

Welcome to E-XFL.COM

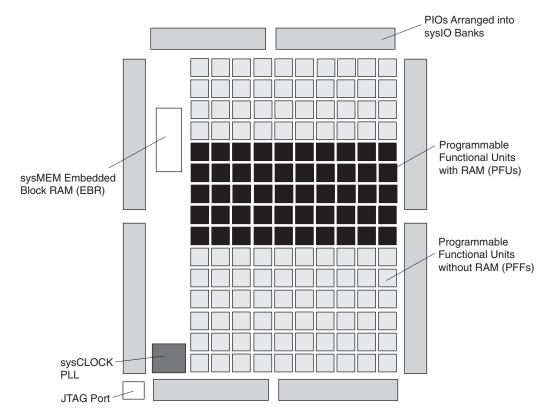
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	211
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA, CSPBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-3bn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

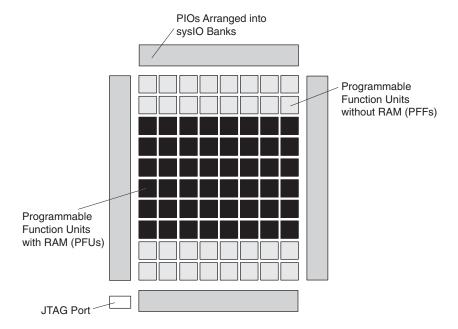


Figure 2-1. Top View of the MachXO1200 Device¹

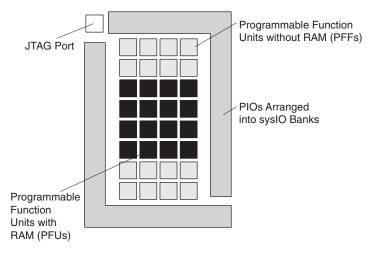
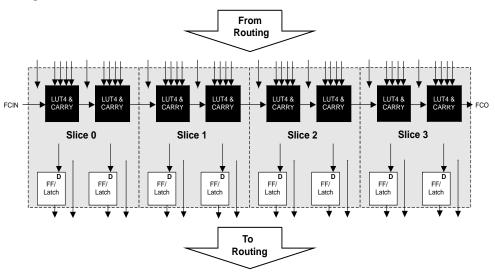

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device

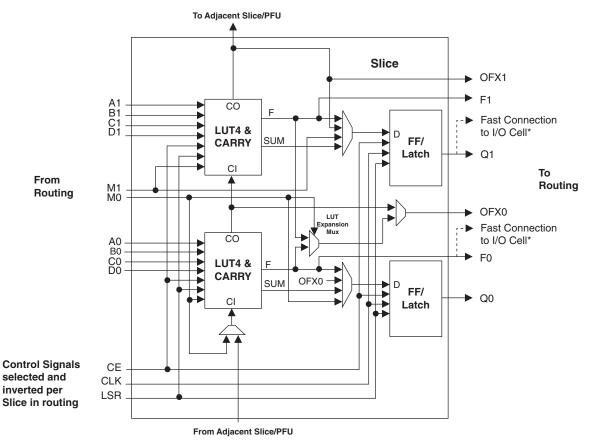

Figure 2-3. Top View of the MachXO256 Device

PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram


Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

1. See Figure 2-4 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM	
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2	
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2	

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

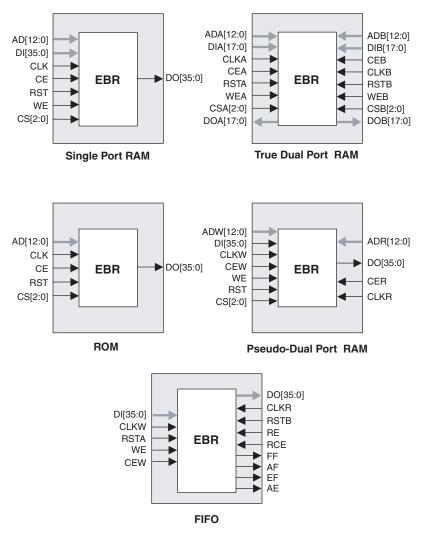
Note: SPR = Single Port RAM, DPR = Dual Port RAM

