
E. Lattice Semiconductor Corporation - <u>LCMX01200E-4B256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	150
Number of Logic Elements/Cells	1200
Total RAM Bits	9421
Number of I/O	211
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA, CSPBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo1200e-4b256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-6. Distributed Memory Primitives

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table	2-4.	PFU	Modes	of	Operation
-------	------	-----	-------	----	-----------

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

Routing

There are many resources provided in the MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

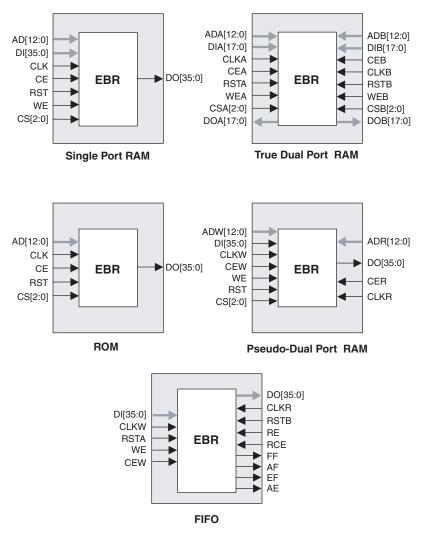
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0
	·

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Figure 2-18. MachXO2280 Banks

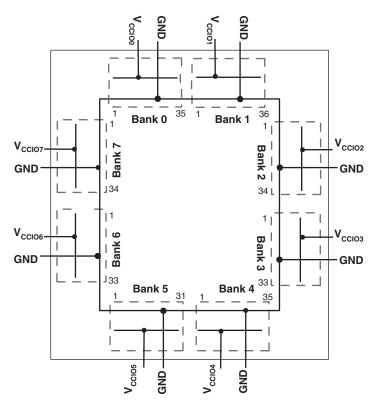
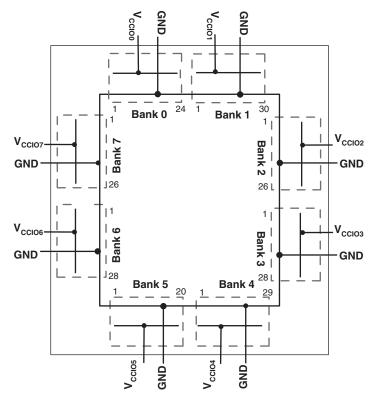



Figure 2-19. MachXO1200 Banks

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, <u>Minimizing System Interruption During Configura-</u> tion Using TransFR Technology for details.

Security

The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

MachXO Family Data Sheet DC and Switching Characteristics

June 2013

Data Sheet DS1002

Absolute Maximum Ratings^{1, 2, 3}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁴	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁴	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
Maa	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
V _{CC}	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ³	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO²}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	Junction Temperature Commercial Operation		+85	°C
t _{JIND}	Junction Temperature Industrial Operation		100	°C
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial		+85	°C
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	-40	100	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both 2.5V, they must also be the same supply. 3.3V V_{CCIO} and 1.2V V_{CCIO} should be tied to V_{CCAUX} or 1.2V V_{CC} respectively.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CC} must reach minimum V_{CC} value before V_{CCAUX} reaches 2.5V.

MachXO Programming/Erase Specifications

Symbol	Parameter	Min.	Max.	Units
N	Flash Programming Cycles per t _{RETENTION}		1,000	Cycles
N _{PROGCYC}	Flash Functional Programming Cycles		10,000	Cycles
t _{RETENTION}	Data Retention at 125° Junction Temperature	10		Years

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	ameter Device		Max.	Units
		LCMXO256C	12	25	μA
	Core Power Supply	LCMXO640C	12	25	μA
ICC		LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
		LCMXO256C	1	15	μA
L	Auxiliary Power Supply	LCMXO640C	1	25	μA
ICCAUX	CCAUX Auxiliary Power Supply	LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
СС	C Core Power Supply	LCMXO256E	4	mA
		LCMXO640E	6	mA
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
		LCMXO256E/C	5	mA
	Auxiliary Power Supply	LCMXO640E/C	7	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
ccio	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCI ³	3.135	3.3	3.465		
LVDS ^{1, 2}	2.375	2.5	2.625		
LVPECL ¹	3.135	3.3	3.465		
BLVDS ¹	2.375	2.5	2.625		
RSDS ¹	2.375	2.5	2.625		

