E. Attice Semiconductor Corporation - <u>LCMX01200C-5TN144C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	113
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200c-5tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, <u>Minimizing System Interruption During Configura-</u> tion Using TransFR Technology for details.

Security

The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—	_	+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V_{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.

MachXO External Switching Characteristics¹

			-5		-	4	-3		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Global Clock with	nout PLL) ¹							
		LCMXO256	—	3.5		4.2		4.9	ns
+	Rost Case t Through 1 LUT	LCMXO640		3.5	—	4.2	—	4.9	ns
чРD	Best Case tpD Through T LOT	LCMXO1200		3.6		4.4		5.1	ns
		LCMXO2280	_	3.6	—	4.4	—	5.1	ns
		LCMXO256	_	4.0	—	4.8	—	Max. U 4.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9<	ns
t	Best Case Clock to Output - From PELL	LCMXO640		4.0	—	4.8	—	5.7	ns
'CO		LCMXO1200		4.3	—	5.2	—	6.1	ns
		LCMXO2280		4.3	—	5.2	—	6.1	ns
		LCMXO256	1.3		1.6		1.8		ns
	Clock to Data Setup - To PEU	LCMXO640	1.1		1.3		1.5		ns
'SU	Clock to Data Setup - TO FFO	LCMXO1200	1.1		1.3		1.6		ns
		LCMXO2280	1.1		1.3		1.5		ns
		LCMXO256	-0.3		-0.3		-0.3		ns
t	Clock to Data Hold - To PEU	LCMXO640	-0.1		-0.1		-0.1		ns
ч		LCMXO1200	0.0		0.0		0.0		ns
		LCMXO2280	-0.4	—	-0.4	—	-0.4		ns
		LCMXO256	_	600	—	550	—	500	MHz
funda	Clock Frequency of I/O and PELL Begister	LCMXO640	_	600	—	550	—	500	MHz
'MAX_IO	Clock frequency of i/O and fr O negister	LCMXO1200	_	600	—	550	—	500	MHz
		LCMXO2280	_	600	—	550	—	500	MHz
		LCMXO256		200	—	220	—	240	ps
+.	Clobal Clock Skow Across Dovice	LCMXO640		200	—	220	—	240	ps
'SKEW_PRI	GIODAI CIUCK SKEW ACIUSS DEVICE	LCMXO1200	_	220		240		260	ps
		LCMXO2280	—	220	—	240	—	260	ps

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS2.5V, 12 mA. Rev. A 0.19

MachXO Internal Timing Parameters¹

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

		-	5	-	4	-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Log	ic Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)		0.28		0.34		0.39	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)		0.44		0.53		0.62	ns
t _{LSR_PFU}	Set/Reset to output of PFU	—	0.90		1.08	—	1.26	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) input setup time	0.10		0.13		0.15		ns
t _{HM_PFU}	Clock to Mux (M0,M1) input hold time	-0.05	—	-0.06		-0.07		ns
t _{SUD_PFU}	Clock to D input setup time	0.13	—	0.16		0.18		ns
t _{HD_PFU}	Clock to D input hold time	-0.03	—	-0.03		-0.04		ns
t _{CK2Q_PFU}	Clock to Q delay, D-type register configuration		0.40		0.48		0.56	ns
t _{LE2Q_PFU}	Clock to Q delay latch configuration	—	0.53		0.64	—	0.74	ns
t _{LD2Q_PFU}	D to Q throughput delay when latch is enabled		0.55		0.66		0.77	ns
PFU Dual Por	rt Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.56	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.22		-0.25		ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34		0.39		ns
t _{SUADDR_PFU}	Address Setup Time	-0.46	—	-0.56	—	-0.65	—	ns
t _{HADDR_PFU}	Address Hold Time	0.71	—	0.85		0.99		ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.26		-0.30		ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40		0.47		ns
PIO Input/Ou	tput Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.75		0.90		1.06	ns
t _{OUT_PIO}	Output Buffer Delay		1.29		1.54		1.80	ns
EBR Timing	1200 and 2280 Devices Only)							
t _{CO_EBR}	Clock to output from Address or Data with no output register	_	2.24	_	2.69	_	3.14	ns
t _{COO_EBR}	Clock to output from EBR output Register		0.54	—	0.64	—	0.75	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.31		-0.37		ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26	—	-0.31	—	-0.37	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.20	—	-0.23	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.36	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.27	—	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.16	—	-0.18	—	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Regis- ter	_	1.03	—	1.23	_	1.44	ns
PLL Paramet	ers (1200 and 2280 Devices Only)							
t _{RSTREC}	Reset Recovery to Rising Clock	1.00		1.00		1.00	_	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	—	1.00	—	1.00	—	ns