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep	
SLEEPN Pin	High	—	Low	
Static Icc	Typical <10mA	0	Typical <100uA	
I/O Leakage	<10µA	<1mA	<10µA	
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range	
Logic Operation	User Defined	Non Operational	Non operational	
I/O Operation	User Defined	Tri-state	Tri-state	
JTAG and Programming circuitry	Operational	Non-operational	Non-operational	
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained	

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)						
Standard	Min.	Тур.	Max.				
LVCMOS 3.3	3.135	3.3	3.465				
LVCMOS 2.5	2.375	2.5	2.625				
LVCMOS 1.8	1.71	1.8	1.89				
LVCMOS 1.5	1.425	1.5	1.575				
LVCMOS 1.2	1.14	1.2	1.26				
LVTTL	3.135	3.3	3.465				
PCl ³	3.135	3.3	3.465				
LVDS ^{1, 2}	2.375	2.5	2.625				
LVPECL ¹	3.135	3.3	3.465				
BLVDS ¹	2.375	2.5	2.625				
RSDS ¹	2.375	2.5	2.625				

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OH} Min.		I _{OH} ¹		
Standard	Min. (V) Max. (V)		Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mA)		
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4		
	-0.5	0.0	2.0	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
					0.4	2.4	16	-16		
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4		
					0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 2.5	-0.3	0.7	1.7	1.7 3.6		V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4		
2000002.5	-0.0	0.7	1.7	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.8	-0.3	-03	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
		0.00 4 CCIO	0.034.000	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4		
2001000 1.5	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2		
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.2	-0.3	0.35V _{CC}	0.65V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2		
("E" Version)	-0.5	0.00 v CC	0.03 v CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5		

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

MachXO Family Timing Adders^{1, 2, 3}

Buffer Type	Description	-5	-4	-3	Units
Input Adjusters			I	1	
LVDS25 ^₄	LVDS	0.44	0.53	0.61	ns
BLVDS254	BLVDS	0.44	0.53	0.61	ns
LVPECL334	LVPECL	0.42	0.50	0.59	ns
LVTTL33	LVTTL	0.01	0.01	0.01	ns
LVCMOS33	LVCMOS 3.3	0.01	0.01	0.01	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	0.07	0.08	0.10	ns
LVCMOS15	LVCMOS 1.5	0.14	0.17	0.19	ns
LVCMOS12	LVCMOS 1.2	0.40	0.48	0.56	ns
PCI33 ⁴	PCI	0.01	0.01	0.01	ns
Output Adjusters				•	
LVDS25E	LVDS 2.5 E	-0.13	-0.15	-0.18	ns
LVDS25⁴	LVDS 2.5	-0.21	-0.26	-0.30	ns
BLVDS25	BLVDS 2.5	-0.03	-0.03	-0.04	ns
LVPECL33	LVPECL 3.3	0.04	0.04	0.05	ns
LVTTL33_4mA	LVTTL 4mA drive	0.04	0.04	0.05	ns
LVTTL33_8mA	LVTTL 8mA drive	0.06	0.07	0.08	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.01	-0.01	-0.01	ns
LVTTL33_16mA	LVTTL 16mA drive	0.50	0.60	0.70	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.04	0.04	0.05	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.06	0.07	0.08	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	-0.01	-0.01	-0.01	ns
LVCMOS33_14mA	LVCMOS 3.3 14mA drive	0.50	0.60	0.70	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.05	0.06	0.07	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.10	0.12	0.13	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.00	0.00	0.00	ns
LVCMOS25_14mA	LVCMOS 2.5 14mA drive	0.34	0.40	0.47	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.11	0.13	0.15	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.05	0.06	0.06	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	-0.06	-0.07	-0.08	ns
LVCMOS18_14mA	LVCMOS 1.8 14mA drive	0.06	0.07	0.09	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.15	0.19	0.22	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.05	0.06	0.07	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.26	0.31	0.36	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.05	0.06	0.07	ns
PCI33⁴	PCI33	1.85	2.22	2.59	ns

Over Recommended Operating Conditions

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.

