
E. Lattice Semiconductor Corporation - <u>LCMX01200E-3FT256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	211
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200e-3ft256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

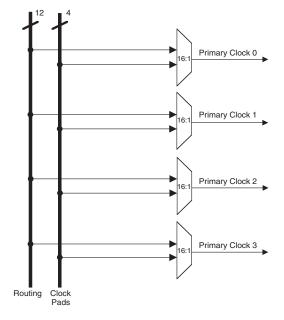
In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

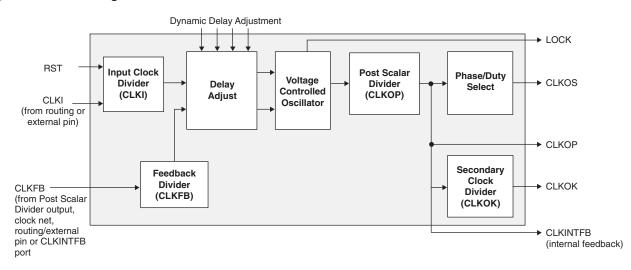


The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

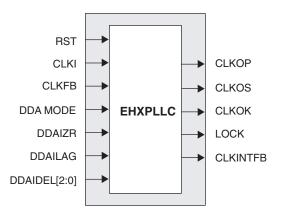

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

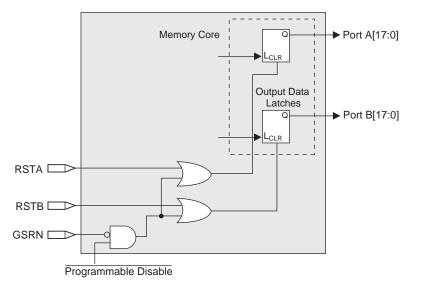

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations				
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36				
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18				
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36				
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36				

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

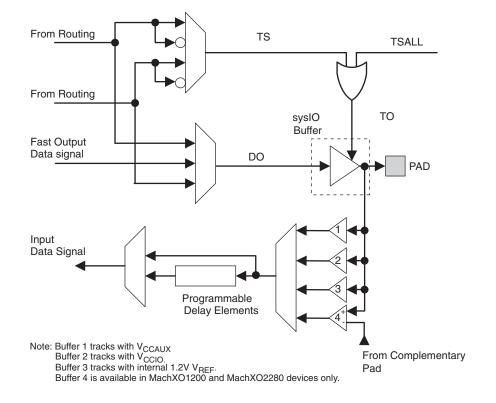
Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA	3.3
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS15, Open Drain	4mA, 8mA	—
LVCMOS12, Open Drain	2mA, 6mA	—
PCI33 ³	N/A	3.3
Differential Interfaces		
LVDS ^{1, 2}	N/A	2.5
BLVDS, RSDS ²	N/A	2.5
LVPECL ²	N/A	3.3

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

Figure 2-18. MachXO2280 Banks

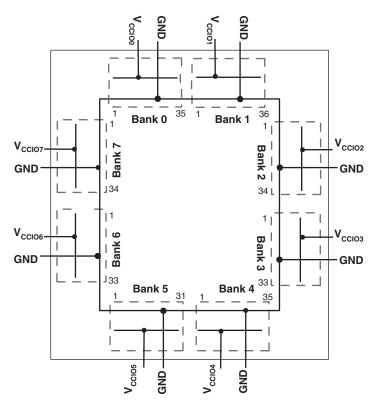
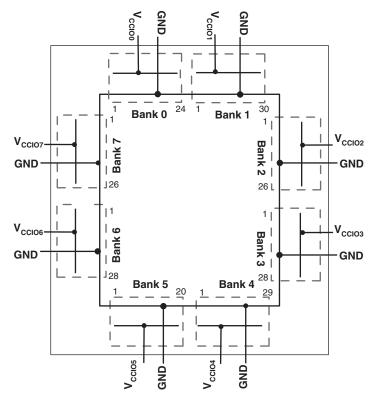
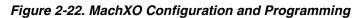
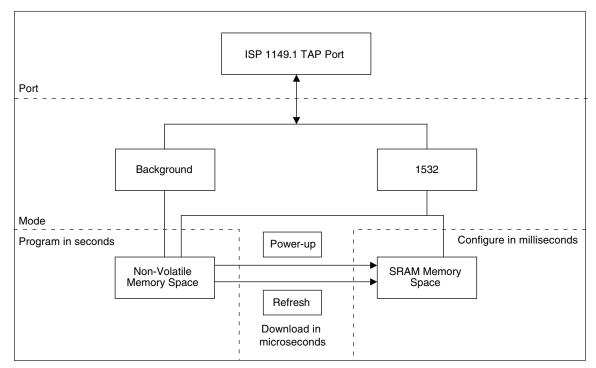





