

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44j10t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F24J10/25J10 PINOUT I/O DESCRIPTIONS

	Pin Nu	ımber					
Pin Name	SPDIP, SOIC, SSOP	QFN	Pin Type	Buffer Type	Description		
MCLR MCLR	1	26	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.		
OSC1/CLKI OSC1 CLKI	9	6	I	CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. External clock source input. Always associated with pin function OSC1. See related OSC2/CLKO pins.		
OSC2/CLKO OSC2 CLKO	10	7	0 0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In EC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
Leneral TTI TTI ee							

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

Ρ = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

6.1.4.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.5 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1 •	
RETURN, FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.6 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.6.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	

6.1.6.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

6.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 6.5 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each; PIC18F45J10 family devices implement all 16 banks. Figure 6-6 shows the data memory organization for the PIC18F45J10 family devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 6.3.2** "Access Bank" provides a detailed description of the Access RAM.

6.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 6-7.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 6-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

FIGURE 6-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 128 bytes of memory (00h-7Fh) in Bank 0 and the last 128 bytes of memory (80h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 80h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 80h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.5.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3	SSPM2	SSPM1	SSPM0				
oit 7					•		bit				
_eaend:											
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit. read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	WCOL: Write In Master Tra 1 = A write f transmis	e Collision Detec <u>insmit mode:</u> to the SSPxBUF sion to be starte	t bit ⁻ register was d (must be cle	s attempted wh eared in softwar	nile the I ² C cor re)	nditions were	not valid for				
	0 = No collis <u>In Slave Tran</u> 1 = The SSF software 0 = No collis	ion <u>ismit mode:</u> יxBUF register is) ion	s written while	it is still transm	itting the previo	ous word (mus	t be cleared i				
	<u>In Receive m</u> This is a "dor	<u>ode (Master or S</u> n't care" bit.	Slave modes)	<u>.</u>							
bit 6	SSPOV: Receive Overflow Indicator bit										
	In Receive m 1 = A byte is software 0 = No overf In Transmit m	<u>ode:</u> received while t) low <u>node:</u>	he SSPxBUF	register is still h	olding the prev	rious byte (mus	at be cleared i				
	This is a "dor	n't care" bit in Tra	insmit mode.	(1)							
bit 5	SSPEN: Mas 1 = Enables t 0 = Disables	ter Synchronous the serial port ar serial port and c	Serial Port E d configures onfigures the	inable bit(") the SDAx and S se pins as I/O p	SCLx pins as th ort pins	e serial port pi	ns				
bit 4	CKP: SCK R	elease Control b	it								
	<u>In Slave mod</u> 1 = Release 0 = Holds clo	<u>e:</u> clock _' ck low (clock str	etch), used to	ensure data se	etup time						
	<u>In Master mo</u> Unused in thi	<u>de:</u> s mode.									
bit 3-0	SSPM<3:0>:	Synchronous S	erial Port Mod	le Select bits							
	1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I^2C Firmware Controlled Master mode (slave Idle) 1000 = I^2C Master mode, clock = Fosc/(4 * (SSPxADD + 1)) 0111 = I^2C Slave mode, 10-bit address										
	0110 = I ² C S Bit combination	nave mode, 7-bit ons not specifica	address Illy listed here	are either rese	erved or implem	ented in SPI n	node only.				

Note 1: When enabled, the SDAx and SCLx pins must be configured as inputs.

16.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPxCON2<4>). When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 16-23).

16.4.12.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

16.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPxCON2<2>). At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit (SSPxSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 16-24).

16.4.13.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 16-23: ACKNOWLEDGE SEQUENCE WAVEFORM

	R/M/_0	R/W_0				R-1	R/M-0					
CSRC		TXEN(1)	SYNC	SENDR	BRGH	TRMT						
bit 7	173	TALM	51110	GLINDD	DIXOIT		hit 0					
bit i							bit o					
Legend:												
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7	CSRC: Clock	Source Select	bit									
	Asynchronou	<u>is mode:</u>										
	Don't care.	modo										
	1 = Master m	iode (clock gen	erated internal	ly from BRG)								
	0 = Slave mo	de (clock from	external source	e)								
bit 6	TX9: 9-Bit Tra	ansmit Enable I	oit									
	1 = Selects 9	9-bit transmissio	on									
bit 5	U = Selects of	mit Enable bit(1)									
DIL J	1 = Transmit	enabled										
	0 = Transmit	disabled										
bit 4	SYNC: EUSA	ART Mode Sele	ct bit									
	1 = Synchro	nous mode										
L : 1 O	0 = Asynchro	onous mode	- 4 la :4									
DIT 3	SENDB: Sen	id Break Chara	cter dit									
	1 = Send Sy	Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion)										
	0 = Sync Bre	0 = Sync Break transmission completed										
	Synchronous	Synchronous mode:										
hit 2	Don't care.	Paud Pata Sal	oot hit									
DIL Z		bauu Rale Sel										
	1 = High spe	ed										
	0 = Low spe	ed										
	Synchronous	<u>mode:</u>										
bit 1	TPMT. Trans	is moue. mit Shift Dogist	or Status bit									
DILI	1 = TSR emi	ntv										
	0 = TSR full											
bit 0	TX9D: 9th Bi	t of Transmit Da	ata									
	Can be addre	ess/data bit or a	parity bit.									
Note 1:	SREN/CREN ove	errides TXEN in	Sync mode.									

