
E. Lattice Semiconductor Corporation - <u>LCMX02280C-3M132C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	285
Number of Logic Elements/Cells	2280
Total RAM Bits	28262
Number of I/O	101
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2280c-3m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

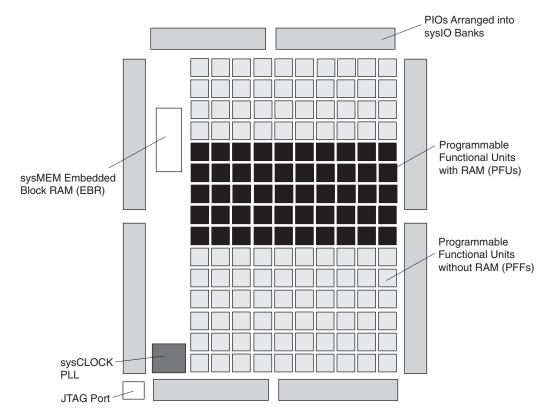
The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.


The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

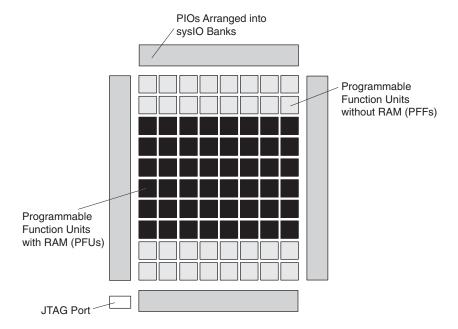


Figure 2-1. Top View of the MachXO1200 Device¹

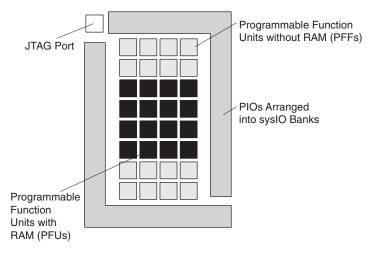
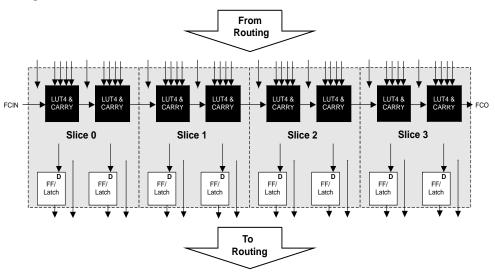

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device


Figure 2-3. Top View of the MachXO256 Device

PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram

Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

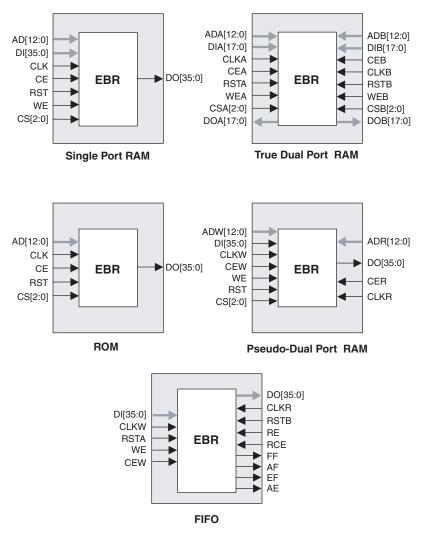
Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

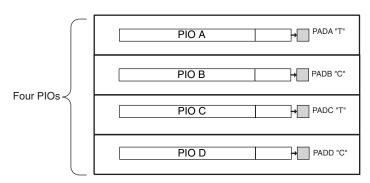

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives


PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

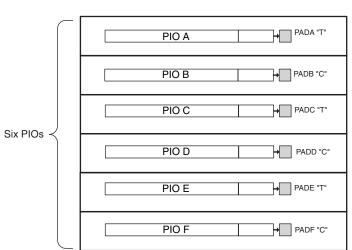

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of Six Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices $\label{eq:machine}$