Figure 2-19. MachXO1200 Banks

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

MachXO256 and MachXO640 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Parameter Condition		Тур.	Max	Units
I _{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	+/-1000	μΑ

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

MachXO1200 and MachXO2280 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units		
Non-LVDS (General Purpose syslOs		·					
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	—	—	+/-1000	μA		
LVDS Gene	LVDS General Purpose syslOs							
1 .	Input or I/O Leakage Current	$V_{IN} \leq V_{CCIO}$	—		+/-1000	μA		
IDK_LVDS	Input of 1/O Leakage Current	V _{IN} > V _{CCIO}	_	35		mA		

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX), and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PW} or I_{BH}.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 4, 5}	Input or I/O Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μA
'IL, 'IH	Input of I/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—	_	40	μA
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30		150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30		—	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-150	μΑ
V _{BHT} ³	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)		V _{IH} (MIN)	V
C1	I/O Capacitance ²		_	8		pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} (MAX)$	_	8	_	pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0MHz

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Not applicable to SLEEPN pin.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For MachXO1200 and MachXO2280 true LVDS output pins, V_{IH} must be less than or equal to V_{CCIO}.

Initialization Supply Current^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	13	mA
		LCMXO640C	17	mA
		LCMXO1200C	21	mA
	Core Power Supply	LCMXO2280C	23	mA
ICC	Core Power Supply	LCMXO256E	10	mA
		LCMXO640E	14	mA
		LCMXO1200E	18	mA
		LCMXO2280E	20	mA
		LCMXO256E/C	10	mA
I _{CCAUX}	Auxiliary Power Supply	LCMXO640E/C	13	mA
	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	24	mA
		LCMXO2280E/C	25	mA
ICCIO	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. Typical user pattern.

5. $T_J = 25^{\circ}$ C, power supplies at nominal voltage.

6. Per Bank, V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	9	mA
		LCMXO640C	11	mA
		LCMXO1200C	16	mA
1	Core Power Supply	LCMXO2280C	22	mA
ICC	Cole Power Supply	LCMXO256E	6	mA
		LCMXO640E	8	mA
		LCMXO1200E	12	mA
		LCMXO2280E	14	mA
		LCMXO256C/E	8	mA
1	Auxiliary Power Supply	LCMXO640C/E	10	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200/E	15	mA
		LCMXO2280C/E	16	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Typical user pattern.

4. JTAG programming is at 25MHz.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCl ³	3.135	3.3	3.465		
LVDS ^{1, 2}	2.375	2.5	2.625		
LVPECL ¹	3.135	3.3	3.465		
BLVDS ¹	2.375	2.5	2.625		
RSDS ¹	2.375	2.5	2.625		

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}	V _{IH}		V _{OH} Min.		I _{OH} ¹
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	(V)	(mĀ)	(mÅ)
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
20010000.0	-0.5	-0.3 0.0	2.0	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
					0.4	2.4	16	-16
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4
				0.2	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
2000002.5	-0.5	0.7	1.7	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
	-0.3 0.35V	0.00 4 CCIO	0.03 ¢ CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
2001000 1.5	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.35V _{CC}	0.65V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("E" Version)	-0.5	0.00 v CC	0.03 v CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

