E. Lattice Semiconductor Corporation - <u>LCMX01200C-4M132C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	101
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-4m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock ———— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks) Differential buffers with true LVDS outputs (50% on left and right side)	Single-ended buffers with complementary outputs (all I/O Banks) Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

		VC	CIO (Ty	′p.)	
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces	•				
LVTTL	Yes	Yes	Yes	Yes	Yes
LVCMOS33	Yes	Yes	Yes	Yes	Yes
LVCMOS25	Yes	Yes	Yes	Yes	Yes
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12	Yes	Yes	Yes	Yes	Yes
PCI ¹	Yes				
Differential Interfaces					
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes

Top Banks of MachXO1200 and MachXO2280 devices only.
MachXO1200 and MachXO2280 devices only.

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	Device	Typ. ³	Max.	Units
		LCMXO256C	12	25	μA
	Core Power Supply	LCMXO640C	12	25	μA
ICC	Cole Power Supply	LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
I _{CCAUX} Auxiliary Power Supply		LCMXO256C	1	15	μA
	Auxiliary Power Supply	LCMXO640C	1	25	μA
	Auxiliary Power Supply	LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
ICC	Core Power Supply	LCMXO256E	4	mA
		LCMXO640E	6	mA
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
		LCMXO256E/C	5	mA
	Auxiliary Power Supply V _{CCAUX} = 3.3V	LCMXO640E/C	7	mA
CCAUX		LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units	
Basic Functions			
16-bit decoder	6.7	ns	
4:1 MUX	4.5	ns	
16:1 MUX	5.1	ns	

Register-to-Register Performance

Function	-5 Timing	Units		
Basic Functions				
16:1 MUX	487	MHz		
16-bit adder	292	MHz		
16-bit counter	388	MHz		
64-bit counter	200	MHz		
Embedded Memory Functions (1200 and 2280 Devices Only)				
256x36 Single Port RAM	284	MHz		
512x18 True-Dual Port RAM	284	MHz		
Distributed Memory Functions				
16x2 Single Port RAM	434	MHz		
64x2 Single Port RAM	320	MHz		
128x4 Single Port RAM	261	MHz		
32x2 Pseudo-Dual Port RAM	314	MHz		
64x4 Pseudo-Dual Port RAM	271	MHz		

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

MachXO External Switching Characteristics¹

			-5		-	4	-	3	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Global Clock with	nout PLL) ¹							
		LCMXO256	—	3.5		4.2		4.9	ns
+	Bast Case t Through 1 LUT	LCMXO640		3.5	—	4.2	—	4.9	ns
чРD	Best Case tpD Through T LOT	LCMXO1200		3.6		4.4		5.1	ns
		LCMXO2280	_	3.6	—	4.4	—	5.1	ns
		LCMXO256	_	4.0	—	4.8	—	5.6	ns
t	Best Case Clock to Output - From PELL	LCMXO640		4.0	—	4.8	—	5.7	ns
'CO		LCMXO1200		4.3	—	5.2	—	6.1	ns
		LCMXO2280		4.3	—	5.2	—	6.1	ns
		LCMXO256	1.3		1.6		1.8		ns
	Clock to Data Setup - To PFU	LCMXO640	1.1		1.3		1.5		ns
'SU		LCMXO1200	1.1		1.3		1.6		ns
		LCMXO2280	1.1		1.3		1.5		ns
		LCMXO256	-0.3		-0.3		-0.3		ns
t	Clock to Data Hold - To PEU	LCMXO640	-0.1		-0.1		-0.1		ns
ч		LCMXO1200	0.0		0.0		0.0		ns
		LCMXO2280	-0.4	—	-0.4	—	-0.4		ns
		LCMXO256	_	600	—	550	—	500	MHz
funda	Clock Frequency of I/O and PELL Begister	LCMXO640	_	600	—	550	—	500	MHz
'MAX_IO	Clock frequency of i/O and fr O negister	LCMXO1200	_	600	—	550	—	500	MHz
		LCMXO2280	_	600	—	550	—	500	MHz
		LCMXO256	_	200	—	220	—	240	ps
+.	Clobal Clock Skow Across Dovice	LCMXO640	_	200	—	220	—	240	ps
'SKEW_PRI	GIODAI CIUCK SKEW ACIUSS DEVICE	LCMXO1200	_	220		240		260	ps
		LCMXO2280	—	220	—	240	—	260	ps

