E. Lattice Semiconductor Corporation - LCMX01200C-3TN100I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	73
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-3tn100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

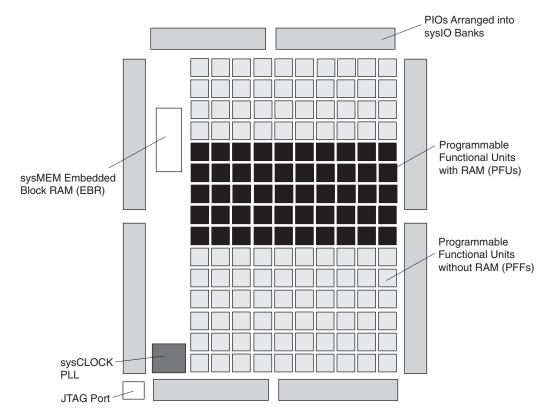
The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.


The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

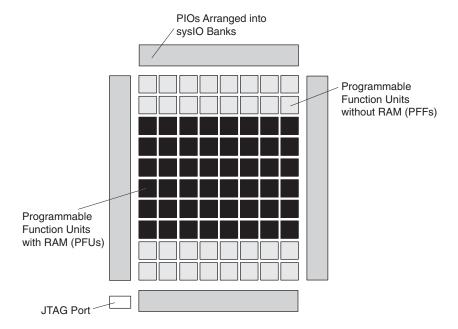
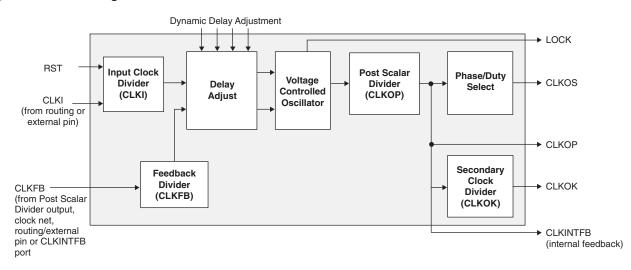


Figure 2-1. Top View of the MachXO1200 Device¹

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

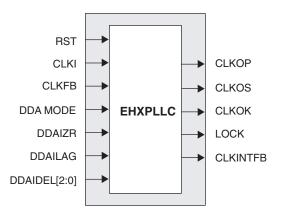

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

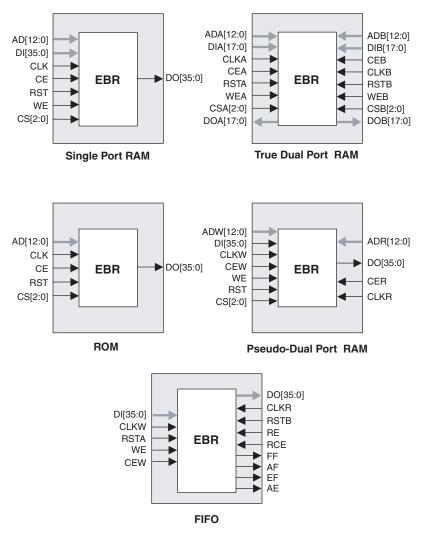
Figure 2-11. PLL Primitive

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

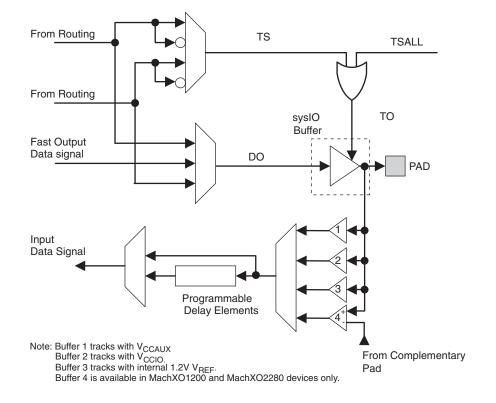

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
			(all I/O Banks)	(all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

		VC	CIO (Ty	'n.)	
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces					
LVTTL	Yes	Yes	Yes	Yes	Yes
LVCMOS33	Yes	Yes	Yes	Yes	Yes
LVCMOS25	Yes	Yes	Yes	Yes	Yes
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12	Yes	Yes	Yes	Yes	Yes
PCI ¹	Yes				
Differential Interfaces	•	•	•	•	
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes

Top Banks of MachXO1200 and MachXO2280 devices only.
MachXO1200 and MachXO2280 devices only.

