

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	101
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-4mn132i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Introduction

June 2013

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

Sleep Mode

• Allows up to 100x static current reduction

■ TransFR[™] Reconfiguration (TFR)

In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

Embedded and Distributed Memory

- Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

Table 1-1. MachXO Family Selection Guide

■ Flexible I/O Buffer

 Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1002

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip.

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Kbits)	0	0	9.2	27.6
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball caBGA (14x14 mm)		159	211	211
256-ball ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Figure 2-1. Top View of the MachXO1200 Device¹

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device

Figure 2-3. Top View of the MachXO256 Device

PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram

Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

Figure 2-6. Distributed Memory Primitives

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table 2-4.	PFU	Modes	of	Operation
------------	-----	-------	----	-----------

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

Routing

There are many resources provided in the MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock ———— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled

PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of pSix Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)				
Single-ended Interfaces	· · ·					
LVTTL	4mA, 8mA, 12mA, 16mA	3.3				
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3				
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5				
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8				
LVCMOS15	4mA, 8mA	1.5				
LVCMOS12	2mA, 6mA	1.2				
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—				
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—				
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	_				
LVCMOS15, Open Drain	4mA, 8mA	—				
LVCMOS12, Open Drain	2mA, 6mA	—				
PCI33 ³	N/A	3.3				
Differential Interfaces						
LVDS ^{1, 2}	N/A	2.5				
BLVDS, RSDS ²	N/A	2.5				
LVPECL ²	N/A	3.3				

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

Figure 2-18. MachXO2280 Banks

Figure 2-19. MachXO1200 Banks

Figure 2-20. MachXO640 Banks

Figure 2-21. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	6.7	ns
4:1 MUX	4.5	ns
16:1 MUX	5.1	ns

Register-to-Register Performance

Function	-5 Timing	Units						
Basic Functions								
16:1 MUX	487	MHz						
16-bit adder	292	MHz						
16-bit counter	388	MHz						
64-bit counter	200	MHz						
Embedded Memory Functions (1200	Embedded Memory Functions (1200 and 2280 Devices Only)							
256x36 Single Port RAM	284	MHz						
512x18 True-Dual Port RAM	284	MHz						
Distributed Memory Functions								
16x2 Single Port RAM	434	MHz						
64x2 Single Port RAM	320	MHz						
128x4 Single Port RAM	261	MHz						
32x2 Pseudo-Dual Port RAM	314	MHz						
64x4 Pseudo-Dual Port RAM	271	MHz						

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		CMXO1200		LCMXO2280				
Pin	Ball		Dual		Ball		Dual	
Number	Function	Bank	Function	Differential	Function	Bank	Function	Differential
42	PB9A	4		Т	PB12A	4		Т
43	PB9B	4		С	PB12B	4		С
44	VCCIO4	4			VCCIO4	4		
45	PB10A	4		Т	PB13A	4		Т
46	PB10B	4		С	PB13B	4		С
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
48	PB11A	4		Т	PB16A	4		Т
49	PB11B	4		С	PB16B	4		С
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-		
51	PR16B	3			PR19B	3		
52	PR15B	3		C*	PR18B	3		C*
53	PR15A	3		T*	PR18A	3		T*
54	PR14B	3		C*	PR17B	3		C*
55	PR14A	3		T*	PR17A	3		T*
56	VCCIO3	3			VCCIO3	3		
57	PR12B	3		C*	PR15B	3		C*
58	PR12A	3		T*	PR15A	3		T*
59	GND	-			GND	-		
60	PR10B	3		C*	PR13B	3		C*
61	PR10A	3		T*	PR13A	3		T*
62	PR9B	3		C*	PR11B	3		C*
63	PR9A	3		T*	PR11A	3		T*
64	PR8B	2		C*	PR10B	2		C*
65	PR8A	2		T*	PR10A	2		T*
66	VCC	-			VCC	-		
67	PR6C	2			PR8C	2		
68	PR6B	2		C*	PR8B	2		C*
69	PR6A	2		T*	PR8A	2		T*
70	VCCIO2	2			VCCIO2	2		
71	PR4D	2			PR5D	2		
72	PR4B	2		C*	PR5B	2		C*
73	PR4A	2		T*	PR5A	2		T*
74	PR2B	2		С	PR3B	2		C*
75	PR2A	2		Т	PR3A	2		T*
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-		
77	PT11C	1			PT15C	1		
78	PT11B	1		С	PT14B	1		С
79	PT11A	1		Т	PT14A	1		Т
80	VCCIO1	1			VCCIO1	1		1
81	PT9E	1			PT12D	1		С