1. Internal parameters are characterized but not tested on every device.

Rev. A 0.19

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column	1/0	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Number]_[A/B/C/D/E/F]	1/0	Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC	—	No connect.
GND	—	GND - Ground. Dedicated pins.
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}	_	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions (Used	as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
[LOC][0]_PLL[T, C]_FB	_	Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]		Primary Clock Pads, n per side.
Test and Programming (De	dicate	d pins)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

		LCMXC	0256C/E			LCMXO640C/E		
Pin Type		100 TQFP	100 csBGA	100 TQFP	144 TQFP	100 csBGA	132 csBGA	256 caBGA / 256 ftBGA
Single Ended User I/O		78	78	74	113	74	101	159
Differential Pair User I/O1		38	38	17	43	17	42	79
Muxed		6	6	6	6	6	6	6
TAP		4	4	4	4	4	4	4
Dedicated (Total Without Supp	lies)	5	5	5	5	5	5	5
VCC		2	2	2	4	2	4	4
VCCAUX		1	1	1	2	1	2	2
	Bank0	3	3	2	2	2	2	4
VCCIO	Bank1	3	3	2	2	2	2	4
V0010	Bank2	—	—	2	2	2	2	4
	Bank3	—	—	2	2	2	2	4
GND		8	8	10	12	10	12	18
NC		0	0	0	0	0	0	52
	Bank0	41/20	41/20	18/5	29/10	18/5	26/11	42/21
Single Ended/Differential I/O	Bank1	37/18	37/18	21/4	30/11	21/4	27/12	40/20
per Bank	Bank2	—	-	14/2	24/9	14/2	21/9	36/18
	Bank3	_	_	21/6	30/13	21/6	27/10	40/20

1. These devices support emulated LVDS outputs.pLVDS inputs are not supported.

			LCMXO	1200C/E		LCMXO2280C/E				
Pin Type		100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	100 TQFP	144 TQFP	132 csBGA	256 caBGA / 256 ftBGA	324 ftBGA
Single Ended User I/O		73	113	101	211	73	113	101	211	271
Differential Pair User I/O1		27	48	42	105	30	47	41	105	134
Muxed		6	6	6	6	6	6	6	6	6
TAP		4	4	4	4	4	4	4	4	4
Dedicated (Total Without Supp	lies)	5	5	5	5	5	5	5	5	5
VCC		4	4	4	4	2	4	4	4	6
VCCAUX		2	2	2	2	2	2	2	2	2
	Bank0	1	1	1	2	1	1	1	2	2
	Bank1	1	1	1	2	1	1	1	2	2
	Bank2	1	1	1	2	1	1	1	2	2
VCCIO	Bank3	1	1	1	2	1	1	1	2	2
10010	Bank4	1	1	1	2	1	1	1	2	2
	Bank5	1	1	1	2	1	1	1	2	2
	Bank6	1	1	1	2	1	1	1	2	2
	Bank7	1	1	1	2	1	1	1	2	2
GND		8	12	12	18	8	12	12	18	24
NC		0	0	0	0	0	0	0	0	0
	Bank0	10/3	14/6	13/5	26/13	9/3	13/6	12/5	24/12	34/17
	Bank1	8/2	15/7	13/5	28/14	9/3	16/7	14/5	30/15	36/18
	Bank2	10/4	15/7	13/6	26/13	10/4	15/7	13/6	26/13	34/17
Single Ended/Differential I/O	Bank3	11/5	15/7	14/7	28/14	11/5	15/7	14/7	28/14	34/17
per Bank	Bank4	8/3	14/5	13/5	27/13	8/3	14/4	13/4	29/14	35/17
	Bank5	5/2	10/4	8/2	22/11	5/2	10/4	8/2	20/10	30/15
	Bank6	10/3	15/6	13/6	28/14	10/4	15/6	13/6	28/14	34/17
	Bank7	11/5	15/6	14/6	26/13	11/5	15/6	14/6	26/13	34/17

1. These devices support on-chip LVDS buffers for left and right I/O Banks.

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	Р7, В6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	-
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	-
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	-
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC⁴			