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA	3.3
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS15, Open Drain	4mA, 8mA	—
LVCMOS12, Open Drain	2mA, 6mA	—
PCI33 ³	N/A	3.3
Differential Interfaces		
LVDS ^{1, 2}	N/A	2.5
BLVDS, RSDS ²	N/A	2.5
LVPECL ²	N/A	3.3

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	6.7	ns
4:1 MUX	4.5	ns
16:1 MUX	5.1	ns

Register-to-Register Performance

Function	-5 Timing	Units
Basic Functions		
16:1 MUX	487	MHz
16-bit adder	292	MHz
16-bit counter	388	MHz
64-bit counter	200	MHz
Embedded Memory Functions (120	0 and 2280 Devices Only)	
256x36 Single Port RAM	284	MHz
512x18 True-Dual Port RAM	284	MHz
Distributed Memory Functions		
16x2 Single Port RAM	434	MHz
64x2 Single Port RAM	320	MHz
128x4 Single Port RAM	261	MHz
32x2 Pseudo-Dual Port RAM	314	MHz
64x4 Pseudo-Dual Port RAM	271	MHz

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	—	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
AC Characte	eristics			•	
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t_{PH}^{4}	Output Phase Accuracy		—	0.05	UI
t 1	Output Clock Period Jitter	f _{OUT} >= 100 MHz	—	+/-120	ps
t _{OPJIT} 1		f _{OUT} < 100 MHz	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	ns
t _{LOCK} ²	PLL Lock-in Time		—	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Period Jitter	$f_{OUT} \ge 100 \text{ MHz}$	—	+/-200	ps
t _{IPJIT}		f _{OUT} < 100 MHz	—	0.02	UI
t _{FBKDLY}	External Feedback Delay		_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST Pulse Width		10	—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

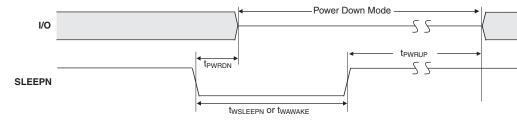
3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output.

5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.

6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19



MachXO "C" Sleep Mode Timing

Symbol	Parameter	Device	Min.	Тур.	Max	Units	
t _{PWRDN}	SLEEPN Low to Power Down	All		—	400	ns	
		LCMXO256	_	—	400	μs	
•	SLEEPN High to Power Up	LCMXO640	LCMXO640	_	—	600	μs
^I PWRUP	SLEEPN High to Power op	LCMXO1200	_	—	400 400	μs	
		LCMXO2280	_	—		μs	
t _{WSLEEPN}	SLEEPN Pulse Width	All	400	—	—	ns	
t _{WAWAKE}	SLEEPN Pulse Rejection	All		—	100	ns	

Rev. A 0.19

Flash Download Time

Symbol	Paran	Min.	Тур.	Max.	Units	
Minimum V _{CC} or V _{CCA} (later of the two supplie to Device I/O Active		LCMXO256	—		0.4	ms
	Vinimum V _{CC} or V _{CCAUX}	LCMXO640	—		0.6	ms
		LCMXO1200	—		0.8	ms
		LCMXO2280	—		1.0	ms