17.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 17-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 17-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	49	
RCREG	EUSART R	eceive Regi	ster						49	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	49	
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	49	
SPBRGH	EUSART B	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister Low B	Syte				49	
Legend: -	— = unimple	mented, rea	d as '0'. Sha	aded cells a	re not used	for synchror	ous master	reception.		

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

17.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG register; if the RCIE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	49
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	49
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	49
RCREG	EUSART F	Receive Regi	ster						49
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	49
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	49
SPBRGH	EUSART E	Baud Rate G	enerator Re	gister High	Byte				49
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low I	Byte				49

TABLE 17-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: These bits are not implemented on 28-pin devices and should be read as '0'.

FIGURE 19-3: COMPARATOR OUTPUT BLOCK DIAGRAM

19.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

19.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

19.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

21.6 Program Verification and Code Protection

For all devices in the PIC18F45J10 family of devices, the on-chip program memory space is treated as a single block. Code protection for this block is controlled by one Configuration bit, CP0. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

21.6.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against untoward changes or reads in two ways. The primary protection is the write-once feature of the Configuration bits which prevents reconfiguration once the bit has been programmed during a power cycle. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell-level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the CP0 bit is set, the source data for device configuration is also protected as a consequence.

21.7 In-Circuit Serial Programming

PIC18F45J10 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

21.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 21-3 shows which resources are required by the background debugger.

TABLE 21-3:	DEBUGGER	RESOURCES
-------------	----------	-----------

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	32 bytes

BRA		Uncondition	nal Branch		BSI	F	Bit Set f				
Synta	IX:	BRA n			Synt	tax:	BSF f, b {	BSF f, b {,a}			
Opera	ands:	$-1024 \le n \le 1023$			Ope	rands:	$0 \leq f \leq 255$				
Opera	ation:	(PC) + 2 + 2n	\rightarrow PC				$0 \le b \le 7$				
Statu	s Affected:	None			0		$a \in [0, 1]$				
Enco	ding:	1101 0)nnn nnni	n nnnn	Ope		$1 \rightarrow 1 < D >$				
Description: Add the 2's complement number, '2n', to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction			oding: cription:	1000 bbba ffff Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected If 'a' is '1' the BSP is used to select the			ffff s selected.				
Words [.]		1					GPR bank	(default).			
Cycle	S:	2					lf 'a' is '0' a set is enabl	nd the ext led, this in	tended in struction	nstruction n operates	
QC	cle Activity:						in Indexed	Literal Off	set Add	ressing	
	Q1	Q2	Q3	Q4			Section 22	2.3 "Bvte	e-Orient	ed and	
	Decode	Read literal 'n'	Process Data	Write to PC			Bit-Oriente	ed Instruc	tions in 7 for det	Indexed ails.	
	No operation	No operation	No operation	No operation	Wor	ds:	1				
L	1	- ·			Cycl	Cycles:					
_					QC	Cycle Activity:					
Exam	iple:	HERE	BRA Jump			Q1	Q2	Q3		Q4	
	Before Instru PC	ction = ad	dress (HERE)		Decode	Read	Proces	ss	Write egister 'f'	
	After Instruct	ion				L		Duta		990001	
	PC	= ad	dress (Jump))	Exa	mple:	BSF F	LAG_REG	\$, 7, 1	-	

Before Instruction		
FLAG_REG	=	0Ah
After Instruction		
FLAG REG	=	8Ah

LFS	R	Load FSF	र					
Synta	ax:	LFSR f, k						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$						
Oper	Operation: $k \rightarrow FSRf$							
Status Affected: None								
Enco	ding:	1110 1111	1110 0000	00f k ₇ kl	f kk	k ₁₁ kkk kkkk		
Description: The 12-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.								
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
Q1 Q2 Q3 Q4						Q4		
	Decode	Read literal 'k' MSB	Proce Data	ess a	۷ lite M F	Vrite eral 'k' SB to SRfH		
	Decode	Read literal 'k' LSB	Proce Data	Process Data		e literal FSRfL		
Example: LFSR 2, 3ABh After Instruction FSR2H FSR2L =								

