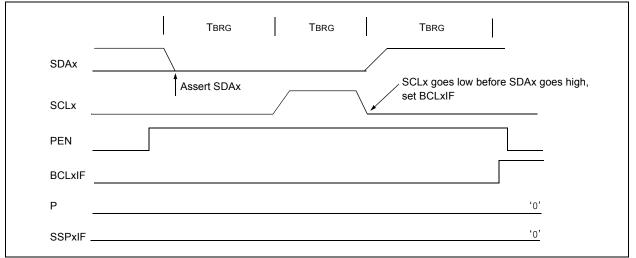
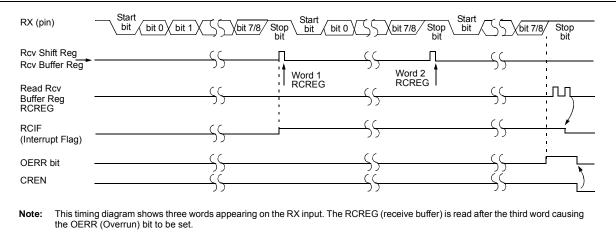




FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

FIGURE 17-7: ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	49
RCREG	EUSART F	Receive Regis	ster						49
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	49
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	49
SPBRGH	EUSART E	aud Rate Ge	enerator Reg	gister High	Byte				49
SPBRG	EUSART E	aud Rate Ge	enerator Reg	gister Low E	Byte				49
· ·	· · ·								•

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

17.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 support protocol.)

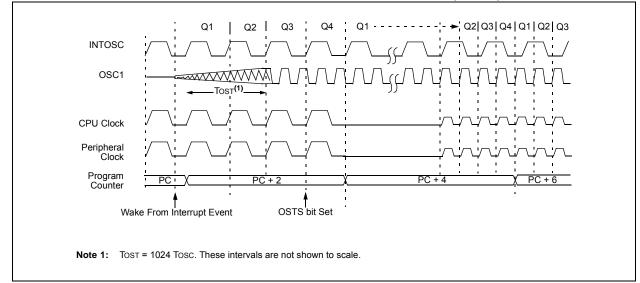
Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 17-8) and asynchronously, if the device is in Sleep mode (Figure 17-9). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-tohigh transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

NOTES:

21.4 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.


Two-Speed Start-up should be enabled only if the primary oscillator mode is HS (Crystal-Based) modes. Since the EC mode does not require an OST start-up delay, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a POR Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode. In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

21.4.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 4.1.4 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 21-3: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC)

GOT	ю	Uncondi	Unconditional Branch							
Synta	ax:	GOTO k								
Oper	ands:	$0 \le k \le 10^4$	48575							
Oper	ation:	$k \rightarrow PC<2$	0:1>							
Statu	s Affected:	None	None							
	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	/						
Desc	ription:	is always a	within ent emory rai loaded in	ire nge. The to PC<2	20-bit 0:1>. дото					
		2								
Cycle	es:	2	2							
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read literal 'k'<7:0>,	No operat	tion '	ead literal k'<19:8>, /rite to PC					
	No operation	No operation	No operat		No operation					
<u>Exan</u>	n <u>ple:</u> After Instructic PC =	GOTO THE on Address (1								

