E. Lattice Semiconductor Corporation - <u>LCMX01200C-4B256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	211
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA, CSPBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-4b256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Figure 2-3. Top View of the MachXO256 Device

PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram

Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of pSix Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

MachXO256 and MachXO640 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
I _{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX)		—	+/-1000	μΑ

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

MachXO1200 and MachXO2280 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
Ion-LVDS General Purpose sysIOs							
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	—	_	+/-1000	μΑ	
LVDS Genera	al Purpose syslOs						
	Input or I/O Leakage Current	$V_{IN} \leq V_{CCIO}$	—	—	+/-1000	μΑ	
'DK_LVDS	input of i/O Leakage Ourient	$V_{IN} > V_{CCIO}$	—	35	—	mA	

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX), and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PW} or I_{BH}.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., 1, 4, 5		$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μΑ
'IL, 'IH		$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—		40	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \leq V_{IN} \leq 0.7 \ V_{CCIO}$	-30	_	-150	μA
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30		150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μA
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—		-150	μΑ
V _{BHT} ³	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²		_	8	_	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	_	8	_	pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0MHz

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Not applicable to SLEEPN pin.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For MachXO1200 and MachXO2280 true LVDS output pins, V_{IH} must be less than or equal to V_{CCIO}.

MachXO Family Timing Adders^{1, 2, 3}

Buffer Type	Description	-5	-4	-3	Units
Input Adjusters	-				
LVDS25 ⁴	LVDS	0.44	0.53	0.61	ns
BLVDS254	BLVDS	0.44	0.53	0.61	ns
LVPECL334	LVPECL	0.42	0.50	0.59	ns
LVTTL33	LVTTL	0.01	0.01	0.01	ns
LVCMOS33	LVCMOS 3.3	0.01	0.01	0.01	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	0.07	0.08	0.10	ns
LVCMOS15	LVCMOS 1.5	0.14	0.17	0.19	ns
LVCMOS12	LVCMOS 1.2	0.40	0.48	0.56	ns
PCI33 ^₄	PCI	0.01	0.01	0.01	ns
Output Adjusters	•		•		
LVDS25E	LVDS 2.5 E	-0.13	-0.15	-0.18	ns
LVDS25 ⁴	LVDS 2.5	-0.21	-0.26	-0.30	ns
BLVDS25	BLVDS 2.5	-0.03	-0.03	-0.04	ns
LVPECL33	LVPECL 3.3	0.04	0.04	0.05	ns
LVTTL33_4mA	LVTTL 4mA drive	0.04	0.04	0.05	ns
LVTTL33_8mA	LVTTL 8mA drive	0.06	0.07	0.08	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.01	-0.01	-0.01	ns
LVTTL33_16mA	LVTTL 16mA drive	0.50	0.60	0.70	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.04	0.04	0.05	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.06	0.07	0.08	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	-0.01	-0.01	-0.01	ns
LVCMOS33_14mA	LVCMOS 3.3 14mA drive	0.50	0.60	0.70	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.05	0.06	0.07	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.10	0.12	0.13	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.00	0.00	0.00	ns
LVCMOS25_14mA	LVCMOS 2.5 14mA drive	0.34	0.40	0.47	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.11	0.13	0.15	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.05	0.06	0.06	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	-0.06	-0.07	-0.08	ns
LVCMOS18_14mA	LVCMOS 1.8 14mA drive	0.06	0.07	0.09	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.15	0.19	0.22	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.05	0.06	0.07	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.26	0.31	0.36	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.05	0.06	0.07	ns
PCI33 ⁴	PCI33	1.85	2.22	2.59	ns

Over Recommended Operating Conditions

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.

3. All other standards tested according to the appropriate specifications.

4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.

Rev. A 0.19

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	—	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
AC Characte	eristics		•	•	
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t _{PH} ⁴	Output Phase Accuracy		—	0.05	UI
	Output Clock Pariod litter	f _{OUT} >= 100 MHz	—	+/-120	ps
		f _{OUT} < 100 MHz	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	ns
t _{LOCK} ²	PLL Lock-in Time		_	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Deried litter	$f_{OUT} \ge 100 \text{ MHz}$	—	+/-200	ps
IPJIT		f _{OUT} < 100 MHz	—	0.02	UI
t _{FBKDLY}	External Feedback Delay		—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{RST}	RST Pulse Width		10	—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output.

5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.