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL} Max.	V _{OH} Min.		I _{OH} ¹
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mÅ)
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
	-0.5	0.0	2.0	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
					0.4	2.4	16	-16
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
2000002.5	-0.5	0.7	1.7	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
2001000 1.5	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.35V _{CC}	0.65V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("E" Version)	-0.5	0.00 v CC	0.03 v CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	6.7	ns
4:1 MUX	4.5	ns
16:1 MUX	5.1	ns

Register-to-Register Performance

Function	-5 Timing	Units
Basic Functions	· · · · ·	
16:1 MUX	487	MHz
16-bit adder	292	MHz
16-bit counter	388	MHz
64-bit counter	200	MHz
Embedded Memory Functions (120	and 2280 Devices Only)	
256x36 Single Port RAM	284	MHz
512x18 True-Dual Port RAM	284	MHz
Distributed Memory Functions	•	
16x2 Single Port RAM	434	MHz
64x2 Single Port RAM	320	MHz
128x4 Single Port RAM	261	MHz
32x2 Pseudo-Dual Port RAM	314	MHz
64x4 Pseudo-Dual Port RAM	271	MHz

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	P7, B6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	—
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	—
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	—
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC ⁴			—

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	XO256		LCMXO640				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	
43	PB4A	1		Т	PB8B	2			
44	PB4B	1		С	PB8C	2		Т	
45	PB4C	1		T	PB8D	2		C	
46	PB4D	1		C	PB9A	2		-	
47	PB5A	1			PB9C	2		Т	
48*	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN		
49	PB5C	1		Т	PB9D	2		С	
50	PB5D	1		C	PB9F	2		-	
51	PR9B	0		C	PR11D	1		С	
52	PR9A	0		T	PR11B	1		C	
53	PR8B	0		C	PR11C	1		T	
54	PR8A	0		T	PR11A	1		T	
55	PR7D	0		C	PR10D	1		C	
56	PR7C	0		Т	PR10C	1		Т	
57	PR7B	0		C	PR10B	1		C	
58	PR7A	0		Т	PR10A	1		Т	
59	PR6B	0		C	PR9D	1		-	
60	VCCIO0	0		C	VCCIO1	1			
61	PR6A	0		Т	PR9B	1			
				I					
62	GNDIO0	0			GNDIO1	1			
63	PR5D	0		C	PR7B	1			
64	PR5C	0		Т	PR6C	1			
65	PR5B	0		C	PR6B	1			
66	PR5A	0		Т	PR5D	1			
67	PR4B	0		С	PR5B	1			
68	PR4A	0		Т	PR4D	1			
69	PR3D	0		С	PR4B	1			
70	PR3C	0		Т	PR3D	1			
71	PR3B	0		С	PR3B	1			
72	PR3A	0		Т	PR2D	1			
73	PR2B	0		С	PR2B	1			
74	VCCIO0	0			VCCIO1	1			
75	GNDIO0	0			GNDIO1	1			
76	PR2A	0		Т	PT9F	0		С	
77	PT5C	0			PT9E	0		Т	
78	PT5B	0		С	PT9C	0			
79	PT5A	0		Т	PT9A	0			
80	PT4F	0		С	VCCIO0	0			
81	PT4E	0		Т	GNDIO0	0			
82	PT4D	0	1	С	PT7E	0			
83	PT4C	0		Т	PT7A	0			
84	GND	-			GND	-			

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	(O256		LCMXO640					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**			
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С		
87	PT3D	0		С	PT5A	0		Т		
88	VCCAUX	-			VCCAUX	-				
89	PT3C	0		Т	PT4F	0				
90	VCC	-			VCC	-				
91	PT3B	0		С	PT3F	0				
92	VCCIO0	0			VCCIO0	0				
93	GNDIO0	0			GNDIO0	0				
94	PT3A	0		Т	PT3B	0		С		
95	PT2F	0		С	PT3A	0		Т		
96	PT2E	0		Т	PT2F	0		С		
97	PT2D	0		С	PT2E	0		Т		
98	PT2C	0		Т	PT2B	0		С		
99	PT2B	0		С	PT2C	0				
100	PT2A	0		Т	PT2A	0		Т		

* NC for "E" devices.