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP

		L	CMXO640			LCMXO1200 LCMXO2280		LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
1	PL2A	3		Т	PL2A	7		Т	PL2A	7	LUM0_PLLT_FB_A	Т
2	PL2C	3		Т	PL2B	7		С	PL2B	7	LUM0_PLLC_FB_A	С
3	PL2B	3		С	PL3A	7		T*	PL3A	7		T*
4	PL3A	3		Т	PL3B	7		C*	PL3B	7		C*
5	PL2D	3		С	PL3C	7		Т	PL3C	7	LUM0_PLLT_IN_A	Т
6	PL3B	3		С	PL3D	7		С	PL3D	7	LUM0_PLLC_IN_A	С
7	PL3C	3		Т	PL4A	7		T*	PL4A	7		T*
8	PL3D	3		С	PL4B	7		C*	PL4B	7		C*
9	PL4A	3			PL4C	7			PL4C	7		
10	VCCIO3	3			VCCI07	7			VCCI07	7		
11	GNDIO3	3			GNDIO7	7			GNDIO7	7		
12	PL4D	3			PL5C	7			PL6C	7		
13	PL5A	3		Т	PL6A	7		T*	PL7A	7		T*
14	PL5B	3	GSRN	С	PL6B	7	GSRN	C*	PL7B	7	GSRN	C*
15	PL5D	3			PL6D	7			PL7D	7		
16	GND	-			GND	-			GND	-		
17	PL6C	3		Т	PL7C	7		Т	PL9C	7		Т
18	PL6D	3		С	PL7D	7		С	PL9D	7		С
19	PL7A	3		Т	PL10A	6		T*	PL13A	6		T*
20	PL7B	3		С	PL10B	6		C*	PL13B	6		C*
21	VCC	-			VCC	-			VCC	-		
22	PL8A	3		Т	PL11A	6		T*	PL13D	6		
23	PL8B	3		С	PL11B	6		C*	PL14D	6		С
24	PL8C	3	TSALL		PL11C	6	TSALL		PL14C	6	TSALL	Т
25	PL9C	3		Т	PL12B	6			PL15B	6		
26	VCCIO3	3			VCCIO6	6			VCCIO6	6		
27	GNDIO3	3			GNDIO6	6			GNDIO6	6		
28	PL9D	3		С	PL13D	6			PL16D	6		-
29	PL10A	3		Т	PL14A	6	LLM0_PLLT_FB_A	T*	PL17A	6	LLM0_PLLT_FB_A	T*
30	PL10B	3		С	PL14B	6	LLM0_PLLC_FB_A	C*	PL17B	6	LLM0_PLLC_FB_A	C*
31	PL10C	3		т	PL14C	6		т	PL17C	6		Т
32	PL11A	3		т	PL14D	6		С	PL17D	6		С
33	PL10D	3		С	PL15A	6	LLM0_PLLT_IN_A	T*	PL18A	6	LLM0_PLLT_IN_A	T*
34	PL11C	3		т	PL15B	6	LLM0 PLLC IN A	C*	PL18B	6	LLM0 PLLC IN A	C*
35	PL11B	3		С	PL16A	6		Т	PL19A	6		Т
36	PL11D	3		С	PL16B	6		С	PL19B	6		С
37	GNDIO2	2			GNDIO5	5			GNDIO5	5		
38	VCCIO2	2			VCCI05	5			VCCI05	5		
39	TMS	2	TMS		TMS	5	TMS		TMS	5	TMS	
40	PB2C	2			PB2C	5	-	т	PB2A	5		т
41	PB3A	2		т	PB2D	5		C	PB2B	5		C
42	ТСК	2	тск		ТСК	5	тск	-	ТСК	5	ТСК	-
43	PB3B	2		C	PB3A	5		т	PB3A	5		т
44	PB3C	2		T	PB3B	5		C	PB3B	5		C
45	PB3D	2		, C	PR4A	5		т	PR4A	5		т
46	PR4A	2		т	PB4R	5		Ċ	PB4R	5		C.
47		2	TDO			5	ΤDO	~	TDO	5	ΤDO	5
48	PR/R	2	.50	C	PR4D	5	.50		PR4D	5	.50	
40	PB4C	2		т	PR5A	5		т	PR6A	5		т
49 50		2			PRER	5			PRER	5		
50	Г 04U	2		Ū	FDOD	э		Ū	FDOD	3		U