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK [BSCAN] clock frequency	—	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
^t втсрн	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	8		ns
t _{втн}	TCK [BSCAN] hold time	10		ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50		mV/ns
t _{втсо}	TAP controller falling edge of clock to output valid	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to output disabled	—	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to output enabled	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25		ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to output valid	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to output disabled	—	25	ns
^t BTUPOEN	BSCAN test update register, falling edge of clock to output enabled	—	25	ns

Rev. A 0.19

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number]_[A/B/C/D/E/F]	I/O	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
		Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC	—	No connect.
GND	—	GND - Ground. Dedicated pins.
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}	—	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions	(Used a	as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). $T = true$ and $C = complement$.
[LOC][0]_PLL[T, C]_FB		Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]	—	Primary Clock Pads, n per side.
Test and Programming (De	dicate	d pins)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.
1 Applies to MachXO "C" devic		

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

		LCMXC	0256C/E			LCMXO640C/E		
Pin Type		100 TQFP	100 csBGA	100 TQFP	144 TQFP	100 csBGA	132 csBGA	256 caBGA / 256 ftBGA
Single Ended User I/O		78	78	74	113	74	101	159
Differential Pair User I/O1		38	38	17	43	17	42	79
Muxed		6	6	6	6	6	6	6
TAP		4	4	4	4	4	4	4
Dedicated (Total Without Supp	olies)	5	5	5	5	5	5	5
VCC		2	2	2	4	2	4	4
VCCAUX		1	1	1	2	1	2	2
V0010	Bank0	3	3	2	2	2	2	4
	Bank1	3	3	2	2	2	2	4
VCCIO	Bank2	—	—	2	2	2	2	4
	Bank3	—	—	2	2	2	2	4
GND		8	8	10	12	10	12	18
NC		0	0	0	0	0	0	52
	Bank0	41/20	41/20	18/5	29/10	18/5	26/11	42/21
Single Ended/Differential I/O	Bank1	37/18	37/18	21/4	30/11	21/4	27/12	40/20
per Bank	Bank2	_	—	14/2	24/9	14/2	21/9	36/18
	Bank3	_	_	21/6	30/13	21/6	27/10	40/20

1. These devices support emulated LVDS outputs.pLVDS inputs are not supported.

			LCMXO	1200C/E			l	CMXO2280C/	/E	
Pin Type		100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	324 ftBGA
Single Ended User I/O		73	113	101	211	73	113	101	211	271
Differential Pair User I/O1		27	48	42	105	30	47	41	105	134
Muxed		6	6	6	6	6	6	6	6	6
TAP		4	4	4	4	4	4	4	4	4
Dedicated (Total Without Supp	lies)	5	5	5	5	5	5	5	5	5
VCC		4	4	4	4	2	4	4	4	6
VCCAUX		2	2	2	2	2	2	2	2	2
	Bank0	1	1	1	2	1	1	1	2	2
	Bank1	1	1	1	2	1	1	1	2	2
	Bank2	1	1	1	2	1	1	1	2	2
VCCIO	Bank3	1	1	1	2	1	1	1	2	2
VCCIO	Bank4	1	1	1	2	1	1	1	2	2
	Bank5	1	1	1	2	1	1	1	2	2
	Bank6	1	1	1	2	1	1	1	2	2
	Bank7	1	1	1	2	1	1	1	2	2
GND	•	8	12	12	18	8	12	12	18	24
NC		0	0	0	0	0	0	0	0	0
	Bank0	10/3	14/6	13/5	26/13	9/3	13/6	12/5	24/12	34/17
	Bank1	8/2	15/7	13/5	28/14	9/3	16/7	14/5	30/15	36/18
	Bank2	10/4	15/7	13/6	26/13	10/4	15/7	13/6	26/13	34/17
Single Ended/Differential I/O	Bank3	11/5	15/7	14/7	28/14	11/5	15/7	14/7	28/14	34/17
per Bank	Bank4	8/3	14/5	13/5	27/13	8/3	14/4	13/4	29/14	35/17
	Bank5	5/2	10/4	8/2	22/11	5/2	10/4	8/2	20/10	30/15
	Bank6	10/3	15/6	13/6	28/14	10/4	15/6	13/6	28/14	34/17
	Bank7	11/5	15/6	14/6	26/13	11/5	15/6	14/6	26/13	34/17