** Primary clock inputs are single-ended.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		L	CMXO1200			L	CMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
42	PB9A	4		Т	PB12A	4		Т
43	PB9B	4		С	PB12B	4		С
44	VCCIO4	4			VCCIO4	4		
45	PB10A	4		Т	PB13A	4		Т
46	PB10B	4		С	PB13B	4		С
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
48	PB11A	4		Т	PB16A	4		Т
49	PB11B	4		С	PB16B	4		С
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-		
51	PR16B	3			PR19B	3		
52	PR15B	3		C*	PR18B	3		C*
53	PR15A	3		T*	PR18A	3		T*
54	PR14B	3		C*	PR17B	3		C*
55	PR14A	3		T*	PR17A	3		T*
56	VCCIO3	3			VCCIO3	3		
57	PR12B	3		C*	PR15B	3		C*
58	PR12A	3		T*	PR15A	3		T*
59	GND	-			GND	-		
60	PR10B	3		C*	PR13B	3		C*
61	PR10A	3		T*	PR13A	3		T*
62	PR9B	3		C*	PR11B	3		C*
63	PR9A	3		T*	PR11A	3		T*
64	PR8B	2		C*	PR10B	2		C*
65	PR8A	2		T*	PR10A	2		T*
66	VCC	-			VCC	-		
67	PR6C	2			PR8C	2		
68	PR6B	2		C*	PR8B	2		C*
69	PR6A	2		T*	PR8A	2		T*
70	VCCIO2	2			VCCIO2	2		
71	PR4D	2			PR5D	2		
72	PR4B	2		C*	PR5B	2		C*
73	PR4A	2		Τ*	PR5A	2		Τ*
74	PR2B	2		С	PR3B	2		C*
75	PR2A	2		Т	PR3A	2		T*
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-		
77	PT11C	1			PT15C	1		
78	PT11B	1		С	PT14B	1		С
79	PT11A	1		Т	PT14A	1		Т
80	VCCIO1	1			VCCIO1	1		
81	PT9E	1			PT12D	1		С

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256	6		LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
P13	PB5A	1			P13	PB9C	2		Т	
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN		
P14	PB5C	1		Т	P14	PB9D	2		С	
N13	PB5D	1		С	N13	PB9F	2			
N14	PR9B	0		С	N14	PR11D	1		С	
M14	PR9A	0		Т	M14	PR11B	1		С	
L13	PR8B	0		С	L13	PR11C	1		Т	
L14	PR8A	0		Т	L14	PR11A	1		Т	
M13	PR7D	0		С	M13	PR10D	1		С	
K14	PR7C	0		Т	K14	PR10C	1		Т	
K13	PR7B	0		С	K13	PR10B	1		С	
J14	PR7A	0		Т	J14	PR10A	1		Т	
J13	PR6B	0		С	J13	PR9D	1			
H13	PR6A	0		Т	H13	PR9B	1			
G14	GNDIO0	0			G14	GNDIO1	1			
G13	PR5D	0		С	G13	PR7B	1			
F14	PR5C	0		Т	F14	PR6C	1			
F13	PR5B	0		С	F13	PR6B	1			
E14	PR5A	0		Т	E14	PR5D	1			
E13	PR4B	0		С	E13	PR5B	1			
D14	PR4A	0		Т	D14	PR4D	1			
D13	PR3D	0		С	D13	PR4B	1			
C14	PR3C	0		Т	C14	PR3D	1			
C13	PR3B	0		С	C13	PR3B	1			
B14	PR3A	0		Т	B14	PR2D	1			
C12	PR2B	0		С	C12	PR2B	1			
B13	GNDIO0	0			B13	GNDIO1	1			
A13	PR2A	0		Т	A13	PT9F	0		С	
A12	PT5C	0			A12	PT9E	0		Т	
B11	PT5B	0		С	B11	PT9C	0			
A11	PT5A	0		Т	A11	PT9A	0			
B12	PT4F	0		С	B12	VCCIO0	0			
A10	PT4E	0		Т	A10	GNDIO0	0			
B10	PT4D	0		С	B10	PT7E	0			
A9	PT4C	0		Т	A9	PT7A	0			
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**		
B8	PT4A	0	PCLK0_0**	T	B8	PT5B	0	PCLK0_0**	С	
A7	PT3D	0		C	A7	PT5A	0		T	
B7	VCCAUX	-		-	B7	VCCAUX	-			
A6	PT3C	0		Т	A6	PT4F	0			
B6	VCC	-			B6	VCC	-			
A5	PT3B	0		С	A5	PT3F	0			
		v		~			•	1		