3. All other standards tested according to the appropriate specifications.

4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.

Rev. A 0.19

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column	I/O	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Number]_[A/B/C/D/E/F]		Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC	—	No connect.
GND	—	GND - Ground. Dedicated pins.
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}	—	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions	(Used a	as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). $T = true$ and $C = complement$.
[LOC][0]_PLL[T, C]_FB		Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]	—	Primary Clock Pads, n per side.
Test and Programming (De	dicate	d pins)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.
1 Applies to MachXO "C" devic		

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

		LCMXC	0256C/E			LCMXO640C/E		
Pin Type		100 TQFP	100 csBGA	100 TQFP	144 TQFP	100 csBGA	132 csBGA	256 caBGA / 256 ftBGA
Single Ended User I/O		78	78	74	113	74	101	159
Differential Pair User I/O1		38	38	17	43	17	42	79
Muxed		6	6	6	6	6	6	6
TAP		4	4	4	4	4	4	4
Dedicated (Total Without Supp	olies)	5	5	5	5	5	5	5
VCC		2	2	2	4	2	4	4
VCCAUX		1	1	1	2	1	2	2
	Bank0	3	3	2	2	2	2	4
VOOIO	Bank1	3	3	2	2	2	2	4
VCCIO	Bank2	—	—	2	2	2	2	4
	Bank3	—	—	2	2	2	2	4
GND		8	8	10	12	10	12	18
NC		0	0	0	0	0	0	52
	Bank0	41/20	41/20	18/5	29/10	18/5	26/11	42/21
Single Ended/Differential I/O	Bank1	37/18	37/18	21/4	30/11	21/4	27/12	40/20
per Bank	Bank2	_	—	14/2	24/9	14/2	21/9	36/18
	Bank3	_	—	21/6	30/13	21/6	27/10	40/20

1. These devices support emulated LVDS outputs.pLVDS inputs are not supported.

			LCMXO	1200C/E		LCMXO2280C/E					
Pin Type	100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	324 ftBGA		
Single Ended User I/O		73	113	101	211	73	113	101	211	271	
Differential Pair User I/O1		27	48	42	105	30	47	41	105	134	
Muxed		6	6	6	6	6	6	6	6	6	
TAP		4	4	4	4	4	4	4	4	4	
Dedicated (Total Without Supp	lies)	5	5	5	5	5	5	5	5	5	
VCC		4	4	4	4	2	4	4	4	6	
VCCAUX		2	2	2	2	2	2	2	2	2	
	Bank0	1	1	1	2	1	1	1	2	2	
	Bank1	1	1	1	2	1	1	1	2	2	
	Bank2	1	1	1	2	1	1	1	2	2	
VCCIO	Bank3	1	1	1	2	1	1	1	2	2	
VCCIO	Bank4	1	1	1	2	1	1	1	2	2	
	Bank5	1	1	1	2	1	1	1	2	2	
	Bank6	1	1	1	2	1	1	1	2	2	
	Bank7	1	1	1	2	1	1	1	2	2	
GND		8	12	12	18	8	12	12	18	24	
NC		0	0	0	0	0	0	0	0	0	
	Bank0	10/3	14/6	13/5	26/13	9/3	13/6	12/5	24/12	34/17	
	Bank1	8/2	15/7	13/5	28/14	9/3	16/7	14/5	30/15	36/18	
	Bank2	10/4	15/7	13/6	26/13	10/4	15/7	13/6	26/13	34/17	
Single Ended/Differential I/O	Bank3	11/5	15/7	14/7	28/14	11/5	15/7	14/7	28/14	34/17	
per Bank	Bank4	8/3	14/5	13/5	27/13	8/3	14/4	13/4	29/14	35/17	
	Bank5	5/2	10/4	8/2	22/11	5/2	10/4	8/2	20/10	30/15	
	Bank6	10/3	15/6	13/6	28/14	10/4	15/6	13/6	28/14	34/17	
	Bank7	11/5	15/6	14/6	26/13	11/5	15/6	14/6	26/13	34/17	