1. These devices support on-chip LVDS buffers for left and right I/O Banks.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP

			LCMXO1200				LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
1	PL2A	7		Т	PL2A	7	LUM0_PLLT_FB_A	Т
2	PL2B	7		С	PL2B	7	LUM0_PLLC_FB_A	С
3	PL3C	7		Т	PL3C	7	LUM0_PLLT_IN_A	Т
4	PL3D	7		С	PL3D	7	LUM0_PLLC_IN_A	С
5	PL4B	7			PL4B	7		
6	VCCIO7	7			VCCI07	7		
7	PL6A	7		T*	PL7A	7		T*
8	PL6B	7	GSRN	C*	PL7B	7	GSRN	C*
9	GND	-			GND	-		
10	PL7C	7		Т	PL9C	7		Т
11	PL7D	7		С	PL9D	7		С
12	PL8C	7		Т	PL10C	7		Т
13	PL8D	7		С	PL10D	7		С
14	PL9C	6			PL11C	6		
15	PL10A	6		T*	PL13A	6		T*
16	PL10B	6		C*	PL13B	6		C*
17	VCC	-			VCC	-		
18	PL11B	6			PL14D	6		С
19	PL11C	6	TSALL		PL14C	6	TSALL	Т
20	VCCIO6	6			VCCIO6	6		
21	PL13C	6			PL16C	6		
22	PL14A	6	LLM0_PLLT_FB_A	T*	PL17A	6	LLM0_PLLT_FB_A	T*
23	PL14B	6	LLM0_PLLC_FB_A	C*	PL17B	6	LLM0_PLLC_FB_A	C*
24	PL15A	6	LLM0_PLLT_IN_A	T*	PL18A	6	LLM0_PLLT_IN_A	T*
25	PL15B	6	LLM0_PLLC_IN_A	C*	PL18B	6	LLM0_PLLC_IN_A	C*
26**	GNDIO6 GNDIO5	-			GNDIO6 GNDIO5	-		
27	VCCIO5	5			VCCIO5	5		
28	TMS	5	TMS		TMS	5	TMS	
29	TCK	5	ТСК		TCK	5	ТСК	
30	PB3B	5			PB3B	5		
31	PB4A	5		Т	PB4A	5		Т
32	PB4B	5		С	PB4B	5		С
33	TDO	5	TDO		TDO	5	TDO	
34	TDI	5	TDI		TDI	5	TDI	
35	VCC	-			VCC	-		
36	VCCAUX	-			VCCAUX	-		
37	PB6E	5		Т	PB8E	5		Т
38	PB6F	5		С	PB8F	5		С
39	PB7B	4	PCLK4_1****		PB10F	4	PCLK4_1****	
40	PB7F	4	PCLK4_0****		PB10B	4	PCLK4_0****	
41	GND	-	1		GND	-		

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		I	CMXO1200			I	_CMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
82	PT9A	1			PT12C	1		Т
83	GND	-			GND	-		
84	PT8B	1		С	PT11B	1		С
85	PT8A	1		Т	PT11A	1		Т
86	PT7D	1	PCLK1_1****		PT10B	1	PCLK1_1****	
87	PT6F	0	PCLK0_0****		PT9B	1	PCLK1_0****	
88	PT6D	0		С	PT8F	0		С
89	PT6C	0		Т	PT8E	0		Т
90	VCCAUX	-			VCCAUX	-		
91	VCC	-			VCC	-		
92	PT5B	0			PT6D	0		
93	PT4B	0			PT6F	0		
94	VCCIO0	0			VCCIO0	0		
95	PT3D	0		С	PT4B	0		С
96	PT3C	0		Т	PT4A	0		Т
97	PT3B	0			PT3B	0		
98	PT2B	0		С	PT2B	0		С
99	PT2A	0		Т	PT2A	0		Т
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-		

*Supports true LVDS outputs.