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256					LCMXO640)	
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO2280 Logic Signal Connections: 324 ftBGA

LCMXO2280								
Ball Number	Ball Function	Bank	Dual Function	Differentia				
GND	GNDIO7	7						
VCCIO7	VCCIO7	7						
D4	PL2A	7	LUM0_PLLT_FB_A	Т				
F5	PL2B	7	LUM0_PLLC_FB_A	С				
B3	PL3A	7		T*				
C3	PL3B	7		C*				
E4	PL3C	7	LUM0_PLLT_IN_A	Т				
G6	PL3D	7	LUM0_PLLC_IN_A	С				
A1	PL4A	7		Τ*				
B1	PL4B	7		C*				
F4	PL4C	7		Т				
VCC	VCC	-						
E3	PL4D	7		С				
D2	PL5A	7		Τ*				
D3	PL5B	7		C*				
G5	PL5C	7		Т				
F3	PL5D	7		С				
C2	PL6A	7		T*				
VCCIO7	VCCIO7	7						
GND	GNDIO7	7						
C1	PL6B	7		C*				
H5	PL6C	7		Т				
G4	PL6D	7		С				
E2	PL7A	7		T*				
D1	PL7B	7	GSRN	C*				
J6	PL7C	7		Т				
H4	PL7D	7		С				
F2	PL8A	7		T*				
E1	PL8B	7		C*				
GND	GND	-						
J3	PL8C	7		Т				
J5	PL8D	7		С				
G3	PL9A	7		T*				
H3	PL9B	7		C*				
K3	PL9C	7		Т				
K5	PL9D	7		С				
F1	PL10A	7		T*				
VCCIO7	VCCIO7	7						
GND	GNDIO7	7						
G1	PL10B	7		C*				
K4	PL10C	7		Т				
K6	PL10D	7		C				

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280								
Ball Number	Ball Function	Bank	Dual Function	Differential				
J13	PR10C	2		Т				
M18	PR10B	2		C*				
L18	PR10A	2		T*				
GND	GNDIO2	2						
VCCIO2	VCCIO2	2						
H16	PR9D	2		С				
H14	PR9C	2		Т				
K18	PR9B	2		C*				
J18	PR9A	2		T*				
J17	PR8D	2		С				
VCC	VCC	-						
H18	PR8C	2		Т				
H17	PR8B	2		C*				
G17	PR8A	2		Τ*				
H13	PR7D	2		С				
H15	PR7C	2		Т				
G18	PR7B	2		C*				
F18	PR7A	2		T*				
G14	PR6D	2		С				
G16	PR6C	2		Т				
VCCIO2	VCCIO2	2						
GND	GNDIO2	2						
E18	PR6B	2		C*				
F17	PR6A	2		T*				
G13	PR5D	2		С				
G15	PR5C	2		Т				
E17	PR5B	2		C*				
E16	PR5A	2		T*				
GND	GND	-						
F15	PR4D	2		С				
E15	PR4C	2		Т				
D17	PR4B	2		C*				
D18	PR4A	2		T*				
B18	PR3D	2		С				
C18	PR3C	2		Т				
C16	PR3B	2		C*				
D16	PR3A	2		T*				
C17	PR2B	2		С				
D15	PR2A	2		Т				
VCCIO2	VCCIO2	2						
GND	GNDIO2	2						
GND	GNDIO1	1						
VCCIO1	VCCIO1	1						