1. These devices support on-chip LVDS buffers for left and right I/O Banks.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	XO256		LCMXO640				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	
43	PB4A	1		Т	PB8B	2			
44	PB4B	1		С	PB8C	2		Т	
45	PB4C	1		T	PB8D	2		C	
46	PB4D	1		C	PB9A	2			
47	PB5A	1			PB9C	2		Т	
48*	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN		
49	PB5C	1		Т	PB9D	2		С	
50	PB5D	1		C	PB9F	2		-	
51	PR9B	0		C	PR11D	1		С	
52	PR9A	0		T	PR11B	1		C	
53	PR8B	0		C	PR11C	1		T	
54	PR8A	0		T	PR11A	1		T	
55	PR7D	0		C	PR10D	1		C	
56	PR7C	0		Т	PR10C	1		Т	
57	PR7B	0		C	PR10B	1		C	
58	PR7A	0		Т	PR10A	1		Т	
59	PR6B	0		C	PR9D	1			
60	VCCIO0	0		C	VCCIO1	1			
61	PR6A	0		Т	PR9B	1			
				I					
62	GNDIO0	0			GNDIO1	1			
63	PR5D	0		C	PR7B	1			
64	PR5C	0		Т	PR6C	1			
65	PR5B	0		C	PR6B	1			
66	PR5A	0		Т	PR5D	1			
67	PR4B	0		С	PR5B	1			
68	PR4A	0		Т	PR4D	1			
69	PR3D	0		С	PR4B	1			
70	PR3C	0		Т	PR3D	1			
71	PR3B	0		С	PR3B	1			
72	PR3A	0		Т	PR2D	1			
73	PR2B	0		С	PR2B	1			
74	VCCIO0	0			VCCIO1	1			
75	GNDIO0	0			GNDIO1	1			
76	PR2A	0		Т	PT9F	0		С	
77	PT5C	0			PT9E	0		Т	
78	PT5B	0		С	PT9C	0			
79	PT5A	0		Т	PT9A	0			
80	PT4F	0		С	VCCIO0	0			
81	PT4E	0		Т	GNDIO0	0			
82	PT4D	0		С	PT7E	0			
83	PT4C	0		Т	PT7A	0			
84	GND	-	1		GND	-			

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		I	CMXO1200		LCMXO2280					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
82	PT9A	1			PT12C	1		Т		
83	GND	-			GND	-				
84	PT8B	1		С	PT11B	1		С		
85	PT8A	1		Т	PT11A	1		Т		
86	PT7D	1	PCLK1_1****		PT10B	1	PCLK1_1****			
87	PT6F	0	PCLK0_0****		PT9B	1	PCLK1_0****			
88	PT6D	0		С	PT8F	0		С		
89	PT6C	0		Т	PT8E	0		Т		
90	VCCAUX	-			VCCAUX	-				
91	VCC	-			VCC	-				
92	PT5B	0			PT6D	0				
93	PT4B	0			PT6F	0				
94	VCCIO0	0			VCCIO0	0				
95	PT3D	0		С	PT4B	0		С		
96	PT3C	0		Т	PT4A	0		Т		
97	PT3B	0			PT3B	0				
98	PT2B	0		С	PT2B	0		С		
99	PT2A	0		Т	PT2A	0		Т		
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-				

*Supports true LVDS outputs.