6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	(0256			LCM	XO640	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
43	PB4A	1		Т	PB8B	2		
44	PB4B	1		С	PB8C	2		Т
45	PB4C	1		Т	PB8D	2		С
46	PB4D	1		С	PB9A	2		
47	PB5A	1			PB9C	2		Т
48*	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
49	PB5C	1		Т	PB9D	2		С
50	PB5D	1		С	PB9F	2		
51	PR9B	0		С	PR11D	1		С
52	PR9A	0		Т	PR11B	1		С
53	PR8B	0		С	PR11C	1		Т
54	PR8A	0		Т	PR11A	1		Т
55	PR7D	0		С	PR10D	1		С
56	PR7C	0		Т	PR10C	1		Т
57	PR7B	0		С	PR10B	1		С
58	PR7A	0		Т	PR10A	1		Т
59	PR6B	0		С	PR9D	1		
60	VCCIO0	0			VCCIO1	1		
61	PR6A	0		Т	PR9B	1		
62	GNDIO0	0			GNDIO1	1		
63	PR5D	0		С	PR7B	1		
64	PR5C	0		Т	PR6C	1		
65	PR5B	0		С	PR6B	1		
66	PR5A	0		Т	PR5D	1		
67	PR4B	0		С	PR5B	1		
68	PR4A	0		Т	PR4D	1		
69	PR3D	0		С	PR4B	1		
70	PR3C	0		Т	PR3D	1		
71	PR3B	0		С	PR3B	1		
72	PR3A	0		Т	PR2D	1		
73	PR2B	0		С	PR2B	1		
74	VCCIO0	0			VCCIO1	1		
75	GNDIO0	0			GNDIO1	1		
76	PR2A	0		Т	PT9F	0		С
77	PT5C	0			PT9E	0		Т
78	PT5B	0		С	PT9C	0		
79	PT5A	0		Т	PT9A	0		
80	PT4F	0		С	VCCIO0	0		
81	PT4E	0		Т	GNDIO0	0		
82	PT4D	0		С	PT7E	0		
83	PT4C	0		Т	PT7A	0		
84	GND	-			GND	-		

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCMX	(0256		LCMXO640				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**		
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С	
87	PT3D	0		С	PT5A	0		Т	
88	VCCAUX	-			VCCAUX	-			
89	PT3C	0		Т	PT4F	0			
90	VCC	-			VCC	-			
91	PT3B	0		С	PT3F	0			
92	VCCIO0	0			VCCIO0	0			
93	GNDIO0	0			GNDIO0	0			
94	PT3A	0		Т	PT3B	0		С	
95	PT2F	0		С	PT3A	0		Т	
96	PT2E	0		Т	PT2F	0		С	
97	PT2D	0		С	PT2E	0		Т	
98	PT2C	0		Т	PT2B	0		С	
99	PT2B	0		С	PT2C	0			
100	PT2A	0		Т	PT2A	0		Т	

* NC for "E" devices.

** Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200			LCMXO2280		
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		C	PT7B	0		C
131	PT4B	0		C T	PI5C	0		1	PT/A	0		
132	PT4A	0		1	PI5B	0		C	PT6D	0		
133	PT3F	0			P15A	0		T	PI6E	0		1
134	PT3D	0			PI4B	0			P16F	0		C
135	VCCIOO	0			VCCIOO	0			VCCIOO	0		
136	GNDIO0	0			GNDIOO	0			GNDIO0	0		-
137	PI3B	0		U C	PT3D	0			P14B	U		
138	PT2F	0		U -	PI3C	0			P14A	U		
139	PT3A	0		T C	PT3B	0		C T	PT3B	U C		
140	PT2D	0		С -	PT3A	0		T	PT3A	U C		
141	P12E	0		T C	PT2D	0		С -	P12D	U C		С -
142	PT2B	0		C T	PT2C	0		T	P12C	U C		1
143	P12C	U			P12B	U		U T	P12B	U		
144	PT2A	0		Г	PT2A	0		Т	PT2A	0		I T

*Supports true LVDS outputs.