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS2.5V, 12 mA. Rev. A 0.19

MachXO Internal Timing Parameters¹

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

		-	5	-	4	-	3	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Log	ic Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)		0.28		0.34		0.39	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)		0.44		0.53		0.62	ns
t _{LSR_PFU}	Set/Reset to output of PFU	—	0.90		1.08	—	1.26	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) input setup time	0.10		0.13		0.15		ns
t _{HM_PFU}	Clock to Mux (M0,M1) input hold time	-0.05	—	-0.06		-0.07		ns
t _{SUD_PFU}	Clock to D input setup time	0.13	—	0.16		0.18		ns
t _{HD_PFU}	Clock to D input hold time	-0.03	—	-0.03	—	-0.04	—	ns
t _{CK2Q_PFU}	Clock to Q delay, D-type register configuration		0.40		0.48		0.56	ns
t _{LE2Q_PFU}	Clock to Q delay latch configuration	—	0.53		0.64	—	0.74	ns
t _{LD2Q_PFU}	D to Q throughput delay when latch is enabled		0.55		0.66		0.77	ns
PFU Dual Por	rt Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.56	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.22		-0.25		ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34		0.39		ns
t _{SUADDR_PFU}	Address Setup Time	-0.46	—	-0.56	—	-0.65	—	ns
t _{HADDR_PFU}	Address Hold Time	0.71	—	0.85		0.99		ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.26		-0.30		ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33	—	0.40		0.47		ns
PIO Input/Ou	tput Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.75		0.90		1.06	ns
t _{OUT_PIO}	Output Buffer Delay		1.29		1.54		1.80	ns
EBR Timing	1200 and 2280 Devices Only)							
t _{CO_EBR}	Clock to output from Address or Data with no output register	_	2.24	_	2.69	_	3.14	ns
t _{COO_EBR}	Clock to output from EBR output Register		0.54	—	0.64	—	0.75	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.31		-0.37		ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26	—	-0.31	—	-0.37	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.20	—	-0.23	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.36	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.27	—	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.16	—	-0.18	—	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Regis- ter	_	1.03	—	1.23	_	1.44	ns
PLL Paramet	ers (1200 and 2280 Devices Only)							
t _{RSTREC}	Reset Recovery to Rising Clock	1.00		1.00		1.00	_	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	—	1.00	—	1.00	—	ns

1. Internal parameters are characterized but not tested on every device.

Rev. A 0.19

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column	1/0	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Number]_[A/B/C/D/E/F]		Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC	—	No connect.
GND	—	GND - Ground. Dedicated pins.
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}	—	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions (Used	as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). $T = true$ and $C = complement$.
[LOC][0]_PLL[T, C]_FB	-	Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]	—	Primary Clock Pads, n per side.
Test and Programming (De	dicate	d pins)
TMS	Ι	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	Р7, В6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	-
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	-
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	-
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC⁴			