**Double bonded to the pin.

***NC for "E" devices.

****Primary clock inputs are single-ended.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA

		LCMXO25	6		LCMXO640						
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial		
B1	PL2A	1		Т	B1	PL2A	3		Т		
C1	PL2B	1		С	C1	PL2C	3		Т		
D2	PL3A	1		Т	D2	PL2B	3		С		
D1	PL3B	1		С	D1	PL2D	3		С		
C2	PL3C	1		Т	C2	PL3A	3		Т		
E1	PL3D	1		С	E1	PL3B	3		С		
E2	PL4A	1		Т	E2	PL3C	3		Т		
F1	PL4B	1		С	F1	PL3D	3		С		
F2	PL5A	1		Т	F2	PL4A	3				
G2	PL5B	1		С	G2	PL4C	3		Т		
H1	GNDIO1	1			H1	GNDIO3	3				
H2	PL5C	1		Т	H2	PL4D	3		С		
J1	PL5D	1	GSRN	С	J1	PL5B	3	GSRN			
J2	PL6A	1		Т	J2	PL7B	3				
K1	PL6B	1	TSALL	С	K1	PL8C	3	TSALL	Т		
K2	PL7A	1		Т	K2	PL8D	3		С		
L1	PL7B	1		С	L1	PL9A	3				
L2	PL7C	1		Т	L2	PL9C	3				
M1	PL7D	1		С	M1	PL10A	3				
M2	PL8A	1		Т	M2	PL10C	3				
N1	PL8B	1		С	N1	PL11A	3				
М3	PL9A	1		Т	M3	PL11C	3				
N2	GNDIO1	1			N2	GNDIO3	3				
P2	TMS	1	TMS		P2	TMS	2	TMS			
P3	PL9B	1		С	P3	PB2C	2				
N4	TCK	1	ТСК		N4	TCK	2	ТСК			
P4	PB2A	1		Т	P4	VCCIO2	2				
N3	PB2B	1		С	N3	GNDIO2	2				
P5	TDO	1	TDO		P5	TDO	2	TDO			
N5	PB2C	1		Т	N5	PB4C	2				
P6	TDI	1	TDI		P6	TDI	2	TDI			
N6	PB2D	1		С	N6	PB4E	2				
P7	VCC	-			P7	VCC	-				
N7	PB3A	1	PCLK1_1**	Т	N7	PB5B	2	PCLK2_1**			
P8	PB3B	1		С	P8	PB5D	2				
N8	PB3C	1	PCLK1_0**	Т	N8	PB6B	2	PCLK2_0**			
P9	PB3D	1		С	P9	PB6C	2				
N10	GNDIO1	1			N10	GNDIO2	2				
P11	PB4A	1		Т	P11	PB8B	2				
N11	PB4B	1		C	N11	PB8C	2	+	Т		
P12	PB4C	1		T	P12	PB8D	2		C		
N12	PB4D	1		C	N12	PB9A	2		-		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