INCF	Incremen	tf	
Syntax:	INCF f{,c	l {,a}}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Operation:	(f) + 1 \rightarrow de	est	
Status Affected:	C, DC, N, (OV, Z	
Encoding:	0010	10da ff	ff ffff
	placed bacl If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a	nd the extende	(default). nk is selecte d to select th ed instructio
	in Indexed mode when Section 22 Bit-Oriente	ed, this instruct Literal Offset A lever f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for	Fh). See iented and is in Indexe
Words:	in Indexed mode when Section 22 Bit-Oriente	Literal Offset A lever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	Addressing Fh). See iented and is in Indexe
Words: Cycles:	in Indexed mode when Section 22 Bit-Oriente Literal Offs	Literal Offset A lever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	Addressing Fh). See iented and is in Indexe
	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1	Literal Offset A lever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	Addressing Fh). See iented and is in Indexe
Cycles:	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1	Literal Offset A lever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	Addressing Fh). See iented and is in Indexe
Cycles: Q Cycle Activity:	in Indexed mode wher Section 22 Bit-Oriente Literal Offs 1	Literal Offset A never f ≤ 95 (5 .2.3 "Byte-Or ed Instruction set Mode" for	Addressing Fh). See iented and is in Indexe details.
Cycles: Q Cycle Activity: Q1	in Indexed mode wher Section 22 Bit-Oriente Literal Offs 1 1 Q2 Read	Literal Offset A never $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process	Addressing Fh). See iented and is in Indexe details. Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f' INCF tion	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc CNT	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 Q2 Read register f INCF tion = FFh	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc CNT Z C	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' INCF tion = FFh = 0 = ?	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc CNT Z C DC	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' INCF tion = FFh = 0 = ? = ?	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct CNT C DC After Instruction CNT	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' INCF tion = FFh = 0 = ? = ?	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct CNT Z C DC After Instruction	in Indexed mode when Section 22 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' INCF tion = FFh = 0 = ? = ?	Literal Offset A never f ≤ 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for Q3 Process Data	Addressing Fh). See iented and is in Indexe details. Q4 Write to destinatio

IORLW	OR Lite	eral w	/ith	w					
Syntax:		IORLW k							
Operands:		$0 \le k \le 25$	5						
Operation:		(W) .OR. $k \rightarrow W$							
Status Affected	:	N, Z							
Encoding:		0000	1001	kkk	k	kkkk			
Description:		The conter eight-bit lit W.							
Words:		1	1						
Cycles:		1							
Q Cycle Activi	ty:								
Q1		Q2	Q3	3	Q4				
Decod	е	Read literal 'k'	Proce Dat		Wr	ite to W			
Example:		IORLW	35h						
Before Ins	structi	ion							
W After Instr	uctior	= 9Ah n							

IORWF	Inclusive OR W with f			
Syntax:	IORWF f	IORWF f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$			
Operation:	(W) .OR. (f	$) \rightarrow dest$		
Status Affected:	N, Z	N, Z		
Encoding:	0001	00da	ffff	ffff
	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	. <u> </u>	Q4
Decode	Read register 'f'	Proce Dat		Vrite to stination
Example:		ESULT,	0, 1	
Before Instruction				

RESULT =

=

=

W

W

After Instruction RESULT = 13h

91h

13h

93h

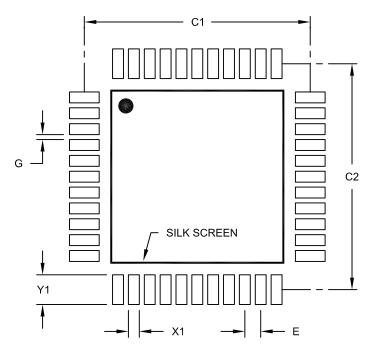
W

= BFh

SUBLW	Subtrac	Subtract W from Literal			
Syntax:	SUBLW	SUBLW k			
Operands:	$0 \le k \le 25$	$0 \le k \le 255$			
Operation:	$k-(W) \rightarrow$	$k - (W) \rightarrow W$			
Status Affected:	N, OV, C,	N, OV, C, DC, Z			
Encoding:	0000	0000 1000 kkkk kkkk			
Description		acted from the The result is pl		•	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read literal 'k'	Process Data	Write to	W	
Example 1:	SUBLW	02h			
Before Instruc W C After Instructio W C Z N	= 01h = ? on = 01h	esult is positive	9		
Example 2:	SUBLW	02h			
Before Instruc W C After Instructio W C Z N	= 02h = ? on = 00h	esult is zero			
Example 3:	SUBLW	02h			
Before Instruc W C After Instructic W C Z N	= 03h = ? on = FFh ; (2's compleme esult is negati	nt) ve		