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

Figure 2-18. MachXO2280 Banks

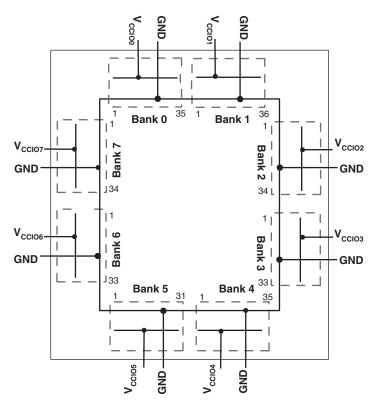
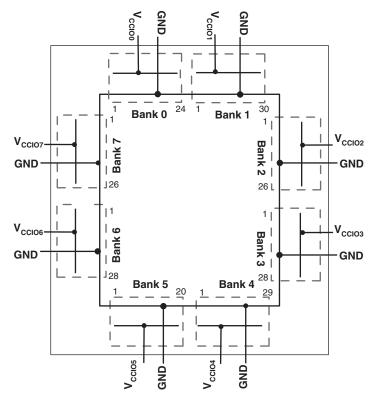



Figure 2-19. MachXO1200 Banks

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

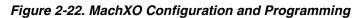
SLEEPN Pin Characteristics

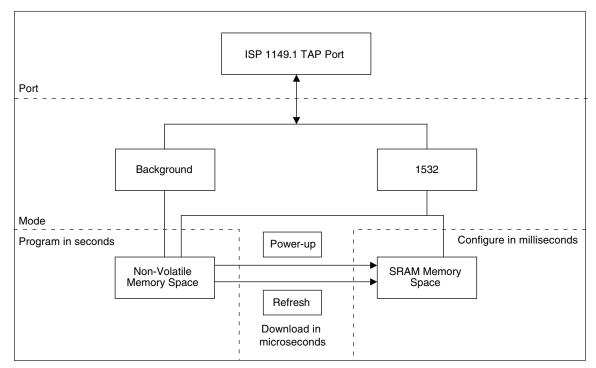
The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing


The following section describes the configuration and testing features of the MachXO family of devices.


IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	Device	Typ. ³	Max.	Units
		LCMXO256C	12	25	μA
Icc	Core Dower Supply	LCMXO640C	12	25	μA
	Core Power Supply	LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
		LCMXO256C	1	15	μA
L	Auxiliary Power Supply	LCMXO640C	1	25	μA
ICCAUX	Auxiliary Fower Supply	LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
ICC	Core Power Supply	LCMXO256E	4	mA
		LCMXO640E	6	mA
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
I _{CCAUX}		LCMXO256E/C	5	mA
	Auxiliary Power Supply	LCMXO640E/C	7	mA
	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
ccio	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

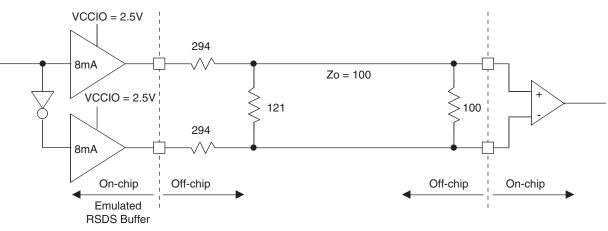
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.



For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units		
Basic Functions				
16-bit decoder	6.7	ns		
4:1 MUX	4.5	ns		
16:1 MUX	5.1	ns		

Register-to-Register Performance

Function	-5 Timing	Units
Basic Functions	1	
16:1 MUX	487	MHz
16-bit adder	292	MHz
16-bit counter	388	MHz
64-bit counter	200	MHz
Embedded Memory Functions (1200 a	and 2280 Devices Only)	
256x36 Single Port RAM	284	MHz
512x18 True-Dual Port RAM	284	MHz
Distributed Memory Functions	t	
16x2 Single Port RAM	434	MHz
64x2 Single Port RAM	320	MHz
128x4 Single Port RAM	261	MHz
32x2 Pseudo-Dual Port RAM	314	MHz
64x4 Pseudo-Dual Port RAM	271	MHz

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	P7, B6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	—
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	—
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	—
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC ⁴			—