MachXO Internal Timing Parameters¹

		-	5	-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Log	ic Mode Timing	•	1	1				
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	—	0.28		0.34	—	0.39	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.44	—	0.53	—	0.62	ns
t _{LSR_PFU}	Set/Reset to output of PFU	—	0.90	—	1.08	—	1.26	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) input setup time	0.10		0.13		0.15		ns
t _{HM_PFU}	Clock to Mux (M0,M1) input hold time	-0.05	—	-0.06	—	-0.07	_	ns
t _{SUD_PFU}	Clock to D input setup time	0.13	—	0.16	—	0.18	_	ns
t _{HD_PFU}	Clock to D input hold time	-0.03	—	-0.03		-0.04		ns
t _{CK2Q_PFU}	Clock to Q delay, D-type register configuration	—	0.40		0.48	—	0.56	ns
t _{LE2Q_PFU}	Clock to Q delay latch configuration	—	0.53	—	0.64	—	0.74	ns
t _{LD2Q_PFU}	D to Q throughput delay when latch is enabled	—	0.55		0.66	—	0.77	ns
PFU Dual Po	rt Memory Mode Timing	•				•		
t _{CORAM_PFU}	Clock to Output	—	0.40		0.48	—	0.56	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.22	_	-0.25	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34		0.39		ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.56		-0.65		ns
t _{HADDR_PFU}	Address Hold Time	0.71	—	0.85	_	0.99	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22	—	-0.26	_	-0.30	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33	—	0.40	_	0.47	_	ns
PIO Input/Ou	tput Buffer Timing							
t _{IN_PIO}	Input Buffer Delay	—	0.75		0.90	—	1.06	ns
t _{OUT_PIO}	Output Buffer Delay	—	1.29		1.54	—	1.80	ns
EBR Timing	1200 and 2280 Devices Only)							
t _{CO_EBR}	Clock to output from Address or Data with no output register	_	2.24	_	2.69	_	3.14	ns
t _{COO_EBR}	Clock to output from EBR output Register	—	0.54		0.64	—	0.75	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.31		-0.37		ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41	—	0.49	_	0.57	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26	—	-0.31	_	-0.37	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	_	0.57		ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.20	_	-0.23	_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	_	0.36	_	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	_	0.27	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.13		-0.16	—	-0.18		ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Regis- ter	—	1.03	_	1.23	_	1.44	ns
PLL Paramet	ers (1200 and 2280 Devices Only)							
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	—	1.00		1.00	_	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	—	1.00		1.00		ns
1 Internal para	meters are characterized but not tested on every device			•				

1. Internal parameters are characterized but not tested on every device.

Rev. A 0.19

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	P7, B6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	—
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	—
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	—
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC ⁴			—

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256			LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
A4	GNDIO0	0			A4	GNDIO0	0			
B4	PT3A	0		Т	B4	PT3B	0		С	
A3	PT2F	0		С	A3	PT3A	0		Т	
B3	PT2E	0		Т	B3	PT2F	0		С	
A2	PT2D	0		С	A2	PT2E	0		Т	
C3	PT2C	0		Т	C3	PT2B	0		С	
A1	PT2B	0		С	A1	PT2C	0			
B2	PT2A	0		Т	B2	PT2A	0		Т	
N9	GND	-			N9	GND	-			
B9	GND	-			B9	GND	-			
B5	VCCIO0	0			B5	VCCIO0	0			
A14	VCCIO0	0			A14	VCCIO1	1			
H14	VCCIO0	0			H14	VCCIO1	1			
P10	VCCIO1	1			P10	VCCIO2	2			
G1	VCCIO1	1			G1	VCCIO3	3			
P1	VCCIO1	1			P1	VCCIO3	3			

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA (Cont.)