**Double bonded to the pin.

***NC for "E" devices.

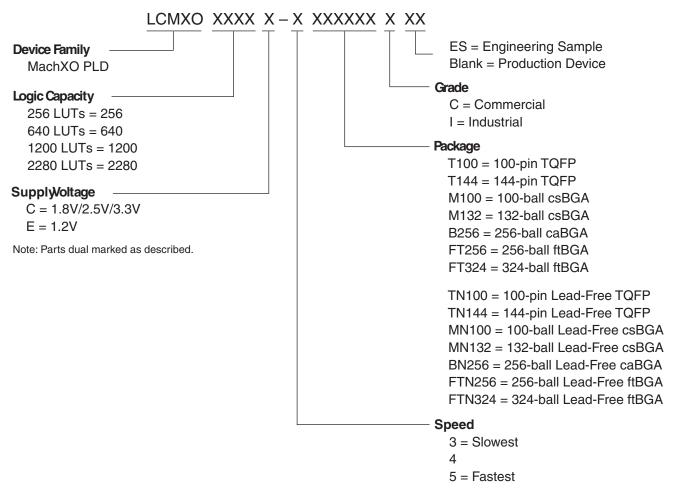
****Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	KO640				LCN	IXO1200				LCN	IXO2280	
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball	Ball	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
J13	PR8C	1	1 unction	T	J13	PR11A	3	runction	T*	J13	PR14A	3	Tunction	T*
GND	GND	-			GND	GND	-			GND	GND	-		
K14	PR8B	1		с	K14	PR10D	3		С	K14	PR13D	3		с
J14	PR8A	1		T	J14	PR10C	3		T	J14	PR13C	3		T
K15	PR7D	1		C	K15	PR10B	3		C*	K15	PR13B	3		C*
J15	PR7C	1		T	J15	PR10A	3		T*	J15	PR13A	3		T*
-	-	-		-	GND	GNDIO3	3		-	GND	GNDIO3	3		-
-	-				VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
K12	NC				K12	PR9D	3		С	K12	PR11D	3		С
J12	NC				J12	PR9C	3		Т	J12	PR11C	3		Т
J16	PR7B	1		С	J16	PR9B	3		C*	J16	PR11B	3		C*
H16	PR7A	1		Т	H16	PR9A	3		T*	H16	PR11A	3		T*
H15	PR6B	1		С	H15	PR8D	2		С	H15	PR10D	2		С
G15	PR6A	1		Т	G15	PR8C	2		т	G15	PR10C	2		т
H14	PR5D	1		С	H14	PR8B	2		C*	H14	PR10B	2		C*
G14	PR5C	1		Т	G14	PR8A	2		T*	G14	PR10A	2		T*
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
H13	PR6D	1		С	H13	PR7D	2		С	H13	PR9D	2		С
H12	PR6C	1		Т	H12	PR7C	2		Т	H12	PR9C	2		Т
G13	PR4D	1		С	G13	PR7B	2		C*	G13	PR9B	2		C*
G12	PR4C	1		Т	G12	PR7A	2		T*	G12	PR9A	2		T*
G16	PR5B	1		С	G16	PR6D	2		С	G16	PR7D	2		С