**NC for "E" devices.

***Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA

	LCMXO640				LCMXO1200				LCMXO2280					
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
E4	NC				E4	PL2A	7		Т	E4	PL2A	7	LUM0_PLLT_FB_A	Т
E5	NC				E5	PL2B	7		С	E5	PL2B	7	LUM0 PLLC FB A	С
F5	NC				F5	PL3A	7		T*	F5	PL3A	7		T*
F6	NC				F6	PL3B	7		C*	F6	PL3B	7		C*
F3	PL3A	3		т	F3	PL3C	7		Т	F3	PL3C	7	LUM0 PLLT IN A	Т
F4	PL3B	3		С	F4	PL3D	7		С	F4	PL3D	7	LUM0_PLLC_IN_A	С
E3	PL2C	3		т	E3	PL4A	7		T*	E3	PL4A	7		T*
E2	PL2D	3		С	E2	PL4B	7		C*	E2	PL4B	7		C*
C3	NC				C3	PL4C	7		Т	C3	PL4C	7		Т
C2	NC				C2	PL4D	7		С	C2	PL4D	7		С
B1	PL2A	3		т	B1	PL5A	7		T*	B1	PL5A	7		T*
C1	PL2B	3		С	C1	PL5B	7		C*	C1	PL5B	7		C*
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
D2	PL3C	3		т	D2	PL5C	7		Т	D2	PL6C	7		Т
D1	PL3D	3		С	D1	PL5D	7		С	D1	PL6D	7		С
F2	PL5A	3		Т	F2	PL6A	7		T*	F2	PL7A	7		T*
G2	PL5B	3	GSRN	С	G2	PL6B	7	GSRN	C*	G2	PL7B	7	GSRN	C*
E1	PL4A	3		Т	E1	PL6C	7		Т	E1	PL7C	7		Т
F1	PL4B	3		С	F1	PL6D	7		С	F1	PL7D	7		С
G4	NC				G4	PL7A	7		T*	G4	PL8A	7		T*
G5	NC				G5	PL7B	7		C*	G5	PL8B	7		C*
GND	GND	-			GND	GND	-			GND	GND	-		
G3	PL4C	3		Т	G3	PL7C	7		Т	G3	PL8C	7		Т
H3	PL4D	3		С	H3	PL7D	7		С	H3	PL8D	7		С
H4	NC				H4	PL8A	7		T*	H4	PL9A	7		T*
H5	NC				H5	PL8B	7		C*	H5	PL9B	7		C*
-	-				VCCI07	VCCI07	7		_	VCCI07	VCCI07	7		-
-	-				GND	GNDIO7	7			GND	GNDIO7	7		
G1	PL5C	3		Т	G1	PL8C	7		Т	G1	PL10C	7		Т
H1	PL5D	3		С	H1	PL8D	7		С	H1	PL10D	7		С
H2	PL6A	3		т	H2	PL9A	6		T*	H2	PL11A	6		T*
J2	PL6B	3		С	J2	PL9B	6		C*	J2	PL11B	6		C*
J3	PL7C	3		Т	J3	PL9C	6		Т	J3	PL11C	6		Т
КЗ	PL7D	3		С	K3	PL9D	6		С	K3	PL11D	6		С
J1	PL6C	3		т	J1	PL10A	6		T*	J1	PL12A	6		T*
-	-				VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
-	-				GND	GNDIO6	6	-		GND	GNDIO6	6		
K1	PL6D	3	L	С	K1	PL10B	6		C*	K1	PL12B	6		C*
K2	PL9A	3		Т	K2	PL10C	6		Т	K2	PL12C	6		Т
L2	PL9B	3		С	L2	PL10D	6		С	L2	PL12D	6		С
L1	PL7A	3		Т	L1	PL11A	6		T*	L1	PL13A	6		T*
M1	PL7B	3		С	M1	PL11B	6		C*	M1	PL13B	6		C*
P1	PL8D	3		С	P1	PL11D	6		С	P1	PL14D	6		С
N1	PL8C	3	TSALL	т	N1	PL11C	6	TSALL	т	N1	PL14C	6	TSALL	Т
L3	PL10A	3		т	L3	PL12A	6		T*	L3	PL15A	6		T*
M3	PL10B	3		С	MЗ	PL12B	6		C*	MЗ	PL15B	6		C*
M2	PL9C	3		T	M2	PL12C	6		Т	M2	PL15C	6		Т
N2	PL9D	3		С	N2	PL12D	6		С	N2	PL15D	6		С
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6		+	GND	GNDIO6	6		
		<u> </u>	1	L			L -		1			L -	1	1