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

	LCMXO640			LCMXO1200				LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		Т
66	PB8D	2		С	PB10B	4		С	PB13B	4		С
67	PB9A	2		Т	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		т	PB10D	4		С	PB13D	4		С
69	PB9B	2		С	PB10F	4		-	PB14D	4		-
70**	SLEEPN	-	SLEEPN	-	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
71	PB9D	2		С	PB11C	4		т	PB16C	4		т
72	PB9F	2		, , , , , , , , , , , , , , , , , , ,	PB11D	4		C	PB16D	4		C
73	PB11D	1		С	PB16B	3		C	PB20B	3		C C
74	PB11B	1		C C	PB16A	3		т	PB20A	3		T
75	PR11C	1		T	PR15B	3		C*	PR19B	3		C
76	PR10D	1		C	PR15A	3		- T*	PR19A	3		Т
77	PR11A	1		T	PR14D	3		C	PR17D	3		C
78	PR10B	1		C.	PR14C	3		Т	PR17C	3		T
79	PR10C	1		T	PR14B	3		C*	PR17B	3		C*
80	PB10A	1		Т	PR14A	3		- T*	PB17A	3		T*
81	PR9D	1			PR13D	3			PB16D	3		-
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PB8C	1			PB12A	3		 T*	PB15A	3		T*
86	PB8A	1			PB11B	3		C*	PB14B	3		C*
87	PB7D	1			PR11A	3		т*	PR14A	3		T*
88	GND	-			GND	-			GND	-		-
89	PB7B	1		C	PB10B	3		C*	PB13B	3		C*
90	PR7A	1		т Т	PR10A	3		U T*	PB13A	3		Ŭ T*
91	PB6D	1		C I	PB8B	2		C*	PB10B	2		C*
92	PB6C	1		т т	PB8A	2		т*	PB10A	2		т*
92	VCC	-		'	VCC	-		+ '	VCC	-		1
0/	PR5D	1			PRAR	2		C:*	PRAR	2		C:*
97	PR5R	1			PR6A	2		т*	PRA	2		т*
96	PR4D	1			PRSR	2		C:*	PR7R	2		г С:*
07		1		C	PP5A	2		т*	PP7A	2		т*
97 08		1			VCCIO2	2				2		1
30	GNDIO1	1			GNIDIO2	2			GNDIO2	2		
100				т		2				2		
100	FR4A	I		I	PH40	2			FROC	2		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

	LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differential				
V10	PB9B	4		С				
N10	PB9C	4		Т				
R10	PB9D	4		С				
P10	PB10F	4	PCLK4_1***	С				
T10	PB10E	4		Т				
U10	PB10D	4		С				
V11	PB10C	4		Т				
U11	PB10B	4	PCLK4_0***	С				
VCCIO4	VCCIO4	4						
GND	GNDIO4	4						
T11	PB10A	4		Т				
U12	PB11A	4		Т				
R11	PB11B	4		С				
GND	GND	-						
T12	PB11C	4		Т				
P11	PB11D	4		С				
V12	PB12A	4		Т				
V13	PB12B	4		С				
R12	PB12C	4		Т				
N11	PB12D	4		С				
U13	PB12E	4		Т				
VCCIO4	VCCIO4	4						
GND	GNDIO4	4						
V14	PB12F	4		С				
T13	PB13A	4		Т				
P12	PB13B	4		С				
R13	PB13C	4		Т				
N12	PB13D	4		С				
V15	PB14A	4		Т				
U14	PB14B	4		С				
V16	PB14C	4		Т				
GND	GND	-						
T14	PB14D	4		С				
U15	PB15A	4		Т				
V17	PB15B	4		С				
P13**	SLEEPN	-	SLEEPN					
T15	PB15D	4						
U16	PB16A	4		Т				
V18	PB16B	4		С				
N13	PB16C	4		Т				
R14	PB16D	4		С				
VCCIO4	VCCIO4	4						
GND	GNDIO4	4						

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differential			
F16	GND	-					
H10	GND	-					
H11	GND	-					
H8	GND	-					
H9	GND	-					
J10	GND	-					
J11	GND	-					
J4	GND	-					
J8	GND	-					
J9	GND	-					
K10	GND	-					
K11	GND	-					
K17	GND	-					
K8	GND	-					
K9	GND	-					
L10	GND	-					
L11	GND	-					
L8	GND	-					
L9	GND	-					
N2	GND	-					
P14	GND	-					
P5	GND	-					
R7	GND	-					
F14	VCC	-					
G11	VCC	-					
G9	VCC	-					
H7	VCC	-					
L7	VCC	-					
M9	VCC	-					
H6	VCCIO7	7					
J7	VCCIO7	7					
M7	VCCIO6	6					
K7	VCCIO6	6					
M8	VCCIO5	5					
R9	VCCIO5	5					
M12	VCCIO4	4					
M11	VCCIO4	4					
L12	VCCIO3	3					
K12	VCCIO3	3					
J12	VCCIO2	2					
H12	VCCIO2	2					
G12	VCCIO1	1					
G10	VCCIO1	1					