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640				LCM	IXO1200					LCMXO2280	
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
E11	NC				E11	PT10D	1		С	E11	PT15B	1		С
E10	NC				E10	PT10C	1		Т	E10	PT15A	1		Т
D12	PT9D	0		С	D12	PT10B	1		С	D12	PT14D	1		С
D11	PT9C	0		Т	D11	PT10A	1		Т	D11	PT14C	1		Т
A14	PT7F	0		С	A14	PT9F	1		С	A14	PT14B	1		С
A13	PT7E	0		Т	A13	PT9E	1		Т	A13	PT14A	1		Т
C12	PT8B	0		С	C12	PT9D	1		С	C12	PT13D	1		С
C11	PT8A	0		Т	C11	PT9C	1		Т	C11	PT13C	1		Т
-	-				VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
B12	PT7B	0		С	B12	PT9B	1		С	B12	PT12D	1		С
B11	PT7A	0		Т	B11	PT9A	1		Т	B11	PT12C	1		Т
A12	PT7D	0		С	A12	PT8F	1		С	A12	PT12B	1		С
A11	PT7C	0		Т	A11	PT8E	1		Т	A11	PT12A	1		Т
GND	GND	-			GND	GND	-			GND	GND	-		
B10	PT5D	0		С	B10	PT8D	1		С	B10	PT11B	1		С
B9	PT5C	0		Т	B9	PT8C	1		Т	B9	PT11A	1		Т
D10	PT8D	0		С	D10	PT8B	1		С	D10	PT10F	1		С
D9	PT8C	0		Т	D9	PT8A	1		Т	D9	PT10E	1		Т
-	-				VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
C10	PT6D	0		С	C10	PT7F	1		С	C10	PT10D	1		С
C9	PT6C	0		Т	C9	PT7E	1		Т	C9	PT10C	1		Т
A9	PT6B	0	PCLK0_1***	С	A9	PT7D	1	PCLK1_1***	С	A9	PT10B	1	PCLK1_1***	С
A10	PT6A	0		Т	A10	PT7C	1		Т	A10	PT10A	1		Т
E9	PT9B	0		С	E9	PT7B	1		С	E9	PT9D	1		С
E8	PT9A	0		Т	E8	PT7A	1		Т	E8	PT9C	1		Т
D7	PT5B	0	PCLK0_0***	С	D7	PT6F	0	PCLK1_0***	С	D7	PT9B	1	PCLK1_0***	С
D8	PT5A	0		Т	D8	PT6E	0		Т	D8	PT9A	1		Т
VCCI00	VCCI00	0			VCCI00	VCCI00	0			VCCI00	VCCIO0	0		
GND	GNDI00	0			GND	GNDI00	0			GND	GNDIO0	0		
C8	PT4F	0		С	C8	PT6D	0		С	C8	PT8D	0		С
B8	PT4E	0		Т	B8	PT6C	0		Т	B8	PT8C	0		T
A8	VCCAUX	-			A8	VCCAUX	-			A8	VCCAUX	-		
A7	PT4D	0		С	A7	PT6B	0		С	A7	PT7D	0		С
A6	PT4C	0		Т	A6	PT6A	0		Т	A6	PT7C	0		Т
VCC	VCC	-			VCC	VCC	-			VCC	VCC	-		
B7	P14B	0		С -	B7	P15F	0		C T	B7	P17B	0		С -
B6	PI4A	0			B6	P15E	0			B6	PI7A	0		
07	PISC	0			06	P15C	0			07	P16A	0		
07	PT3D	0			67	PT5D	0		C T	67	P16B	0		C T
Ab	PIJE	0			Ab	PISA	0			Ab	PTOC	0		
A4	PIJF	0		C	A4	PISB	0		C T	A4	PTOD	0		C T
E7	NC				E7	PT4C	0			E/	PIOE	0		1
E0 DF		0		<u> </u>	E0 DE	P14U	0					0		
85	PI3B	0		с т	85	PIJE	0		с т	B2	PI5D	0		с т
B4	PIJA	0			D5	PIJE	0			D4		0		
05	PT2D	0		с т	D5	PT3D	0			05	PI5B	0		с т
00	PTOF	0		і т		DT4A	0			00		0		і т
C4	PIZE	0			04	P14A	0			04		0		
05	F12F	U		U U	05	F14D	U		U U	CNID		U		U
-		-			-	- DTOD	-		<u> </u>			-		<u> </u>
D4	INC	I	l		U4	F12D	U		U	U4	FIJU	U	l	U