	LCMXO640			LCMXO1200				LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		т
66	PB8D	2		C	PB10B	4		C	PB13B	4		C
67	PB9A	2		T	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		T	PB10D	4		C	PB13D	4		C
69	PB9B	2		C	PB10F	4		Ŭ	PB14D	4		0
70**	SLEEPN	-	SLEEPN	Ŭ	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
70	PB9D	2	SLEEFN	С	PB11C	4	SLEEFIN	Т	PB16C	4	JLEEFIN	т
71	PB9D PB9F	2		U	PB11C PB11D	4		C	PB16C PB16D	4		C
									-			c
73	PR11D	1		С	PR16B	3		С	PR20B	3		
74	PR11B	1		C	PR16A	3		T	PR20A	3		Т
75	PR11C	1		Т	PR15B	3		C*	PR19B	3		С
76	PR10D	1		С	PR15A	3		T*	PR19A	3		Т
77	PR11A	1		Т	PR14D	3		С	PR17D	3		С
78	PR10B	1		С	PR14C	3		Т	PR17C	3		Т
79	PR10C	1		Т	PR14B	3		C*	PR17B	3		C*
80	PR10A	1		Т	PR14A	3		T*	PR17A	3		T*
81	PR9D	1			PR13D	3			PR16D	3		
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PR8C	1			PR12A	3		T*	PR15A	3		T*
86	PR8A	1			PR11B	3		C*	PR14B	3		C*
87	PR7D	1			PR11A	3		T*	PR14A	3		T*
88	GND	-			GND	-			GND	-		
89	PR7B	1		С	PR10B	3		C*	PR13B	3		C*
90	PR7A	1		Т	PR10A	3		T*	PR13A	3		T*
91	PR6D	1		С	PR8B	2		C*	PR10B	2		C*
92	PR6C	1		Т	PR8A	2		T*	PR10A	2		T*
93	VCC	-			VCC	-			VCC	-		
94	PR5D	1			PR6B	2		C*	PR8B	2		C*
95	PR5B	1			PR6A	2		T*	PR8A	2		T*
96	PR4D	1			PR5B	2		C*	PR7B	2		C*
97	PR4B	1		С	PR5A	2		T*	PR7A	2		T*
98	VCCIO1	1			VCCIO2	2			VCCIO2	2		
99	GNDIO1	1			GNDIO2	2			GNDIO2	2		
100	PR4A	1		Т	PR4C	2			PR5C	2		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	KO640		LCMXO1200					LCMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball	Ball	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
J13	PR8C	1	Tunction	T	J13	PR11A	3	runction	T*	J13	PR14A	3	Tunction	T*
GND	GND	-			GND	GND	-			GND	GND	-		
K14	PR8B	1		с	K14	PR10D	3		С	K14	PR13D	3		С
J14	PR8A	1		T	J14	PR10C	3		T	J14	PR13C	3		T
K15	PR7D	1		C	K15	PR10B	3		C*	K15	PR13B	3		C*
J15	PR7C	1		T	J15	PR10A	3		T*	J15	PR13A	3		т*
-	-	-			GND	GNDIO3	3		-	GND	GNDIO3	3		
-	-				VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
K12	NC				K12	PR9D	3		С	K12	PR11D	3		С
J12	NC				J12	PR9C	3		Т	J12	PR11C	3		Т
J16	PR7B	1		С	J16	PR9B	3		C*	J16	PR11B	3		C*
H16	PR7A	1		Т	H16	PR9A	3		T*	H16	PR11A	3		T*
H15	PR6B	1		С	H15	PR8D	2		С	H15	PR10D	2		С
G15	PR6A	1		т	G15	PR8C	2		т	G15	PR10C	2		т
H14	PR5D	1		С	H14	PR8B	2		C*	H14	PR10B	2		C*
G14	PR5C	1		т	G14	PR8A	2		T*	G14	PR10A	2		T*
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
H13	PR6D	1		С	H13	PR7D	2		С	H13	PR9D	2		С
H12	PR6C	1		Т	H12	PR7C	2		Т	H12	PR9C	2		Т
G13	PR4D	1		С	G13	PR7B	2		C*	G13	PR9B	2		C*
G12	PR4C	1		Т	G12	PR7A	2		T*	G12	PR9A	2		T*
G16	PR5B	1		С	G16	PR6D	2		С	G16	PR7D	2		С
F16	PR5A	1		Т	F16	PR6C	2		Т	F16	PR7C	2		Т
F15	PR4B	1		С	F15	PR6B	2		C*	F15	PR7B	2		C*
E15	PR4A	1		Т	E15	PR6A	2		T*	E15	PR7A	2		T*
E16	PR3B	1		С	E16	PR5D	2		С	E16	PR6D	2		С
D16	PR3A	1		Т	D16	PR5C	2		Т	D16	PR6C	2		Т
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
D15	PR2D	1		С	D15	PR5B	2		C*	D15	PR6B	2		C*
C15	PR2C	1		Т	C15	PR5A	2		T*	C15	PR6A	2		T*
C16	PR2B	1		С	C16	PR4D	2		С	C16	PR5D	2		С
B16	PR2A	1		Т	B16	PR4C	2		Т	B16	PR5C	2		Т
F14	PR3D	1		С	F14	PR4B	2		C*	F14	PR5B	2		C*
E14	PR3C	1		Т	E14	PR4A	2		T*	E14	PR5A	2		T*
-	-	-			-	-	-			GND	GND	-		
F12	NC				F12	PR3D	2		С	F12	PR4D	2		С
F13	NC				F13	PR3C	2		T	F13	PR4C	2		T
E12	NC				E12	PR3B	2		C*	E12	PR4B	2		C*
E13	NC				E13	PR3A	2		T*	E13	PR4A	2		T*
D13	NC				D13	PR2B	2		C T	D13	PR3B	2		C*
D14	NC				D14	PR2A	2		Т	D14	PR3A	2		T*
VCCIO0	VCCIO0	0			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
GND	GNDIO0	0			GND	GNDIO2	2			GND	GNDIO2	2		-
GND	GNDIO0	0			GND	GNDIO1				GND	GNDIO1			
VCCIO0 B15	VCCIO0 NC	0			VCCIO1 B15	VCCIO1 PT11D	1		с	VCCIO1 B15	VCCIO1 PT16D	1		С
A15	NC				A15	PT11D PT11C	1		т	A15	PT16D PT16C	1		т
C14	NC				C14	PT11B	1		C	C14	PT16C PT16B	1		C
B14	NC				B14	PT11B PT11A	1		Т	B14	PT16B PT16A	1		Т
C13	PT9F	0		с	C13	PT10F	1		C	C13	PT16A PT15D	1		C
B13	PT9E	0		т	B13	PT10F	1		т	B13	PT15D	1		т
013	LISE	U			013	FILVE	L '			013	F1130	L '		I