SUBWF	Subtract	W from f	
Syntax:	SUBWF	f {,d {,a}}	
Operands:	$0 \le f \le 255$		
	$d \in [0, 1]$		
Orrentierer	$\mathbf{a} \in [0, 1]$		
Operation:	(f) – (W) –		
Status Affected:	N, OV, C,		
Encoding:	0101	11da fff	
Description:	compleme result is st result is st (default). If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh	V from register nt method). If ' ored in W. If 'd ored back in re the Access Ba f 'a' is '1', the F he GPR bank (and the extended oled, this instru- n Indexed Liter g mode whene b). See Section	d' is '0', the ' is '1', the egister 'f' ank is BSR is used default). ed instruction iction ral Offset ever 1 22.2.3
	Instructio	ented and Bit-	
	Mode" for	details.	
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example 1:	SUBWF	REG, 1, 0	
Before Instruct REG			
W			
	= 3 = 2		
C	= 2 = ?		
C After Instruction REG	= 2 = ? n = 1		
C After Instruction	= 2 = ? n = 1 = 2	esult is positive	3
C After Instruction REG W C Z	= 2 = ? n = 1 = 2 = 1 ; re = 0	esult is positive	9
C After Instruction REG W C	= 2 = ? n = 1 = 2 = 1 ; re	esult is positive	
C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct	- 5 = 2 = ? n = 1 = 2 = 1;re = 0 = 0 SUBWF		2
C After Instruction REG W C Z N Example 2:	- 3 = 2 = ? n = 1 = 2 = 0 = 0 SUBWF ion = 2		9
C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C	- 3 = 2 = ? n = 1 = 2 = 0 = 0 SUBWF ion = 2 = 2 = ?		9
C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instruction	= 2 = ? n = 1 = 2 = 1 ; re = 0 = 0 SUBWF ion = 2 = 2 = ? n		2
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W	- 3 = 2 = ? = 1 ; re = 0 = 0 SUBWF ion = 2 = ? n = 2 = ? n = 0	REG, 0, 0	9
C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instruction REG W C Z	- 3 = 2 = 1; re = 0 = 0 SUBWF ion = 2 = ? n = 2 = ? n = 2 = ? n = 1; re = 1; re = 1; re = 1; re = 1; re = 1; re = 1; re		
C After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instruction REG W C After Instruction REG W C	= 2 = ? n = 1 = 2 = 0 = 0 SUBWF ion = 2 = ? n = 2 = ? n = 2 = 0 = 1 ; re = 1 ; re	REG, 0, 0	
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG	= 2 = ? n = 1 = 2 ; re = 0 = 0 SUBWF ion = 2 = 2 = ? n = 2 = ? n = 2 = 1 ; re = 1 ; re = 1 ; re	REG, 0, 0	3
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG	- 3 = 2 = ? n = 1 ; re = 0 SUBWF ion = 2 = ? n = 2 = ? n = 1 ; re SUBWF ion = 1 ; re	REG, 0, 0	
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C S Before Instruction REG W C S Before Instruction REG W C S Before Instruction REG W C S S S S S S S S S S S S S S S S S S	- 3 = 2 = ? n = 1 ; re = 0 SUBWF ion = 2 = ? n = 2 = ? n = 1 ; re = 1 ; re = 1 ; re = 1 ; re = 0 SUBWF	REG, 0, 0	3
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C After Instruct REG W C After Instruct	- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	REG, 0, 0 esult is zero REG, 1, 0	
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C S Before Instruct	- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	REG, 0, 0	
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG	- 3 = 2 = ? n = 1 = 0 = 0 SUBWF ion = 2 = ? n = 2 = ? n = 2 = 0 SUBWF ion ; re = 1 = 0 SUBWF ion = 1 = 2 = ? n = 2 = ? SUBWF = 2 = ? n = 2 = ? n = 2 = ? SUBWF = 2 = ? n = 2 = ? SUBWF = 2 = ? n = ? SUBWF = 2 = ? n = ? SUBWF = 1 ; re	REG, 0, 0 esult is zero REG, 1, 0)