		LCM)	(O640				LC	MXO1200				LC	MXO2280	
Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential
B9	PT7B	0		С	B9	PT9B	1		С	B9	PT12D	1		С
A9	PT7A	0		Т	A9	PT9A	1		Т	A9	PT12C	1		Т
A8	PT6B	0	PCLK0_1***	С	A8	PT7D	1	PCLK1_1***		A8	PT10B	1	PCLK1_1***	
B8	PT6A	0		Т	B8	PT7B	1			B8	PT9D	1		
C8	PT5B	0	PCLK0_0***	С	C8	PT6F	0	PCLK1_0***		C8	PT9B	1	PCLK1_0***	
B7	PT5A	0		Т	B7	PT6D	0			B7	PT8D	0		
A7	VCCAUX	-			A7	VCCAUX	-			A7	VCCAUX	-		
C7	VCC	-			C7	VCC	-			C7	VCC	-		
A6	PT4D	0		С	A6	PT5D	0		С	A6	PT7B	0		С
B6	PT4C	0		Т	B6	PT5C	0		Т	B6	PT7A	0		Т
C6	PT3F	0		С	C6	PT5B	0		С	C6	PT6D	0		
B5	PT3E	0		Т	B5	PT5A	0		Т	B5	PT6E	0		Т
A5	PT3D	0			A5	PT4B	0			A5	PT6F	0		С
B4	GNDIO0	0			B4	GNDIO0	0			B4	GNDIO0	0		
A4	PT3B	0			A4	PT3D	0		С	A4	PT4B	0		С
C4	PT2F	0			C4	PT3C	0		Т	C4	PT4A	0		Т
A3	PT2D	0		С	A3	PT3B	0		С	A3	PT3B	0		С
A2	PT2C	0		Т	A2	PT2B	0		С	A2	PT2B	0		С
B3	PT2B	0		С	B3	PT3A	0		Т	B3	PT3A	0		Т
A1	PT2A	0		Т	A1	PT2A	0		Т	A1	PT2A	0		Т
F1	GND	-			F1	GND	-			F1	GND	-		
P9	GND	-			P9	GND	-			P9	GND	-		
J14	GND	-			J14	GND	-			J14	GND	-		
C9	GND	-			C9	GND	-			C9	GND	-		
C5	VCCIO0	0			C5	VCCIO0	0			C5	VCCIO0	0		
B11	VCCIO0	0			B11	VCCIO1	1			B11	VCCIO1	1		
E12	VCCIO1	1			E12	VCCIO2	2			E12	VCCIO2	2		
L12	VCCIO1	1			L12	VCCIO3	3			L12	VCCIO3	3		
M10	VCCIO2	2			M10	VCCIO4	4			M10	VCCIO4	4		
N2	VCCIO2	2			N2	VCCIO5	5			N2	VCCIO5	5		
D2	VCCIO3	3			D2	VCCIO7	7			D2	VCCI07	7		
K3	VCCIO3	3			K3	VCCIO6	6			K3	VCCIO6	6		

*Supports true LVDS outputs. **NC for "E" devices. ***Primary clock inputs arer single-ended.

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential		
E13	PT16D	1		С		
C15	PT16C	1		Т		
F13	PT16B	1		С		
D14	PT16A	1		Т		
A18	PT15D	1		С		
B17	PT15C	1		Т		
A16	PT15B	1		С		
A17	PT15A	1		Т		
VCC	VCC	-				
D13	PT14D	1		С		
F12	PT14C	1		Т		
C14	PT14B	1		С		
E12	PT14A	1		Т		
C13	PT13D	1		С		
B16	PT13C	1		Т		
B15	PT13B	1		С		
A15	PT13A	1		Т		
VCCIO1	VCCIO1	1				
GND	GNDIO1	1				
B14	PT12F	1		С		
A14	PT12E	1		Т		
D12	PT12D	1		С		
F11	PT12C	1		Т		
B13	PT12B	1		С		
A13	PT12A	1		Т		
C12	PT11D	1		С		
GND	GND	-				
B12	PT11C	1		Т		
E11	PT11B	1		С		
D11	PT11A	1		Т		
C11	PT10F	1		С		
A12	PT10E	1		Т		
VCCIO1	VCCIO1	1				
GND	GNDIO1	1				
F10	PT10D	1		С		
D10	PT10C	1		Т		
B11	PT10B	1	PCLK1_1***	С		
A11	PT10A	1		Т		
E10	PT9D	1		С		
C10	PT9C	1		Т		
D9	PT9B	1	PCLK1_0***	С		
E9	PT9A	1		Т		
B10	PT8F	0		С		