Ball Number	Ball Function	LCMXO2280 Bank	Dual Eurotian	Differentia
Ball Number			Dual Function	Differentia T*
G2	PL11A	6		C*
H2	PL11B	6		С^ Т
L3	PL11C	6		
L5	PL11D	6		C
H1	PL12A	6		Τ*
VCCIO6	VCCIO6	6		
GND	GNDIO6	6		
J2	PL12B	6		C*
L4	PL12C	6		Т
L6	PL12D	6		С
K2	PL13A	6		T*
K1	PL13B	6		C*
J1	PL13C	6		Т
VCC	VCC	-		
L2	PL13D	6		С
M5	PL14D	6		С
M3	PL14C	6	TSALL	Т
L1	PL14B	6		C*
M2	PL14A	6		T*
M1	PL15A	6		T*
N1	PL15B	6		C*
M6	PL15C	6		Т
M4	PL15D	6		С
VCCIO6	VCCIO6	6		
GND	GNDIO6	6		
P1	PL16A	6		T*
P2	PL16B	6		C*
N3	PL16C	6		Т
N4	PL16D	6		С
GND	GND	-		
T1	PL17A	6	LLM0_PLLT_FB_A	T*
R1	PL17B	6	LLM0_PLLC_FB_A	C*
P3	PL17C	6		Т
N5	PL17D	6		С
R3	PL18A	6	LLM0_PLLT_IN_A	T*
R2	PL18B	6	LLM0_PLLC_IN_A	C*
P4	PL19A	6		Т
N6	PL19B	6		C
U1	PL20A	6		T
VCCIO6	VCCIO6	6		•
GND	GNDIO6	6		
GND	GNDIO5	5		
VCCIO5	VCCIO5	5		