24.4 AC (Timing) Characteristics


24.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	8	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

CMCON (Comparator Control)225	5
CONFIG1H (Configuration 1 High)237	7
CONFIG1L (Configuration 1 Low) 237	
CONFIG2H (Configuration 2 High)239	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)240)
CONFIG3L (Configuration 3 Low)	
CVRCON (Comparator Voltage	·
Reference Control)231	
DEVID1 (Device ID Register 1)241	
DEVID2 (Device ID Register 2)	
ECCP1DEL (PWM Dead-Band Delay)	
EECON1 (EEPROM Control 1)73	
EUSART Receive Status and Control 195	5
INTCON (Interrupt Control)85	5
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)87	
IPR1 (Peripheral Interrupt Priority 1)92	
IPR2 (Peripheral Interrupt Priority 2)	3
IPR3 (Peripheral Interrupt Priority 3)	
OSCCON (Oscillator Control)	5
OSCTUNE (PLL Control)29)
PIE1 (Peripheral Interrupt Enable 1)90)
PIE2 (Peripheral Interrupt Enable 2)91	
PIE3 (Peripheral Interrupt Enable 3)91	
PIR1 (Peripheral Interrupt Request (Flag) 1)88	
PIR2 (Peripheral Interrupt Request (Flag) 2)	
PIR3 (Peripheral Interrupt Request (Flag) 3))
RCON (Reset Control)	
SSPxCON1 (MSSPx Control 1, I ² C Mode)	
SSPxCON1 (MSSPx Control 1, SPI Mode)151	
SSPxCON2 (MSSPx Control 2,	
I ² C Master Mode)162	2
SSPyCON2 (MSSPy Control 2	
SSPxCON2 (MSSPx Control 2,	
I ² C Slave Mode)	3
I ² C Slave Mode))
I ² C Slave Mode))
I ² C Slave Mode)))
I ² C Slave Mode))) 5
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54)))
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115) 5 1 5
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54) 5 1 5
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115) 5 4 5 9
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 119 T2CON (Timer2 Control) 125) 5 4 5 9 5
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 119 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111) 5 4 5 9 5
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status	1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 119 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status 194	+ 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 119 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status) 111	+ 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 119 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status 194 WDTCON (Watchdog Timer Control) 242	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status 194 WDTCON (Watchdog Timer Control) 242 RESET 275	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 279	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) MDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR)	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 TOCON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 279	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 Configuration Mismatch (CM) 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 <u>MCLR</u> Reset, During Power-Managed Modes 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 <u>MCLR</u> Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41 Stack Full Reset 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 11 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41 Stack Underflow Reset 41 Watchdog Timer (WDT) Reset 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 116 TXSTA (EUSART Transmit Status 114 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 Configuration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Natek Full Reset 41 Stack Full Reset 41 Stack Underflow Reset 41 Watchdog Timer (WDT) Reset 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 125 TRISE (PORTE/PSP Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 110 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41 Stack Full Reset 41 Moderflow Reset 41 Matchdog Timer (WDT) Reset 41 Stack Underflow Reset 41 Watchdog Timer (WDT) Reset 41 Brown-out Reset (BOR) 235 Brown-out Reset (BOR) 235 <td></td>	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 116 TXSTA (EUSART Transmit Status 114 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 Configuration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Natek Full Reset 41 Stack Full Reset 41 Stack Underflow Reset 41 Watchdog Timer (WDT) Reset 41	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 TXSTA (EUSART Transmit Status 111 TXSTA (EUSART Transmit Status 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41 Stack Full Reset 41 Stack Underflow Reset 41 Watchdog Timer (WDT) Reset 41 Resets 235 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 112 T2CON (Timer2 Control) 111 TXSTA (EUSART Transmit Status and Control) and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset Brown-out Reset (BOR) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 Stack Full Reset 41 Stack Full Reset 41 Matchdog Timer (WDT) Reset 41 Stack Underflow Reset 41 Stack Underflow Reset 41 Stack Underflow Reset 42 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235 Oscillator Start-up	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 111 TXSTA (EUSART Transmit Status 114 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Reset 41 Stack Full Reset 41 Watchdog Timer (WDT) Reset 41 Resets 235 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235 Power-on Rese	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 116 TXSTA (EUSART Transmit Status 117 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Reset 41 Stack Full Reset 41 Watchdog Timer (WDT) Reset 41 Resets 235 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235 Power-on Reset (POR) 235 Power-on Reset (POR)<	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 111 TXSTA (EUSART Transmit Status 114 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 <u>Config</u> uration Mismatch (CM) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Reset 41 Stack Full Reset 41 Watchdog Timer (WDT) Reset 41 Resets 235 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235 Power-on Rese	
I ² C Slave Mode) 163 SSPxSTAT (MSSPx Status, I ² C Mode) 160 SSPxSTAT (MSSPx Status, SPI Mode) 150 STATUS 65 STKPTR (Stack Pointer) 54 T0CON (Timer0 Control) 115 T1CON (Timer1 Control) 115 T2CON (Timer2 Control) 115 T2CON (Timer2 Control) 116 TXSTA (EUSART Transmit Status 117 and Control) 194 WDTCON (Watchdog Timer Control) 242 RESET 279 Reset 8 Brown-out Reset (BOR) 41 MCLR Reset, During Power-Managed Modes 41 MCLR Reset, Normal Operation 41 Power-on Reset (POR) 41 RESET Instruction 41 RESET Instruction 41 Reset 41 Stack Full Reset 41 Watchdog Timer (WDT) Reset 41 Resets 235 Brown-out Reset (BOR) 235 Oscillator Start-up Timer (OST) 235 Power-on Reset (POR) 235 Power-on Reset (POR)<	