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

	LCMXO640			LCMXO1200				LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
-	-				VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
-	-				GND	GNDIO4	4			GND	GNDIO4	4		
M10	PB6A	2		Т	M10	PB7E	4		Т	M10	PB10A	4		Т
R9	PB6C	2		Т	R9	PB8A	4		Т	R9	PB11C	4		Т
R10	PB6D	2		С	R10	PB8B	4		С	R10	PB11D	4		С
T10	PB7C	2		Т	T10	PB8C	4		Т	T10	PB12A	4		Т
T11	PB7D	2		С	T11	PB8D	4		С	T11	PB12B	4		С
N10	NC				N10	PB8E	4		Т	N10	PB12C	4		Т
N11	NC				N11	PB8F	4		С	N11	PB12D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
R11	PB7E	2		Т	R11	PB9A	4		Т	R11	PB13A	4		Т
R12	PB7F	2		С	R12	PB9B	4		С	R12	PB13B	4		С
P11	PB8A	2		Т	P11	PB9C	4		Т	P11	PB13C	4		Т
P12	PB8B	2		С	P12	PB9D	4		С	P12	PB13D	4		С
T13	PB8C	2		Т	T13	PB9E	4		Т	T13	PB14A	4		Т
T12	PB8D	2		С	T12	PB9F	4		С	T12	PB14B	4		С
R13	PB9A	2		Т	R13	PB10A	4		Т	R13	PB14C	4		Т
R14	PB9B	2		С	R14	PB10B	4		С	R14	PB14D	4		С
GND	GND	-			GND	GND	-			GND	GND	-		
T14	PB9C	2		Т	T14	PB10C	4		Т	T14	PB15A	4		Т
T15	PB9D	2		С	T15	PB10D	4		С	T15	PB15B	4		С
P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN	
P14	PB9F	2			P14	PB10F	4			P14	PB15D	4		
R15	NC				R15	PB11A	4		Т	R15	PB16A	4		Т
R16	NC				R16	PB11B	4		С	R16	PB16B	4		С
P15	NC				P15	PB11C	4		T	P15	PB16C	4		T
P16	NC	-			P16	PB11D	4		C	P16	PB16D	4		C
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		0
MII	NC					PRI6B	3			M111	PR20B	3		с т
	NC				LII	PRIOA	3		I Ot	LII	PR20A	3		I Ot
N12	NC				N12	PRIDD	3		С т*	N12	PRIOD	3		С т*
N13	NC				M12	PRISA DD14D	3			M12	PRI8A	3		I C
M10	NC				M10		3		U T	M10		3		U T
N14	PR11D	1		0		PR1/P	3		с*	N14	PR17P	3		і С*
N15	PB11C	1		т	N14	PR1/A	3		т*	N14	PR174	3		т*
13	PR11R	1			12	PB13D	3		, ,	13	PRIAD	3		, ,
12	PR11A	1		т	12	PB13C	3		т	112	PR16C	3		т
M14	PB10B	1		C C	M14	PB13B	3		C*	M14	PB16B	3		C*
VCCI01	VCCIO1	1		Ű	VCCIO3	VCCIO3	3		Ű	VCCIO3	VCCIO3	3		Ű
GND	GNDIO1	1	<u> </u>		GND	GNDIO3	3			GND	GNDIO3	3		
L14	PR10A	1		т	L14	PR13A	3		T*	L14	PR16A	3		T*
N16	PR10D	1	<u> </u>	C	N16	PR12D	3		С	N16	PR15D	3		С
M16	PR10C	1	<u> </u>	T	M16	PR12C	3		т	M16	PR15C	3		T
M15	PR9D	1	<u> </u>	C.	M15	PR12B	3		C*	M15	PR15B	3		C*
L15	PR9C	1		T	L15	PR12A	3		T*	L15	PR15A	3		T*
L16	PR9B	1		C.	 L16	PR11D	3		С	_10 L16	PR14D	3		С
K16	PR9A	1		Т	K16	PR11C	3		Т	K16	PR14C	3		Т
K13	PR8D	1		C	K13	PR11B	3		C*	K13	PR14B	3		C*
		I		~			~	I				<u> </u>	I	-

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differential			
J13	PR10C	2		Т			
M18	PR10B	2		C*			
L18	PR10A	2		Τ*			
GND	GNDIO2	2					
VCCIO2	VCCIO2	2					
H16	PR9D	2		С			
H14	PR9C	2		Т			
K18	PR9B	2		C*			
J18	PR9A	2		Τ*			
J17	PR8D	2		С			
VCC	VCC	-					
H18	PR8C	2		Т			
H17	PR8B	2		C*			
G17	PR8A	2		Τ*			
H13	PR7D	2		С			
H15	PR7C	2		Т			
G18	PR7B	2		C*			
F18	PR7A	2		T*			
G14	PR6D	2		С			
G16	PR6C	2		Т			
VCCIO2	VCCIO2	2					
GND	GNDIO2	2					
E18	PR6B	2		C*			
F17	PR6A	2		Τ*			
G13	PR5D	2		С			
G15	PR5C	2		Т			
E17	PR5B	2		C*			
E16	PR5A	2		Τ*			
GND	GND	-					
F15	PR4D	2		С			
E15	PR4C	2		Т			
D17	PR4B	2		C*			
D18	PR4A	2		Τ*			
B18	PR3D	2		С			
C18	PR3C	2		Т			
C16	PR3B	2		C*			
D16	PR3A	2		Τ*			
C17	PR2B	2		С			
D15	PR2A	2		Т			
VCCIO2	VCCIO2	2					
GND	GNDIO2	2					
GND	GNDIO1	1					
VCCIO1	VCCIO1	1					