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100I	256	1.2V	78	-3	TQFP	100	IND
LCMXO256E-4T100I	256	1.2V	78	-4	TQFP	100	IND
LCMXO256E-3M100I	256	1.2V	78	-3	csBGA	100	IND
LCMXO256E-4M100I	256	1.2V	78	-4	csBGA	100	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100I	640	1.2V	74	-3	TQFP	100	IND
LCMXO640E-4T100I	640	1.2V	74	-4	TQFP	100	IND
LCMXO640E-3M100I	640	1.2V	74	-3	csBGA	100	IND
LCMXO640E-4M100I	640	1.2V	74	-4	csBGA	100	IND
LCMXO640E-3T144I	640	1.2V	113	-3	TQFP	144	IND
LCMXO640E-4T144I	640	1.2V	113	-4	TQFP	144	IND
LCMXO640E-3M132I	640	1.2V	101	-3	csBGA	132	IND
LCMXO640E-4M132I	640	1.2V	101	-4	csBGA	132	IND
LCMXO640E-3B256I	640	1.2V	159	-3	caBGA	256	IND
LCMXO640E-4B256I	640	1.2V	159	-4	caBGA	256	IND
LCMXO640E-3FT256I	640	1.2V	159	-3	ftBGA	256	IND
LCMXO640E-4FT256I	640	1.2V	159	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100I	1200	1.2V	73	-3	TQFP	100	IND
LCMXO1200E-4T100I	1200	1.2V	73	-4	TQFP	100	IND
LCMXO1200E-3T144I	1200	1.2V	113	-3	TQFP	144	IND
LCMXO1200E-4T144I	1200	1.2V	113	-4	TQFP	144	IND
LCMXO1200E-3M132I	1200	1.2V	101	-3	csBGA	132	IND
LCMXO1200E-4M132I	1200	1.2V	101	-4	csBGA	132	IND
LCMXO1200E-3B256I	1200	1.2V	211	-3	caBGA	256	IND
LCMXO1200E-4B256I	1200	1.2V	211	-4	caBGA	256	IND
LCMXO1200E-3FT256I	1200	1.2V	211	-3	ftBGA	256	IND
LCMXO1200E-4FT256I	1200	1.2V	211	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100I	2280	1.2V	73	-3	TQFP	100	IND
LCMXO2280E-4T100I	2280	1.2V	73	-4	TQFP	100	IND
LCMXO2280E-3T144I	2280	1.2V	113	-3	TQFP	144	IND
LCMXO2280E-4T144I	2280	1.2V	113	-4	TQFP	144	IND
LCMXO2280E-3M132I	2280	1.2V	101	-3	csBGA	132	IND
LCMXO2280E-4M132I	2280	1.2V	101	-4	csBGA	132	IND
LCMXO2280E-3B256I	2280	1.2V	211	-3	caBGA	256	IND
LCMXO2280E-4B256I	2280	1.2V	211	-4	caBGA	256	IND
LCMXO2280E-3FT256I	2280	1.2V	211	-3	ftBGA	256	IND
LCMXO2280E-4FT256I	2280	1.2V	211	-4	ftBGA	256	IND
LCMXO2280E-3FT324I	2280	1.2V	271	-3	ftBGA	324	IND
LCMXO2280E-4FT324I	2280	1.2V	271	-4	ftBGA	324	IND

MachXO Family Data Sheet Supplemental Information

June 2013

Data Sheet DS1002

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site.

- TN1091, MachXO sysIO Usage Guide
- TN1089, MachXO sysCLOCK Design and Usage Guide
- TN1092, Memory Usage Guide for MachXO Devices
- TN1090, Power Estimation and Management for MachXO Devices
- TN1086, MachXO JTAG Programming and Configuration User's Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1097, MachXO Density Migration
- AN8066, Boundary Scan Testability with Lattice sysIO Capability

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
November 2006	02.3	DC and Switching Characteristics	Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.
			Added Flash Download Time table.
December 2006	02.4	Architecture	EBR Asynchronous Reset section added.
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.
February 2007	02.5	Architecture	Updated EBR Asynchronous Reset section.
August 2007	02.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.
		DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.
June 2009	02.8	Introduction	Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table.
		Pinout Information	Added Logic Signal Connections table for 0.8-mm 256-pin caBGA package.
		Ordering Information	Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information.
July 2010	02.9	DC and Switching Characteristics	Updated sysCLOCK PLL Timing table.
June 2013	03.0	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	MachXO1200 and MachXO2280 Hot Socketing Specifications table – Removed footnote 4.
			Added MachXO Programming/Erase Specifications table.