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100C	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280C-4TN100C	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280C-5TN100C	2280	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280C-3TN144C	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280C-4TN144C	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280C-5TN144C	2280	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280C-3MN132C	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280C-4MN132C	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280C-5MN132C	2280	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO2280C-3BN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO2280C-4BN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO2280C-5BN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO2280C-3FTN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO2280C-4FTN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO2280C-5FTN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM
LCMXO2280C-3FTN324C	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	COM
LCMXO2280C-4FTN324C	2280	1.8V/2.5V/3.3V	271	-4	Lead-Free ftBGA	324	COM
LCMXO2280C-5FTN324C	2280	1.8V/2.5V/3.3V	271	-5	Lead-Free ftBGA	324	COM
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100C	256	1.2V	78	-3	Lead-Free TQFP	100	COM
LCMXO256E-4TN100C	256	1.2V	78	-4	Lead-Free TQFP	100	COM
LCMXO256E-5TN100C	256	1.2V	78	-5	Lead-Free TQFP	100	COM
LCMXO256E-3MN100C	256	1.2V	78	-3	Lead-Free csBGA	100	COM
LCMXO256E-4MN100C	256	1.2V	78	-4	Lead-Free csBGA	100	COM
LCMXO256E-5MN100C	256	1.2V	78	-5	Lead-Free csBGA	100	COM
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100C	640	1.2V	74	-3	Lead-Free TQFP	100	COM
LCMXO640E-4TN100C	640	1.2V	74	-4	Lead-Free TQFP	100	COM
LCMXO640E-5TN100C	640	1.2V	74	-5	Lead-Free TQFP	100	COM
LCMXO640E-3MN100C	640	1.2V	74	-3	Lead-Free csBGA	100	COM
LCMXO640E-4MN100C	640	1.2V	74	-4	Lead-Free csBGA	100	COM
LCMXO640E-5MN100C	640	1.2V	74	-5	Lead-Free csBGA	100	COM
LCMXO640E-3TN144C	640	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO640E-4TN144C	640	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO640E-5TN144C	640	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO640E-3MN132C	640	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO640E-4MN132C	640	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO640E-5MN132C	640	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO640E-3BN256C	640	1.2V	159	-3	Lead-Free caBGA	256	COM
LCMXO640E-4BN256C	640	1.2V	159	-4	Lead-Free caBGA	256	COM
LCMXO640E-5BN256C	640	1.2V	159	-5	Lead-Free caBGA	256	COM
LCMXO640E-3FTN256C	640	1.2V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640E-4FTN256C	640	1.2V	159	-4	Lead-Free ftBGA	256	COM
LCMX0640E-5FTN256C	640	1.2V	159	-5	Lead-Free ftBGA	256	COM
	540	1. <u>~</u> V	100		LOUGINDUA	200	

Date	Version	Section	Change Summary
April 2006 (cont.)	02.0 Architecture (cont.) (cont.)		"Top View of the MachXO1200 Device" figure updated.
			"Top View of the MachXO640 Device" figure updated.
			"Top View of the MachXO256 Device" figure updated.
			"Slice Diagram" figure updated.
			Slice Signal Descriptions table updated.
			Routing section updated.
			sysCLOCK Phase Lockecd Loops (PLLs) section updated.
			PLL Diagram updated.
			PLL Signal Descriptions table updated.
			sysMEM Memory section has been updated.
			PIO Groups section has been updated.
			PIO section has been updated.
			MachXO PIO Block Diagram updated.
			Supported Input Standards table updated.
			MachXO Configuration and Programming diagram updated.
		DC and Switching Characteristics	Recommended Operating Conditions table - footnotes updated.
			MachXO256 and MachXO640 Hot Socketing Specifications - footnotes updated.
			Added MachXO1200 and MachXO2280 Hot Socketing Specifications table.
			DC Electrical Characteristics, footnotes have been updated.
			Supply Current (Sleep Mode) table has been updated, removed "4W" references. Footnotes have been updated.
			Supply Current (Standby) table and associated footnotes updated.
			Intialization Supply Current table and footnotes updated.
			Programming and Erase Flash Supply Current table and associated footnotes have been updatd.
			Register-to-Register Performance table updated (rev. A 0.19).
			MachXO External Switching Characteristics updated (rev. A 0.19).
			MachXO Internal Timing Parameters updated (rev. A 0.19).
			MachXO Family Timing Adders updated (rev. A 0.19).
			sysCLOCK Timing updated (rev. A 0.19).
			MachXO "C" Sleep Mode Timing updated (A 0.19).
			JTAG Port Timing Specification updated (rev. A 0.19).
			Test Fixture Required Components table updated.
		Pinout Information	Signal Descriptions have been updated.
			Pin Information Summary has been updated. Footnote has been added.
			Power Supply and NC Connection table has been updated.
			Logic Signal Connections have been updated (PCLKTx_x> PCLKx_x)
		Ordering Information	Removed "4W" references.
			Added 256-ftBGA Ordering Part Numbers for MachXO640.
May 2006	02.1	Pinout Information	Removed [LOC][0]_PLL_RST from Signal Description table.
-			PCLK footnote has been added to all appropriate pins.
August 2006	02.2	Multiple	Removed 256 fpBGA information for MachXO640.