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100C	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280C-4TN100C	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280C-5TN100C	2280	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280C-3TN144C	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280C-4TN144C	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280C-5TN144C	2280	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280C-3MN132C	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280C-4MN132C	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280C-5MN132C	2280	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO2280C-3BN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO2280C-4BN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO2280C-5BN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO2280C-3FTN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO2280C-4FTN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO2280C-5FTN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM
LCMXO2280C-3FTN324C	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	COM
LCMXO2280C-4FTN324C	2280	1.8V/2.5V/3.3V	271	-4	Lead-Free ftBGA	324	COM
LCMXO2280C-5FTN324C	2280	1.8V/2.5V/3.3V	271	-5	Lead-Free ftBGA	324	COM
	LUIS	Supply voltage	I/Os	Grade	Раскаде	Pins	Temp.
LCMXO256E-3TN100C	256	1.2V	/8	-3	Lead-Free TQFP	100	СОМ
LCMXO256E-41N100C	256	1.2V	78	-4	Lead-Free TQFP	100	СОМ
LCMXO256E-5TN100C	256	1.2V	78	-5	Lead-Free TQFP	100	COM
LCMXO256E-3MN100C	256	1.2V	78	-3	Lead-Free csBGA	100	СОМ
LCMXO256E-4MN100C	256	1.2V	78	-4	Lead-Free csBGA	100	COM
LCMXO256E-5MN100C	256	1.2V	78	-5	Lead-Free csBGA	100	СОМ
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100C	640	1.2V	74	-3	Lead-Free TQFP	100	COM
LCMXO640E-4TN100C	640	1.2V	74	-4	Lead-Free TQFP	100	СОМ
LCMXO640E-5TN100C	640	1.2V	74	-5	Lead-Free TQFP	100	СОМ
LCMXO640E-3MN100C	640	1.2V	74	-3	Lead-Free csBGA	100	СОМ
LCMXO640E-4MN100C	640	1.2V	74	-4	Lead-Free csBGA	100	СОМ
LCMXO640E-5MN100C	640	1.2V	74	-5	Lead-Free csBGA	100	СОМ
LCMXO640E-3TN144C	640	1.2V	113	-3	Lead-Free TQFP	144	СОМ
LCMXO640E-4TN144C	640	1.2V	113	-4	Lead-Free TQFP	144	СОМ
LCMXO640E-5TN144C	640	1.2V	113	-5	Lead-Free TQFP	144	СОМ
LCMXO640E-3MN132C	640	1.2V	101	-3	Lead-Free csBGA	132	СОМ
LCMXO640E-4MN132C	640	1.2V	101	-4	Lead-Free csBGA	132	СОМ
LCMXO640E-5MN132C	640	1.2V	101	-5	Lead-Free csBGA	132	СОМ
LCMXO640E-3BN256C	640	1.2V	159	-3	Lead-Free caBGA	256	COM
LCMXO640E-4BN256C	640	1.2V	159	-4	Lead-Free caBGA	256	СОМ
LCMXO640E-5BN256C	640	1.2V	159	-5	Lead-Free caBGA	256	СОМ
LCMXO640E-3FTN256C	640	1.2V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640E-4FTN256C	640	1.2V	159	-4	Lead-Free ftBGA	256	СОМ
LCMXO640E-5ETN256C	640	1.2V	159	-5	Lead-Free ftBGA	256	COM

Lead-Free Packaging

LCMXO2280C-4FTN324I

2280

Industrial							
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND
		L L					<u></u>
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND
LCMXO640C-4TN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO640C-3BN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	IND
LCMXO640C-4BN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	IND
LCMXO640C-3FTN256I	640	1.8V/2.5V/3.3V	1.8V/2.5V/3.3V 159		Lead-Free ftBGA	256	IND
LCMXO640C-4FTN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200C-3BN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200C-4BN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200C-3FTN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200C-4FTN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280C-3BN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280C-4BN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280C-3FTN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280C-4FTN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280C-3FTN324I	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	IND

271

-4

Lead-Free ftBGA

324

IND

1.8V/2.5V/3.3V

Date	Version	Section	Change Summary
November 2006	02.3	DC and Switching Characteristics	Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.
			Added Flash Download Time table.
December 2006	02.4	Architecture	EBR Asynchronous Reset section added.
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.
February 2007	02.5	Architecture	Updated EBR Asynchronous Reset section.
August 2007	02.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.
November 2007	02.7	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.
June 2009	02.8	Introduction	Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table.
		Pinout Information	Added Logic Signal Connections table for 0.8-mm 256-pin caBGA package.
		Ordering Information	Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information.
July 2010	02.9	DC and Switching Characteristics	Updated sysCLOCK PLL Timing table.
June 2013	03.0	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	MachXO1200 and MachXO2280 Hot Socketing Specifications table – Removed footnote 4.
			Added MachXO Programming/Erase Specifications table.