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640			LCMXO1200			LCMXO2280					
Ball	Ball		Dual		Ball	Ball		Dual		Ball	Ball		Dual	
Number		Bank	Function	Differential			Bank	Function	Differential		Function	Bank	Function	Differential
E11	NC				E11	PT10D	1		C	E11	PT15B	1		C
E10 D12	NC	0		с	E10 D12	PT10C PT10B	1		T C	E10 D12	PT15A PT14D	1		T C
D12	PT9D PT9C	0		Т	D12	PT10B PT10A	1		Т	D12	PT14D PT14C	1		т
-	PT9C PT7F	0		C	A14	PT10A PT9F	1		C	A14	PT14C PT14B	1		C I
A14	PT7E			Т		PT9F PT9E			Т		PT14B PT14A			т
A13 C12	PT8B	0		C	A13 C12	PT9D	1		C	A13 C12	PT14A PT13D	1		C
C12	PT8A	0		Т	C11	PT9C	1		т	C12	PT13C	1		Т
-	-	0		1	VCCIO1	VCCIO1	1		1	VCCIO1	VCCIO1	1		1
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
B12	PT7B	0		С	B12	PT9B	1		С	B12	PT12D	1		С
B12 B11	PT7A	0		Т	B12 B11	PT9A	1		Т	B11	PT12C	1		Т
A12	PT7D	0		C	A12	PT8F	1		C	A12	PT12B	1		C
A11	PT7C	0		T	A11	PT8E	1		T	A11	PT12A	1		T
GND	GND	-			GND	GND	-			GND	GND	-		
B10	PT5D	0		С	B10	PT8D	1		С	B10	PT11B	1		С
B9	PT5C	0		T	B9	PT8C	1		Т	B9	PT11A	1		T
D10	PT8D	0		C	D10	PT8B	1		C	D10	PT10F	1		C
D9	PT8C	0		T	D9	PT8A	1		Т	D9	PT10E	1		Т
-	-	-			VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
C10	PT6D	0		С	C10	PT7F	1		С	C10	PT10D	1		С
C9	PT6C	0		Т	C9	PT7E	1		т	C9	PT10C	1		т
A9	PT6B	0	PCLK0_1***	С	A9	PT7D	1	PCLK1_1***	С	A9	PT10B	1	PCLK1_1***	С
A10	PT6A	0	_	Т	A10	PT7C	1	_	т	A10	PT10A	1		т
E9	PT9B	0		С	E9	PT7B	1		С	E9	PT9D	1		С
E8	PT9A	0		Т	E8	PT7A	1		т	E8	PT9C	1		т
D7	PT5B	0	PCLK0_0***	С	D7	PT6F	0	PCLK1_0***	С	D7	PT9B	1	PCLK1_0***	С
D8	PT5A	0		Т	D8	PT6E	0		т	D8	PT9A	1		т
VCCI00	VCCI00	0			VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0		
GND	GNDIO0	0			GND	GNDIO0	0			GND	GNDIO0	0		
C8	PT4F	0		С	C8	PT6D	0		С	C8	PT8D	0		С
B8	PT4E	0		Т	B8	PT6C	0		Т	B8	PT8C	0		Т
A8	VCCAUX	-			A8	VCCAUX	-			A8	VCCAUX	-		
A7	PT4D	0		С	A7	PT6B	0		С	A7	PT7D	0		С
A6	PT4C	0		Т	A6	PT6A	0		Т	A6	PT7C	0		Т
VCC	VCC	-			VCC	VCC	-			VCC	VCC	-		
B7	PT4B	0		С	B7	PT5F	0		С	B7	PT7B	0		С
B6	PT4A	0		Т	B6	PT5E	0		Т	B6	PT7A	0		Т
C6	PT3C	0		Т	C6	PT5C	0		Т	C6	PT6A	0		Т
C7	PT3D	0		С	C7	PT5D	0		С	C7	PT6B	0		С
A5	PT3E	0		Т	A5	PT5A	0		Т	A5	PT6C	0		Т
A4	PT3F	0		С	A4	PT5B	0		С	A4	PT6D	0		С
E7	NC				E7	PT4C	0		Т	E7	PT6E	0		Т
E6	NC				E6	PT4D	0		С	E6	PT6F	0		С
B5	PT3B	0		С	B5	PT3F	0		С	B5	PT5D	0		С
B4	PT3A	0		Т	B4	PT3E	0		Т	B4	PT5C	0		Т
D5	PT2D	0		С	D5	PT3D	0		С	D5	PT5B	0		С
D6	PT2C	0		Т	D6	PT3C	0		Т	D6	PT5A	0		Т
C4	PT2E	0		Т	C4	PT4A	0		Т	C4	PT4A	0		Т
C5	PT2F	0		С	C5	PT4B	0		С	C5	PT4B	0		С
-	-	-			-	-	-			GND	GND	-		
D4	NC				D4	PT2D	0		С	D4	PT3D	0		С