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100C	1200	1.2V	73	-3	TQFP	100	COM
LCMXO1200E-4T100C	1200	1.2V	73	-4	TQFP	100	COM
LCMXO1200E-5T100C	1200	1.2V	73	-5	TQFP	100	COM
LCMXO1200E-3T144C	1200	1.2V	113	-3	TQFP	144	COM
LCMXO1200E-4T144C	1200	1.2V	113	-4	TQFP	144	COM
LCMXO1200E-5T144C	1200	1.2V	113	-5	TQFP	144	COM
LCMXO1200E-3M132C	1200	1.2V	101	-3	csBGA	132	COM
LCMXO1200E-4M132C	1200	1.2V	101	-4	csBGA	132	COM
LCMXO1200E-5M132C	1200	1.2V	101	-5	csBGA	132	COM
LCMXO1200E-3B256C	1200	1.2V	211	-3	caBGA	256	COM
LCMXO1200E-4B256C	1200	1.2V	211	-4	caBGA	256	COM
LCMXO1200E-5B256C	1200	1.2V	211	-5	caBGA	256	COM
LCMXO1200E-3FT256C	1200	1.2V	211	-3	ftBGA	256	COM
LCMXO1200E-4FT256C	1200	1.2V	211	-4	ftBGA	256	COM
LCMXO1200E-5FT256C	1200	1.2V	211	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100C	2280	1.2V	73	-3	TQFP	100	COM
LCMXO2280E-4T100C	2280	1.2V	73	-4	TQFP	100	COM
LCMXO2280E-5T100C	2280	1.2V	73	-5	TQFP	100	COM
LCMXO2280E-3T144C	2280	1.2V	113	-3	TQFP	144	COM
LCMXO2280E-4T144C	2280	1.2V	113	-4	TQFP	144	COM
LCMXO2280E-5T144C	2280	1.2V	113	-5	TQFP	144	COM
LCMXO2280E-3M132C	2280	1.2V	101	-3	csBGA	132	COM
LCMXO2280E-4M132C	2280	1.2V	101	-4	csBGA	132	COM
LCMXO2280E-5M132C	2280	1.2V	101	-5	csBGA	132	COM
LCMXO2280E-3B256C	2280	1.2V	211	-3	caBGA	256	COM
LCMXO2280E-4B256C	2280	1.2V	211	-4	caBGA	256	COM
LCMXO2280E-5B256C	2280	1.2V	211	-5	caBGA	256	COM
LCMXO2280E-3FT256C	2280	1.2V	211	-3	ftBGA	256	COM
LCMXO2280E-4FT256C	2280	1.2V	211	-4	ftBGA	256	COM
LCMXO2280E-5FT256C	2280	1.2V	211	-5	ftBGA	256	COM
LCMXO2280E-3FT324C	2280	1.2V	271	-3	ftBGA	324	COM
LCMXO2280E-4FT324C	2280	1.2V	271	-4	ftBGA	324	COM
LCMXO2280E-5FT324C	2280	1.2V	271	-5	ftBGA	324	COM

Date	Version	Section	Change Summary
November 2006	02.3	DC and Switching Characteristics	Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.
			Added Flash Download Time table.
December 2006	02.4	Architecture	EBR Asynchronous Reset section added.
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.
February 2007	02.5	Architecture	Updated EBR Asynchronous Reset section.
August 2007	02.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.
November 2007	02.7	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.
June 2009	02.8	Introduction	Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table.
		Pinout Information	Added Logic Signal Connections table for 0.8-mm 256-pin caBGA package.
		Ordering Information	Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information.
July 2010	02.9	DC and Switching Characteristics	Updated sysCLOCK PLL Timing table.
June 2013	03.0	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	MachXO1200 and MachXO2280 Hot Socketing Specifications table – Removed footnote 4.
			Added MachXO Programming/Erase Specifications table.