Dell Number	Doll Curretter	LCMXO2280	Dual Free stires	D:#*****
Ball Number	Ball Function	Bank	Dual Function	Differentia
V10	PB9B	4		С
N10	PB9C	4		Т
R10	PB9D	4		С
P10	PB10F	4	PCLK4_1***	С
T10	PB10E	4		Т
U10	PB10D	4		С
V11	PB10C	4		Т
U11	PB10B	4	PCLK4_0***	С
VCCIO4	VCCIO4	4		
GND	GNDIO4	4		
T11	PB10A	4		Т
U12	PB11A	4		Т
R11	PB11B	4		С
GND	GND	-		
T12	PB11C	4		Т
P11	PB11D	4		С
V12	PB12A	4		Т
V13	PB12B	4		С
R12	PB12C	4		Т
N11	PB12D	4		С
U13	PB12E	4		Т
VCCIO4	VCCIO4	4		
GND	GNDIO4	4		
V14	PB12F	4		С
T13	PB13A	4		Т
P12	PB13B	4		С
R13	PB13C	4		Т
N12	PB13D	4		С
V15	PB14A	4		Т
U14	PB14B	4		С
V16	PB14C	4		Т
GND	GND	-		
T14	PB14D	4		С
U15	PB15A	4		Т
V17	PB15B	4		С
P13**	SLEEPN	-	SLEEPN	
T15	PB15D	4		
U16	PB16A	4		Т
V18	PB16B	4		C
N13	PB16C	4		T
R14	PB16D	4		C
VCCIO4	VCCIO4	4		-
GND	GNDIO4	4		

LCMXO2280								
Ball Number	Ball Function	Bank	Dual Function	Differential				
J13	PR10C	2		Т				
M18	PR10B	2		C*				
L18	PR10A	2		T*				
GND	GNDIO2	2						
VCCIO2	VCCIO2	2						
H16	PR9D	2		С				
H14	PR9C	2		Т				
K18	PR9B	2		C*				
J18	PR9A	2		T*				
J17	PR8D	2		С				
VCC	VCC	-						
H18	PR8C	2		Т				
H17	PR8B	2		C*				
G17	PR8A	2		Τ*				
H13	PR7D	2		С				
H15	PR7C	2		Т				
G18	PR7B	2		C*				
F18	PR7A	2		T*				
G14	PR6D	2		С				
G16	PR6C	2		Т				
VCCIO2	VCCIO2	2						
GND	GNDIO2	2						
E18	PR6B	2		C*				
F17	PR6A	2		T*				
G13	PR5D	2		С				
G15	PR5C	2		Т				
E17	PR5B	2		C*				
E16	PR5A	2		T*				
GND	GND	-						
F15	PR4D	2		С				
E15	PR4C	2		Т				
D17	PR4B	2		C*				
D18	PR4A	2		T*				
B18	PR3D	2		С				
C18	PR3C	2		Т				
C16	PR3B	2		C*				
D16	PR3A	2		T*				
C17	PR2B	2		С				
D15	PR2A	2		Т				
VCCIO2	VCCIO2	2						
GND	GNDIO2	2						
GND	GNDIO1	1						
VCCIO1	VCCIO1	1						

		LCMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
E13	PT16D	1		С
C15	PT16C	1		Т
F13	PT16B	1		С
D14	PT16A	1		Т
A18	PT15D	1		С
B17	PT15C	1		Т
A16	PT15B	1		С
A17	PT15A	1		Т
VCC	VCC	-		
D13	PT14D	1		С
F12	PT14C	1		Т
C14	PT14B	1		С
E12	PT14A	1		Т
C13	PT13D	1		С
B16	PT13C	1		Т
B15	PT13B	1		С
A15	PT13A	1		Т
VCCIO1	VCCIO1	1		
GND	GNDIO1	1		
B14	PT12F	1		С
A14	PT12E	1		Т
D12	PT12D	1		С
F11	PT12C	1		Т
B13	PT12B	1		С
A13	PT12A	1		Т
C12	PT11D	1		С
GND	GND	-		
B12	PT11C	1		Т
E11	PT11B	1		С
D11	PT11A	1		Т
C11	PT10F	1		С
A12	PT10E	1		Т
VCCIO1	VCCIO1	1		
GND	GNDIO1	1		
F10	PT10D	1		С
D10	PT10C	1		Т
B11	PT10B	1	PCLK1_1***	С
A11	PT10A	1		Т
E10	PT9D	1		С
C10	PT9C	1		Т
D9	PT9B	1	PCLK1_0***	С
E9	PT9A	1		Т
B10	PT8F	0		С