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Dell Number	Poll Function	LCMXO2280	Dual Constinue	D:#
Ball Number	Ball Function	Bank	Dual Function	Differential
T2	PL20B	6		С
P6	TMS	5	TMS	
V1	PB2A	5		Т
U2	PB2B	5		С
Т3	PB2C	5		Т
N7	ТСК	5	ТСК	
R4	PB2D	5		С
R5	PB3A	5		Т
T4	PB3B	5		С
VCC	VCC	-		
R6	PB3C	5		Т
P7	PB3D	5		С
U3	PB4A	5		Т
T5	PB4B	5		С
V2	PB4C	5		Т
N8	TDO	5	TDO	
V3	PB4D	5		С
T6	PB5A	5		Т
GND	GNDIO5	5		
VCCIO5	VCCIO5	5		
U4	PB5B	5		С
P8	PB5C	5		Т
T7	PB5D	5		С
V4	TDI	5	TDI	
R8	PB6A	5		т
N9	PB6B	5		С
U5	PB6C	5		т
V5	PB6D	5		С
U6	PB7A	5		Т
VCC	VCC	-		
V6	PB7B	5		С
P9	PB7C	5		T
T8	PB7D	5		C
U7	PB8A	5		T
V7	PB8B	5		C
M10	VCCAUX	-		-
U8	PB8C	5		т
 	PB8D	5		C
VCCIO5	VCCIO5	5		Ŭ
GND	GNDIO5	5		
T9	PB8E	5		т
U9	PB8F	5		C
V9	PB9A	4		т

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280								
Ball Number	Ball Function	Bank	Dual Function	Differential				
G8	VCCIO0	0						
G7	VCCIO0	0						

* Supports true LVDS outputs.