F16	PR5A	1		Т	F16	PR6C	2		Т	F16	PR7C	2		Т
F15	PR4B	1		С	F15	PR6B	2		C*	F15	PR7B	2		C*
E15	PR4A	1		Т	E15	PR6A	2		T*	E15	PR7A	2		T*
E16	PR3B	1		С	E16	PR5D	2		С	E16	PR6D	2		С
D16	PR3A	1		Т	D16	PR5C	2		Т	D16	PR6C	2		Т
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
D15	PR2D	1		С	D15	PR5B	2		C*	D15	PR6B	2		C*
C15	PR2C	1		Т	C15	PR5A	2		T*	C15	PR6A	2		T*
C16	PR2B	1		С	C16	PR4D	2		С	C16	PR5D	2		С
B16	PR2A	1		Т	B16	PR4C	2		Т	B16	PR5C	2		Т
F14	PR3D	1		С	F14	PR4B	2		C*	F14	PR5B	2		C*
E14	PR3C	1		Т	E14	PR4A	2		T*	E14	PR5A	2		T*
-	-	-			-	-	-			GND	GND	-		
F12	NC				F12	PR3D	2		С	F12	PR4D	2		С
F13	NC				F13	PR3C	2		T	F13	PR4C	2		T
E12	NC				E12	PR3B	2		C*	E12	PR4B	2		C*
E13	NC				E13	PR3A	2		T*	E13	PR4A	2		T*
D13	NC				D13	PR2B	2		С	D13	PR3B	2		C*
D14	NC				D14	PR2A	2		Т	D14	PR3A	2		T*
VCCIO0	VCCIO0	0			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		<u> </u>
GND	GNDIO0	0			GND	GNDIO2	2			GND	GNDIO2	2 1		ł
GND	GNDIO0	0			GND	GNDIO1				GND	GNDIO1			
VCCIO0 B15	VCCIO0 NC	0			VCCIO1 B15	VCCIO1 PT11D	1		с	VCCIO1 B15	VCCIO1 PT16D	1		С
A15	NC				A15	PT11D PT11C	1		т	A15	PT16D PT16C	1		т
C14	NC				C14	PT11B	1		C	C14	PT16C PT16B	1		C
B14	NC				B14	PT11B PT11A	1		Т	B14	PT16B PT16A	1		Т
C13	PT9F	0		С	C13	PT10F	1		C	C13	PT16A PT15D	1		C
B13	PT9E	0		т	B13	PT10F	1		т	B13	PT15D	1		т
013	LISE	U		1	013	FILVE	L '			013	F1130	· ·		I