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differential			
V10	PB9B	4		С			
N10	PB9C	4		Т			
R10	PB9D	4		С			
P10	PB10F	4	PCLK4_1***	С			
T10	PB10E	4		Т			
U10	PB10D	4		С			
V11	PB10C	4		Т			
U11	PB10B	4	PCLK4_0***	С			
VCCIO4	VCCIO4	4					
GND	GNDIO4	4					
T11	PB10A	4		Т			
U12	PB11A	4		Т			
R11	PB11B	4		С			
GND	GND	-					
T12	PB11C	4		Т			
P11	PB11D	4		С			
V12	PB12A	4		Т			
V13	PB12B	4		С			
R12	PB12C	4		Т			
N11	PB12D	4		С			
U13	PB12E	4		Т			
VCCIO4	VCCIO4	4					
GND	GNDIO4	4					
V14	PB12F	4		С			
T13	PB13A	4		Т			
P12	PB13B	4		С			
R13	PB13C	4		Т			
N12	PB13D	4		С			
V15	PB14A	4		Т			
U14	PB14B	4		С			
V16	PB14C	4		Т			
GND	GND	-					
T14	PB14D	4		С			
U15	PB15A	4		Т			
V17	PB15B	4		С			
P13**	SLEEPN	-	SLEEPN				
T15	PB15D	4					
U16	PB16A	4		Т			
V18	PB16B	4		С			
N13	PB16C	4		Т			
R14	PB16D	4		С			
VCCIO4	VCCIO4	4					
GND	GNDIO4	4					

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differential			
E13	PT16D	1		С			
C15	PT16C	1		Т			
F13	PT16B	1		С			
D14	PT16A	1		Т			
A18	PT15D	1		С			
B17	PT15C	1		Т			
A16	PT15B	1		С			
A17	PT15A	1		Т			
VCC	VCC	-					
D13	PT14D	1		С			
F12	PT14C	1		Т			
C14	PT14B	1		С			
E12	PT14A	1		Т			
C13	PT13D	1		С			
B16	PT13C	1		Т			
B15	PT13B	1		С			
A15	PT13A	1		Т			
VCCIO1	VCCIO1	1					
GND	GNDIO1	1					
B14	PT12F	1		С			
A14	PT12E	1		Т			
D12	PT12D	1		С			
F11	PT12C	1		Т			
B13	PT12B	1		С			
A13	PT12A	1		Т			
C12	PT11D	1		С			
GND	GND	-					
B12	PT11C	1		Т			
E11	PT11B	1		С			
D11	PT11A	1		Т			
C11	PT10F	1		С			
A12	PT10E	1		Т			
VCCIO1	VCCIO1	1					
GND	GNDIO1	1					
F10	PT10D	1		С			
D10	PT10C	1		Т			
B11	PT10B	1	PCLK1_1***	С			
A11	PT10A	1		Т			
E10	PT9D	1		С			
C10	PT9C	1		Т			
D9	PT9B	1	PCLK1_0***	С			
E9	PT9A	1		Т			
B10	PT8F	0		С			

Conventional Packaging

Industrial									
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.		
LCMXO256C-3T100I	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	IND		
LCMXO256C-4T100I	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	IND		
LCMXO256C-3M100I	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	IND		
LCMXO256C-4M100I	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	IND		
	•								
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.		
LCMXO640C-3T100I	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	IND		
LCMXO640C-4T100I	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	IND		
LCMXO640C-3M100I	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	IND		
LCMXO640C-4M100I	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	IND		
LCMXO640C-3T144I	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND		
LCMXO640C-4T144I	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND		
LCMXO640C-3M132I	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND		
LCMXO640C-4M132I	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND		
LCMXO640C-3B256I	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	IND		
LCMXO640C-4B256I	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	IND		
LCMXO640C-3FT256I	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	IND		
LCMXO640C-4FT256I	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	IND		
	1	1	1	T	1	1			
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.		
LCMXO1200C-3T100I	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND		
LCMXO1200C-4T100I	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND		
LCMXO1200C-3T144I	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND		
LCMXO1200C-4T144I	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND		
LCMXO1200C-3M132I	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND		
LCMXO1200C-4M132I	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND		
LCMXO1200C-3B256I	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	IND		
LCMXO1200C-4B256I	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	IND		
LCMXO1200C-3FT256I	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND		
LCMXO1200C-4FT256I	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND		
Port Number		Supply Voltogo	1/00	Crada	Dookogo	Dino	Tomn		
	2280		73	Giade	TOED	100			
	2200	1.00/2.00/3.00	73	-3		100			
LCMXO2280C-41100	2200	1.00/2.30/3.30	112	-4		144			
	2200	1.00/2.30/3.30	110	-3		144			
	2200	1.0V/2.3V/3.3V	101	-4		199			
	2280	1.00/2.30/3.30	101	-3	CSBGA	102			
	2280	1.80/2.50/3.30	101	-4	CSBGA	132			
	2280	1.80/2.50/3.30	211	-3	CaBGA	250			
	2280	1.0V/2.5V/3.3V	211	-4		200			
LOMX022800-3F12561	2280	1.8V/2.5V/3.3V	211	-3	ITEGA	256			
	2280	1.8V/2.5V/3.3V	211	-4	ITEGA	256			
LUMX02280C-3F1324	2280	1.8V/2.5V/3.3V	2/1	-3	ITEGA	324			
LCMXO2280C-4FT324I	2280	1.8V/2.5V/3.3V	271	-4	ttBGA	324	IND		