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA

		LCM	XO640		LCMXO1200					LCMXO2280				
Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential
B1	PL2A	3		Т	B1	PL2A	7		Т	B1	PL2A	7	LUM0_PLLT_FB_A	Т
C1	PL2B	3		С	C1	PL3C	7		Т	C1	PL3C	7	LUM0_PLLT_IN_A	Т
B2	PL2C	3		Т	B2	PL2B	7		С	B2	PL2B	7	LUM0_PLLC_FB_A	С
C2	PL2D	3		С	C2	PL4A	7		T*	C2	PL4A	7		Τ*
C3	PL3A	3		Т	C3	PL3D	7		С	C3	PL3D	7	LUM0_PLLC_IN_A	С
D1	PL3B	3		С	D1	PL4B	7		C*	D1	PL4B	7		C*
D3	PL3D	3			D3	PL4C	7			D3	PL4C	7		
E1	GNDIO3	3			E1	GNDIO7	7			E1	GNDIO7	7		
E2	PL5A	3		Т	E2	PL6A	7		T*	E2	PL7A	7		T*
E3	PL5B	3	GSRN	С	E3	PL6B	7	GSRN	C*	E3	PL7B	7	GSRN	C*
F2	PL5D	3			F2	PL6D	7			F2	PL7D	7		
F3	PL6B	3			F3	PL7C	7		Т	F3	PL9C	7		Т
G1	PL6C	3		Т	G1	PL7D	7		С	G1	PL9D	7		С
G2	PL6D	3		С	G2	PL8C	7		Т	G2	PL10C	7		Т
G3	PL7A	3		Т	G3	PL8D	7		С	G3	PL10D	7		С
H2	PL7B	3		С	H2	PL10A	6		T*	H2	PL12A	6		T*
H1	PL7C	3			H1	PL10B	6		C*	H1	PL12B	6		C*
H3	VCC	-			H3	VCC	-			H3	VCC	-		
J1	PL8A	3			J1	PL11B	6			J1	PL14D	6		С
J2	PL8C	3	TSALL		J2	PL11C	6	TSALL	Т	J2	PL14C	6	TSALL	Т
J3	PL9A	3		Т	J3	PL11D	6		С	J3	PL14B	6		
K2	PL9B	3		С	K2	PL12A	6		T*	K2	PL15A	6		T*
K1	PL9C	3			K1	PL12B	6		C*	K1	PL15B	6		C*
L2	GNDIO3	3			L2	GNDIO6	6			L2	GNDIO6	6		
L1	PL10A	3		Т	L1	PL14A	6	LLM0_PLLT_FB_A	T*	L1	PL17A	6	LLM0_PLLT_FB_A	T*
L3	PL10B	3		С	L3	PL14B	6	LLM0_PLLC_FB_A	C*	L3	PL17B	6	LLM0_PLLC_FB_A	C*
M1	PL11A	3		Т	M1	PL15A	6	LLM0_PLLT_IN_A	T*	M1	PL18A	6	LLM0_PLLT_IN_A	T*
N1	PL11B	3		С	N1	PL16A	6		т	N1	PL19A	6		т
M2	PL11C	3		Т	M2	PL15B	6	LLM0_PLLC_IN_A	C*	M2	PL18B	6	LLM0_PLLC_IN_A	C*
P1	PL11D	3		С	P1	PL16B	6		С	P1	PL19B	6		С
P2	GNDIO2	2			P2	GNDIO5	5			P2	GNDIO5	5		
P3	TMS	2	TMS		P3	TMS	5	TMS		P3	TMS	5	TMS	
M3	PB2C	2		Т	M3	PB2C	5		Т	M3	PB2A	5		Т
N3	PB2D	2		С	N3	PB2D	5		С	N3	PB2B	5		С
P4	тск	2	TCK		P4	тск	5	тск		P4	тск	5	тск	
M4	PB3B	2			M4	PB3B	5			M4	PB3B	5		
N4	PB3C	2		Т	N4	PB4A	5		Т	N4	PB4A	5		т
P5	PB3D	2		С	P5	PB4B	5		С	P5	PB4B	5		С
N5	TDO	2	TDO	-	N5	TDO	5	TDO	-	N5	TDO	5	TDO	-
M5	TDI	2	TDI		M5	TDI	5	TDI		M5	TDI	5	TDI	
N6	PB4E	2		т	N6	PB5C	5			N6	PB6C	5		
P6	VCC	-			P6	VCC	-			P6	VCC	-		
M6	PB4F	2		С	M6	PB6A	5			M6	PB8A	5		
P7	VCCAUX	-			P7	VCCAUX	-			P7	VCCAUX	<u> </u>		
N7	PB5A	2		т	N7	PB6F	5			N7	PB8F	5		
M7	PB5B	2	PCLK2 1***	C	M7	PB7B	4	PCI K4 1***		M7	PB10F	4	PCI K4 1***	
N8	PB5D	2			N8	PB7C	4		т	N8	PB10C	4		т
P8	PR6A	2		т	P8	PB7D	4		C.	P8	PB10D	4		C I
MR	PRER	2	PCI K2_0***	Ċ	MR	PB7F	4	PCI K4_0***	, v	MR	PB10B	4	PCI K4_0***	- Ŭ
NIQ	PR7A	2		т	NO	PROA	4		т	NO	PB12A	4		т
119	TDIA	2		1	113	1 D9A	4		1	119	I DIZA	4		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200		LCMXO2280			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		C	PT7B	0		C
131	PT4B	0		C T	PI5C	0		1	PT/A	0		
132	PT4A	0		1	PI5B	0		C	PT6D	0		
133	PT3F	0			P15A	0		T	PI6E	0		1
134	PT3D	0			PI4B	0			P16F	0		C
135	VCCIOO	0			VCCIOO	0			VCCIOO	0		
136	GNDIO0	0			GNDIOO	0			GNDIO0	0		-
137	PI3B	0		U C	PT3D	0			P14B	U		
138	PT2F	0		U -	PI3C	0			P14A	U		
139	PT3A	0		T C	PT3B	0		C T	PT3B	U C		
140	PT2D	0		С -	PT3A	0		T	PT3A	U C		
141	P12E	0		T C	PT2D	0		С -	P12D	U C		С -
142	PT2B	0		C T	PT2C	0		T	P12C	U C		1
143	P12C	U			P12B	U		U T	P12B	U		
144	PT2A	0		Г	PT2A	0		Т	PT2A	0		I T

*Supports true LVDS outputs.