Return Stack Pointer (STKPTR)
Revision History
RLCF
RLNCF
RRCF
KKNGF
S
SCKx
SDIx
SDOx
SEC_IDLE Mode
SEC_RUN Mode
Serial Clock, SCKx 149
Serial Data In (SDIx) 149
Serial Data Out (SDOx) 149
Serial Peripheral Interface. See SPI Mode.
SETF
Slave Select (SSx)
SLEEP
Sleep
OSC1 and OSC2 Pin States
Software Simulator (MPLAB SIM)
Special Event Trigger. See Compare (ECCP Module).
Special Event Trigger. See Compare (ECCP/CCP Modules). Special Features of the CPU
Special Function Registers
Map
SPI Mode (MSSP)
Associated Registers
Bus Mode Compatibility
Clock Speed and Module Interactions
Effects of a Reset
Enabling SPI I/O
Master Mode 154
Master/Slave Connection 153
Operation
Operation in Power-Managed Modes 157
Serial Clock 149
Serial Data In 149
Serial Data Out 149
Slave Mode 155
Slave Select 149
Slave Select Synchronization 155
SPI Clock
Typical Connection
SSPOV
SSPOV Status Flag
R/W Bit
SSx
Stack Full/Underflow Resets
STATUS Register
SUBFSR
SUBFWB
SUBLW
SUBULNK
SUBWF
SUBWFB
SWAPF
Т
Table Pointer Operations (table) 74
Table Reads/Table Writes 55
TBLRD
TBLWT

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
App	lication (optional):	
Wou	Id you like a reply?YN	
Devi	ce: PIC18F45J10 Family	Literature Number: DS39682E
Que	stions:	
1.	What are the best features of this do	cument?
-		
2.	How does this document meet your h	nardware and software development needs?
3.	Do you find the organization of this d	ocument easy to follow? If not, why?
•		
4	Albet additions to the decument de v	authink would appear the structure and subject?
4.	what additions to the document do y	ou think would enhance the structure and subject?
•		
5.	What deletions from the document or	ould be made without affecting the overall usefulness?
0.		
6.	Is there any incorrect or misleading in	nformation (what and where)?
	, .	
-		
7.	How would you improve this docume	nt?
-		