Lead-Free Packaging

LCMXO2280C-4FTN324I

2280

Industrial										
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND			
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND			
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND			
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND			
		L L		1			<u></u>			
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.			
LCMXO640C-3TN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND			
LCMXO640C-4TN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND			
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND			
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND			
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO640C-3BN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	IND			
LCMXO640C-4BN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	IND			
LCMXO640C-3FTN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	IND			
LCMXO640C-4FTN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	IND			
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND			
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND			
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO1200C-3BN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND			
LCMXO1200C-4BN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND			
LCMXO1200C-3FTN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND			
LCMXO1200C-4FTN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND			
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND			
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND			
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO2280C-3BN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND			
LCMXO2280C-4BN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND			
LCMXO2280C-3FTN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND			
LCMXO2280C-4FTN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND			
LCMXO2280C-3FTN324I	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	IND			

271

-4

Lead-Free ftBGA

324

IND

1.8V/2.5V/3.3V

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100I	256	1.2V	78	-3	Lead-Free TQFP	100	IND
LCMXO256E-4TN100I	256	1.2V	78	-4	Lead-Free TQFP	100	IND
LCMXO256E-3MN100I	256	1.2V	78	-3	Lead-Free csBGA	100	IND
LCMXO256E-4MN100I	256	1.2V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100I	640	1.2V	74	-3	Lead-Free TQFP	100	IND
LCMXO640E-4TN100I	640	1.2V	74	-4	Lead-Free TQFP	100	IND
LCMXO640E-3MN100I	640	1.2V	74	-3	Lead-Free csBGA	100	IND
LCMXO640E-4MN100I	640	1.2V	74	-4	Lead-Free csBGA	100	IND
LCMXO640E-3TN144I	640	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO640E-4TN144I	640	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO640E-3MN132I	640	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO640E-4MN132I	640	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO640E-3BN256I	640	1.2V	159	-3	Lead-Free caBGA	256	IND
LCMXO640E-4BN256I	640	1.2V	159	-4	Lead-Free caBGA	256	IND
LCMXO640E-3FTN256I	640	1.2V	159	-3	Lead-Free ftBGA	256	IND
LCMXO640E-4FTN256I	640	1.2V	159	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100I	1200	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200E-4TN100I	1200	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200E-3TN144I	1200	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200E-4TN144I	1200	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200E-3MN132I	1200	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200E-4MN132I	1200	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200E-3BN256I	1200	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200E-4BN256I	1200	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200E-3FTN256I	1200	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200E-4FTN256I	1200	1.2V	211	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100I	2280	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280E-4TN100I	2280	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280E-3TN144I	2280	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280E-4TN144I	2280	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280E-3MN132I	2280	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280E-4MN132I	2280	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280E-3BN256I	2280	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280E-4BN256I	2280	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280E-3FTN256I	2280	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280E-4FTN256I	2280	1.2V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280E-3FTN324I	2280	1.2V	271	-3	Lead-Free ftBGA	324	IND
LCMXO2280E-4FTN324I	2280	1.2V	271	-4	Lead-Free ftBGA	324	IND

MachXO Family Data Sheet Supplemental Information

June 2013

Data Sheet DS1002

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site.

- TN1091, MachXO sysIO Usage Guide
- TN1089, MachXO sysCLOCK Design and Usage Guide
- TN1092, Memory Usage Guide for MachXO Devices
- TN1090, Power Estimation and Management for MachXO Devices
- TN1086, MachXO JTAG Programming and Configuration User's Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1097, MachXO Density Migration
- AN8066, Boundary Scan Testability with Lattice sysIO Capability

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.