**NC for "E" devices.

***Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640		LCMXO1200					LCI	MXO2280			
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
J13	PR8C	1		Т	J13	PR11A	3		T*	J13	PR14A	3		T*
GND	GND	-			GND	GND	-			GND	GND	-		
K14	PR8B	1		С	K14	PR10D	3		С	K14	PR13D	3		С
J14	PR8A	1		Т	J14	PR10C	3		Т	J14	PR13C	3		Т
K15	PR7D	1		С	K15	PR10B	3		C*	K15	PR13B	3		C*
J15	PR7C	1		Т	J15	PR10A	3		T*	J15	PR13A	3		T*
-	-				GND	GNDIO3	3			GND	GNDIO3	3		
-	-				VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
K12	NC				K12	PR9D	3		С	K12	PR11D	3		С
J12	NC				J12	PR9C	3		Т	J12	PR11C	3		Т
J16	PR7B	1		С	J16	PR9B	3		C*	J16	PR11B	3		C*
H16	PR7A	1		Т	H16	PR9A	3		T*	H16	PR11A	3		T*
H15	PR6B	1		С	H15	PR8D	2		С	H15	PR10D	2		С
G15	PR6A	1		Т	G15	PR8C	2		Т	G15	PR10C	2		Т
H14	PR5D	1		С	H14	PR8B	2		C*	H14	PR10B	2		C*
G14	PR5C	1		Т	G14	PR8A	2		T*	G14	PR10A	2		T*
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
H13	PR6D	1		С	H13	PR7D	2		С	H13	PR9D	2		С
H12	PR6C	1		Т	H12	PR7C	2		Т	H12	PR9C	2		Т
G13	PR4D	1		С	G13	PR7B	2		C*	G13	PR9B	2		C*
G12	PR4C	1		Т	G12	PR7A	2		T*	G12	PR9A	2		T*
G16	PR5B	1		С	G16	PR6D	2		С	G16	PR7D	2		С
F16	PR5A	1		Т	F16	PR6C	2		Т	F16	PR7C	2		Т
F15	PR4B	1		С	F15	PR6B	2		C*	F15	PR7B	2		C*
E15	PR4A	1		Т	E15	PR6A	2		T*	E15	PR7A	2		T*
E16	PR3B	1		С	E16	PR5D	2		С	E16	PR6D	2		С
D16	PR3A	1		Т	D16	PR5C	2		Т	D16	PR6C	2		Т
VCCIO1	VCCIO1	1			VCCIO2	VCCIO2	2			VCCIO2	VCCIO2	2		
GND	GNDIO1	1			GND	GNDIO2	2			GND	GNDIO2	2		
D15	PR2D	1		С	D15	PR5B	2		C*	D15	PR6B	2		C*
C15	PR2C	1		T	C15	PR5A	2		T*	C15	PR6A	2		T*
C16	PR2B	1		C	C16	PR4D	2		C	C16	PR5D	2		C T
B16	PR2A	1		1	B16	PR4C	2		1	B16	PR5C	2		1
F14	PR3D	1		C T	F14	PR4B	2		C^ 	F14	PR5B	2		C^
E14	PR3C	-		1	E14	PR4A	2		1-	E14	PR5A	2		1"
-	-	-			-	-	-		0	GND	GND	-		0
F12	NC				F12	PR3D	2		С т	F12	PR4D	2		C T
E10	NC				F13	PD2P	2			F13		2		
E12	NC				E12	PD2A	2		т*	E12	PD4A	2		т*
E13	NC				E13	PRJA	2			E13	PR4A	2		1 C*
D13	NC				D13		2		с т	D13	PD2A	2		С Т*
	VCCIOO	0				VCCIO2	2		'		VCCIO2	2		1
GND	GNDIOO	0			GND		2			GND	GNDIO2	2		
GND	GNDIOO	0			GND	GNDIO1	1			GND	GNDIO1	- 1		
VCCIOO	VCCIOO	0			VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
R15	NC	0			R15	PT11D	1		C	815	PT16D	1		C
A15	NC				A15	PT11C	1		т	A15	PT16C	1		т
C14	NC				C14	PT11R	1		c.	C14	PT16R	1		C C
B1/	NC				B14	PT114	1		т	B14	PT164	1		т
C13	PT9F	0		С	C13	PT10F	1		, C	C13	PT15D	1		, C
B13		0		т	B13		1		т	B13	PT150	1		т
515	113	0		'	010	TIVL	<u> ' </u>	l		510	11150			L '