Move f							
MOVF f{,	MOVF f {,d {,a}}						
$0 \leq f \leq 255$	$0 \le f \le 255$						
d ∈ [0,1]							
a ∈ [0,1]							
$f \to dest$							
N, Z							
0101	00da	fff	f	ffff			
placed in W. If 'd' is '1', the result is placed back in register 'f' (default). Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
	et moue	101 1	ucia	15.			
1							
02	Q3			Q4			
Read	Proce	SS	V	/rite W			
register 'f'	Data	1					
MOVF RI	EG, 0,	0					
MOVF RE	EG, 0,	0					
MOVF RH	EG, 0, h	0					
MOVF RE tion = 220 = FF	∑G, 0, h h	0					
MOVF RE ion = 221 = FF n = 221	EG, 0, h h	0					
	Move f MOVF f {, $0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$ $f \rightarrow dest$ N, Z 0101 The content a destination status of 'd' placed in W placed back Location 'f' 256-byte back If 'a' is '0', tf If 'a' is '1', tf GPR bank (If 'a' is '0' at set is enable in Indexed I mode whene Section 22 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f'	Move fMOVFf {,d {,a}} $0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$ $a \in [0, 1]$ $a \in [0, 1]$ $f \rightarrow$ destN, Z010100daThe contents of regis a destination dependsstatus of 'd'. If 'd' is 'placed in W. If 'd' is 'placed back in registLocation 'f' can be at256-byte bank.If 'a' is '0', the AccessIf 'a' is '0', the AccessIf 'a' is '0', the AscessIf 'a' is '0' and the exset is enabled, this irin Indexed Literal Offmode whenever $f \le S$ Section 22.2.3 "BytBit-Oriented InstructLiteral Offset Mode111Q2Q3ReadProceregister 'f'Data	Move f $MOVF$ $f \langle .d \langle .a \rangle \}$ $0 \leq f \leq 255$ $d \in [0, 1]$ $a \in [0, 1]$ $a \in [0, 1]$ $f \rightarrow$ dest N, Z $\boxed{0101}$ $00da$ \boxed{ff} The contents of register 'f' a destination dependent usstatus of 'd'. If 'd' is '0', theplaced in W. If 'd' is '1', theplaced back in register 'f' $Location 'f' can be anywhat256-byte bank.If 'a' is '0', the Access BarIf 'a' is '1', the BSR is usedGPR bank (default).If 'a' is '0' and the extenderset is enabled, this instructin Indexed Literal Offset Amode whenever f \leq 95 (5FSection 22.2.3 "Byte-OriBit-Oriented InstructionsLiteral Offset Mode" for al11Q2Q3ReadProcessregister 'f'Data$	Move f MOVF f {,d {,a}} $0 \le f \le 255$ d ∈ [0, 1] $a \in [0, 1]$ $a \in [0, 1]$ $f \rightarrow dest$ N, Z 0101 00da ffff The contents of register if are a destination dependent upon status of 'd'. If 'd' is '0', the resplaced in W. If 'd' is '1', the resplaced back in register 'f' (defa Location 'f' can be anywhere in 256-byte bank. If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to start is '1' is '1', the BSR is used to start is enabled, this instruction in Indexed Literal Offset Addree mode whenever f ≤ 95 (5Fh). Start Section 22.2.3 "Byte-Oriented Bit-Oriented Instructions in Literal Offset Mode" for detail 1 1 Q2 Q3 Read Process W register 'f'			

22.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F45J10 family devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 22-3. Detailed descriptions are provided in **Section 22.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 22-1 (page 250) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

22.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 22.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st Word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd Word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st Word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd Word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 22-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

23.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

23.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

23.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +100°C
Storage temperature	65°C to +150°C
Voltage on any digital-only input MCLR I/O pin with respect to Vss	0.3V to 6.0V
Voltage on any combined digital and analog pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	-0.3V to 4.0V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Maximum output current sunk by any PORTB and PORTC I/O pin	25 mA
Maximum output current sunk by any PORTA, PORTD, and PORTE I/O pin	4 mA
Maximum output current sourced by any PORTB and PORTC I/O pin	25 mA
Maximum output current sourced by any PORTA, PORTD, and PORTE I/O pin	4 mA
Maximum current sunk by all ports combined	200 mA
Maximum current sourced by all ports combined	200 mA

Note 1: Power dissipation is calculated as follows:

Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOL x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

24.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 24-5 apply to all timing specifications unless otherwise noted. Figure 24-3 specifies the load conditions for the timing specifications.

TABLE 24-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
	Operating voltage VDD range as described in DC spec Section 24.1 and				
	Section 24.3.				

FIGURE 24-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-20: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic Min		Max	Units	Conditions		
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is	first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_]		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_]		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

FIGURE 24-17: MASTER SSP I²C[™] BUS DATA TIMING

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A