** NC for "E" devices.

*** Primary clock inputs are single-ended.

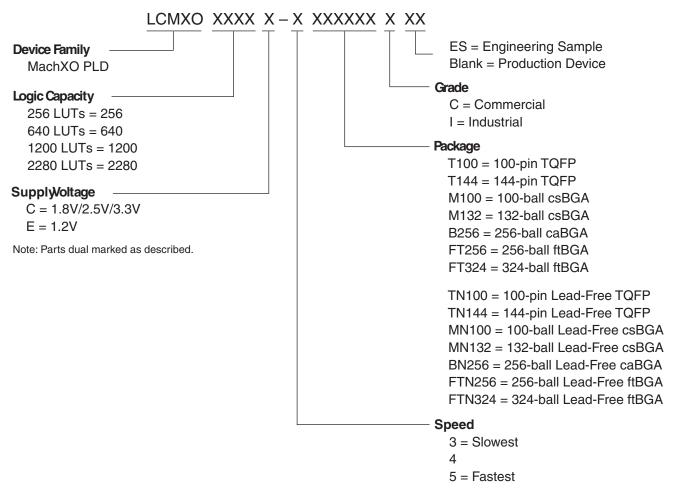
Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100C	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280C-4TN100C	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280C-5TN100C	2280	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280C-3TN144C	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280C-4TN144C	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280C-5TN144C	2280	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280C-3MN132C	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280C-4MN132C	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280C-5MN132C	2280	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO2280C-3BN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO2280C-4BN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO2280C-5BN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO2280C-3FTN256C	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO2280C-4FTN256C	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO2280C-5FTN256C	2280	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM
LCMXO2280C-3FTN324C	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	COM
LCMXO2280C-4FTN324C	2280	1.8V/2.5V/3.3V	271	-4	Lead-Free ftBGA	324	COM
LCMXO2280C-5FTN324C	2280	1.8V/2.5V/3.3V	271	-5	Lead-Free ftBGA	324	COM
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100C	256	1.2V	78	-3	Lead-Free TQFP	100	COM
LCMXO256E-4TN100C	256	1.2V	78	-4	Lead-Free TQFP	100	COM
LCMXO256E-5TN100C	256	1.2V	78	-5	Lead-Free TQFP	100	COM
LCMXO256E-3MN100C	256	1.2V	78	-3	Lead-Free csBGA	100	COM
LCMXO256E-4MN100C	256	1.2V	78	-4	Lead-Free csBGA	100	COM
LCMXO256E-5MN100C	256	1.2V	78	-5	Lead-Free csBGA	100	COM
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100C	640	1.2V	74	-3	Lead-Free TQFP	100	COM
LCMXO640E-4TN100C	640	1.2V	74	-4	Lead-Free TQFP	100	COM
LCMXO640E-5TN100C	640	1.2V	74	-5	Lead-Free TQFP	100	COM
LCMXO640E-3MN100C	640	1.2V	74	-3	Lead-Free csBGA	100	COM
LCMXO640E-4MN100C	640	1.2V	74	-4	Lead-Free csBGA	100	COM
LCMXO640E-5MN100C	640	1.2V	74	-5	Lead-Free csBGA	100	COM
LCMXO640E-3TN144C	640	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO640E-4TN144C	640	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO640E-5TN144C	640	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO640E-3MN132C	640	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO640E-4MN132C	640	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO640E-5MN132C	640	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO640E-3BN256C	640	1.2V	159	-3	Lead-Free caBGA	256	COM
LCMXO640E-4BN256C	640	1.2V	159	-4	Lead-Free caBGA	256	COM
LCMXO640E-5BN256C	640	1.2V	159	-5	Lead-Free caBGA	256	COM
LCMXO640E-3FTN256C	640	1.2V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640E-4FTN256C	640	1.2V	159	-4	Lead-Free ftBGA	256	COM
LCMX0640E-5FTN256C	640	1.2V	159	-5	Lead-Free ftBGA	256	COM
	540	1. <u> </u>	100		LOUGINDUR	-00	

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100I	256	1.2V	78	-3	Lead-Free TQFP	100	IND
LCMXO256E-4TN100I	256	1.2V	78	-4	Lead-Free TQFP	100	IND
LCMXO256E-3MN100I	256	1.2V	78	-3	Lead-Free csBGA	100	IND
LCMXO256E-4MN100I	256	1.2V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100I	640	1.2V	74	-3	Lead-Free TQFP	100	IND
LCMXO640E-4TN100I	640	1.2V	74	-4	Lead-Free TQFP	100	IND
LCMXO640E-3MN100I	640	1.2V	74	-3	Lead-Free csBGA	100	IND
LCMXO640E-4MN100I	640	1.2V	74	-4	Lead-Free csBGA	100	IND
LCMXO640E-3TN144I	640	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO640E-4TN144I	640	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO640E-3MN132I	640	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO640E-4MN132I	640	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO640E-3BN256I	640	1.2V	159	-3	Lead-Free caBGA	256	IND
LCMXO640E-4BN256I	640	1.2V	159	-4	Lead-Free caBGA	256	IND
LCMXO640E-3FTN256I	640	1.2V	159	-3	Lead-Free ftBGA	256	IND
LCMXO640E-4FTN256I	640	1.2V	159	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100I	1200	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200E-4TN100I	1200	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200E-3TN144I	1200	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200E-4TN144I	1200	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200E-3MN132I	1200	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200E-4MN132I	1200	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200E-3BN256I	1200	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200E-4BN256I	1200	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200E-3FTN256I	1200	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200E-4FTN256I	1200	1.2V	211	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100I	2280	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280E-4TN100I	2280	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280E-3TN144I	2280	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280E-4TN144I	2280	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280E-3MN132I	2280	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280E-4MN132I	2280	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280E-3BN256I	2280	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280E-4BN256I	2280	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280E-3FTN256I	2280	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280E-4FTN256I	2280	1.2V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280E-3FTN324I	2280	1.2V	271	-3	Lead-Free ftBGA	324	IND
LCMXO2280E-4FTN324I	2280	1.2V	271	-4	Lead-Free ftBGA	324	IND