Lead-Free Packaging

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	COM
LCMXO256C-4TN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	COM
LCMXO256C-5TN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free TQFP	100	COM
LCMXO256C-3MN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	COM
LCMXO256C-4MN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	COM
LCMXO256C-5MN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	COM
LCMXO640C-4TN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	COM
LCMXO640C-5TN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free TQFP	100	COM
LCMXO640C-3MN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	COM
LCMXO640C-4MN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	COM
LCMXO640C-5MN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free csBGA	100	COM
LCMXO640C-3TN144C	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO640C-4TN144C	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO640C-5TN144C	640	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO640C-3MN132C	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO640C-4MN132C	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO640C-5MN132C	640	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO640C-3BN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	COM
LCMXO640C-4BN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	COM
LCMXO640C-5BN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free caBGA	256	COM
LCMXO640C-3FTN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640C-4FTN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	COM
LCMXO640C-5FTN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100C	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200C-4TN100C	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200C-5TN100C	1200	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200C-3TN144C	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200C-4TN144C	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200C-5TN144C	1200	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200C-3MN132C	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200C-4MN132C	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200C-5MN132C	1200	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO1200C-3BN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO1200C-4BN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO1200C-5BN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO1200C-3FTN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO1200C-4FTN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO1200C-5FTN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM

Lead-Free Packaging

LCMXO2280C-4FTN324I

2280

	Industrial												
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.						
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND						
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND						
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND						
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND						
		L L					<u></u>						
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.						
LCMXO640C-3TN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND						
LCMXO640C-4TN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND						
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND						
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND						
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND						
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND						
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND						
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND						
LCMXO640C-3BN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	IND						
LCMXO640C-4BN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	IND						
LCMXO640C-3FTN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	IND						
LCMXO640C-4FTN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	IND						
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.						
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND						
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND						
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND						
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND						
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND						
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND						
LCMXO1200C-3BN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND						
LCMXO1200C-4BN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND						
LCMXO1200C-3FTN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND						
LCMXO1200C-4FTN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND						
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.						
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND						
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND						
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND						
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND						
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND						
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND						
LCMXO2280C-3BN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND						
LCMXO2280C-4BN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND						
LCMXO2280C-3FTN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND						
LCMXO2280C-4FTN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND						
LCMXO2280C-3FTN324I	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	IND						

271

-4

Lead-Free ftBGA

324

IND

1.8V/2.5V/3.3V

Date	Version	Section	Change Summary
April 2006 (cont.)	02.0 (cont.)	Architecture (cont.)	"Top View of the MachXO1200 Device" figure updated.
			"Top View of the MachXO640 Device" figure updated.
			"Top View of the MachXO256 Device" figure updated.
			"Slice Diagram" figure updated.
			Slice Signal Descriptions table updated.
			Routing section updated.
			sysCLOCK Phase Lockecd Loops (PLLs) section updated.
			PLL Diagram updated.
			PLL Signal Descriptions table updated.
			sysMEM Memory section has been updated.
			PIO Groups section has been updated.
			PIO section has been updated.
			MachXO PIO Block Diagram updated.
			Supported Input Standards table updated.
			MachXO Configuration and Programming diagram updated.
		DC and Switching Characteristics	Recommended Operating Conditions table - footnotes updated.
			MachXO256 and MachXO640 Hot Socketing Specifications - footnotes updated.
			Added MachXO1200 and MachXO2280 Hot Socketing Specifications table.
			DC Electrical Characteristics, footnotes have been updated.
			Supply Current (Sleep Mode) table has been updated, removed "4W" references. Footnotes have been updated.
			Supply Current (Standby) table and associated footnotes updated.
			Intialization Supply Current table and footnotes updated.
			Programming and Erase Flash Supply Current table and associated footnotes have been updatd.
			Register-to-Register Performance table updated (rev. A 0.19).
			MachXO External Switching Characteristics updated (rev. A 0.19).
			MachXO Internal Timing Parameters updated (rev. A 0.19).
			MachXO Family Timing Adders updated (rev. A 0.19).
			sysCLOCK Timing updated (rev. A 0.19).
			MachXO "C" Sleep Mode Timing updated (A 0.19).
			JTAG Port Timing Specification updated (rev. A 0.19).
			Test Fixture Required Components table updated.
		Pinout Information	Signal Descriptions have been updated.
			Pin Information Summary has been updated. Footnote has been added.
			Power Supply and NC Connection table has been updated.
			Logic Signal Connections have been updated (PCLKTx_x> PCLKx_x)
		Ordering Information	Removed "4W" references.
			Added 256-ftBGA Ordering Part Numbers for MachXO640.
May 2006	02.1	Pinout Information	Removed [LOC][0]_PLL_RST from Signal Description table.
			PCLK footnote has been added to all appropriate pins.
August 2006	02.2	Multiple	Removed 256 fpBGA information for MachXO640.