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640				LCN	IXO1200		LCMXO2280			/XO2280	
Ball	Ball		Dual		Ball	Ball		Dual		Ball	Ball		Dual	
Number		Bank	Function	Differential			Bank	Function	Differential		Function	Bank	Function	Differential
E11	NC				E11	PT10D	1		C	E11	PT15B	1		C
E10 D12	NC	0		с	E10 D12	PT10C PT10B	1		T C	E10 D12	PT15A PT14D	1		T C
D12	PT9D PT9C	0		Т	D12	PT10B PT10A	1		Т	D12	PT14D PT14C	1		т
-	PT9C PT7F	0		C	A14	PT10A PT9F	1		C	A14	PT14C PT14B	1		C I
A14	PT7E			Т		PT9F PT9E			Т		PT14B PT14A			т
A13 C12	PT8B	0		C	A13 C12	PT9D	1		C	A13 C12	PT14A PT13D	1		C
C12	PT8A	0		Т	C11	PT9C	1		т	C12	PT13C	1		Т
-	-	0		1	VCCIO1	VCCIO1	1		1	VCCIO1	VCCIO1	1		1
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
B12	PT7B	0		С	B12	PT9B	1		С	B12	PT12D	1		С
B12 B11	PT7A	0		Т	B12 B11	PT9A	1		Т	B11	PT12C	1		Т
A12	PT7D	0		C	A12	PT8F	1		C	A12	PT12B	1		C
A11	PT7C	0		T	A11	PT8E	1		T	A11	PT12A	1		T
GND	GND	-			GND	GND	-			GND	GND	-		
B10	PT5D	0		С	B10	PT8D	1		С	B10	PT11B	1		С
B9	PT5C	0		T	B9	PT8C	1		Т	B9	PT11A	1		T
D10	PT8D	0		C	D10	PT8B	1		C	D10	PT10F	1		C
D9	PT8C	0		T	D9	PT8A	1		Т	D9	PT10E	1		т
-	-	-			VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
C10	PT6D	0		С	C10	PT7F	1		С	C10	PT10D	1		С
C9	PT6C	0		Т	C9	PT7E	1		т	C9	PT10C	1		т
A9	PT6B	0	PCLK0_1***	С	A9	PT7D	1	PCLK1_1***	С	A9	PT10B	1	PCLK1_1***	С
A10	PT6A	0	_	Т	A10	PT7C	1	_	т	A10	PT10A	1		т
E9	PT9B	0		С	E9	PT7B	1		С	E9	PT9D	1		С
E8	PT9A	0		Т	E8	PT7A	1		т	E8	PT9C	1		т
D7	PT5B	0	PCLK0_0***	С	D7	PT6F	0	PCLK1_0***	С	D7	PT9B	1	PCLK1_0***	С
D8	PT5A	0		Т	D8	PT6E	0		т	D8	PT9A	1		т
VCCI00	VCCI00	0			VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0		
GND	GNDIO0	0			GND	GNDIO0	0			GND	GNDIO0	0		
C8	PT4F	0		С	C8	PT6D	0		С	C8	PT8D	0		С
B8	PT4E	0		Т	B8	PT6C	0		Т	B8	PT8C	0		Т
A8	VCCAUX	-			A8	VCCAUX	-			A8	VCCAUX	-		
A7	PT4D	0		С	A7	PT6B	0		С	A7	PT7D	0		С
A6	PT4C	0		Т	A6	PT6A	0		Т	A6	PT7C	0		Т
VCC	VCC	-			VCC	VCC	-			VCC	VCC	-		
B7	PT4B	0		С	B7	PT5F	0		С	B7	PT7B	0		С
B6	PT4A	0		Т	B6	PT5E	0		Т	B6	PT7A	0		Т
C6	PT3C	0		Т	C6	PT5C	0		Т	C6	PT6A	0		Т
C7	PT3D	0		С	C7	PT5D	0		С	C7	PT6B	0		С
A5	PT3E	0		Т	A5	PT5A	0		Т	A5	PT6C	0		Т
A4	PT3F	0		С	A4	PT5B	0		С	A4	PT6D	0		С
E7	NC				E7	PT4C	0		Т	E7	PT6E	0		Т
E6	NC				E6	PT4D	0		С	E6	PT6F	0		С
B5	PT3B	0		С	B5	PT3F	0		С	B5	PT5D	0		С
B4	PT3A	0		Т	B4	PT3E	0		Т	B4	PT5C	0		Т
D5	PT2D	0		С	D5	PT3D	0		С	D5	PT5B	0		С
D6	PT2C	0		Т	D6	PT3C	0		Т	D6	PT5A	0		Т
C4	PT2E	0		Т	C4	PT4A	0		Т	C4	PT4A	0		Т
C5	PT2F	0		С	C5	PT4B	0		С	C5	PT4B	0		С
-	-	-			-	-	-			GND	GND	-		
D4	NC				D4	PT2D	0		С	D4	PT3D	0		С



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Conventional Packaging

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.				
LCMXO256C-3T100C	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	COM				
LCMXO256C-4T100C	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	COM				
LCMXO256C-5T100C	256	1.8V/2.5V/3.3V	78	-5	TQFP	100	COM				
LCMXO256C-3M100C	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	COM				
LCMXO256C-4M100C	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	COM				
LCMXO256C-5M100C	256	1.8V/2.5V/3.3V	78	-5	csBGA	100	COM				

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100C	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	COM
LCMXO640C-4T100C	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	COM
LCMXO640C-5T100C	640	1.8V/2.5V/3.3V	74	-5	TQFP	100	COM
LCMXO640C-3M100C	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	COM
LCMXO640C-4M100C	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	COM
LCMXO640C-5M100C	640	1.8V/2.5V/3.3V	74	-5	csBGA	100	COM
LCMXO640C-3T144C	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO640C-4T144C	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO640C-5T144C	640	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO640C-3M132C	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO640C-4M132C	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO640C-5M132C	640	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO640C-3B256C	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	COM
LCMXO640C-4B256C	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	COM
LCMXO640C-5B256C	640	1.8V/2.5V/3.3V	159	-5	caBGA	256	COM
LCMXO640C-3FT256C	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	COM
LCMXO640C-4FT256C	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	COM
LCMXO640C-5FT256C	640	1.8V/2.5V/3.3V	159	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100C	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO1200C-4T100C	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO1200C-5T100C	1200	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO1200C-3T144C	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO1200C-4T144C	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO1200C-5T144C	1200	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO1200C-3M132C	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO1200C-4M132C	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO1200C-5M132C	1200	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO1200C-3B256C	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO1200C-4B256C	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO1200C-5B256C	1200	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO1200C-3FT256C	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO1200C-4FT256C	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO1200C-5FT256C	1200	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM

Lead-Free Packaging

LCMXO2280C-4FTN324I

2280

5	5	Indu	strial				
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND
LCMXO640C-4TN100	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO640C-3BN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	IND
LCMXO640C-4BN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	IND
LCMXO640C-3FTN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	IND
LCMXO640C-4FTN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200C-3BN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200C-4BN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200C-3FTN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200C-4FTN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND
D. I.N			1/0			D '	-
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280C-3BN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280C-4BN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280C-3FTN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280C-4FTN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280C-3FTN324I	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	IND

271

-4

Lead-Free ftBGA

324

IND

1.8V/2.5V/3.3V

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100I	256	1.2V	78	-3	Lead-Free TQFP	100	IND
LCMXO256E-4TN100I	256	1.2V	78	-4	Lead-Free TQFP	100	IND
LCMXO256E-3MN100I	256	1.2V	78	-3	Lead-Free csBGA	100	IND
LCMXO256E-4MN100I	256	1.2V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100I	640	1.2V	74	-3	Lead-Free TQFP	100	IND
LCMXO640E-4TN100I	640	1.2V	74	-4	Lead-Free TQFP	100	IND
LCMXO640E-3MN100I	640	1.2V	74	-3	Lead-Free csBGA	100	IND
LCMXO640E-4MN100I	640	1.2V	74	-4	Lead-Free csBGA	100	IND
LCMXO640E-3TN144I	640	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO640E-4TN144I	640	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO640E-3MN132I	640	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO640E-4MN132I	640	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO640E-3BN256I	640	1.2V	159	-3	Lead-Free caBGA	256	IND
LCMXO640E-4BN256I	640	1.2V	159	-4	Lead-Free caBGA	256	IND
LCMXO640E-3FTN256I	640	1.2V	159	-3	Lead-Free ftBGA	256	IND
LCMXO640E-4FTN256I	640	1.2V	159	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100I	1200	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200E-4TN100I	1200	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200E-3TN144I	1200	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200E-4TN144I	1200	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200E-3MN132I	1200	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200E-4MN132I	1200	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200E-3BN256I	1200	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200E-4BN256I	1200	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200E-3FTN256I	1200	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200E-4FTN256I	1200	1.2V	211	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100I	2280	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280E-4TN100I	2280	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280E-3TN144I	2280	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280E-4TN144I	2280	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280E-3MN132I	2280	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280E-4MN132I	2280	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280E-3BN256I	2280	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280E-4BN256I	2280	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280E-3FTN256I	2280	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280E-4FTN256I	2280	1.2V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280E-3FTN324I	2280	1.2V	271	-3	Lead-Free ftBGA	324	IND
LCMXO2280E-4FTN324I	2280	1.2V	271	-4	Lead-Free ftBGA	324	IND