

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	285
Number of Logic Elements/Cells	2280
Total RAM Bits	28262
Number of I/O	271
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	324-LBGA
Supplier Device Package	324-FTBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2280c-5ft324c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

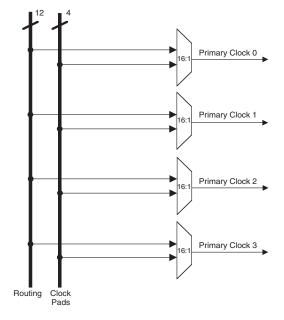
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

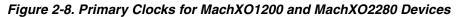
Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.


Clock/Control Distribution Network

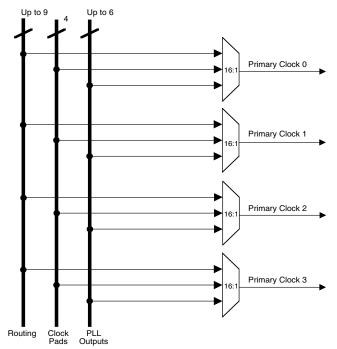
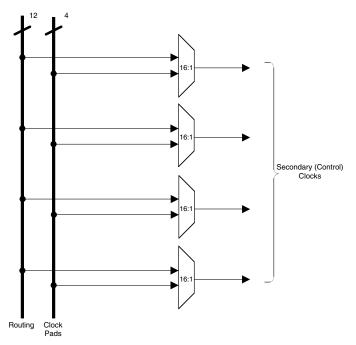
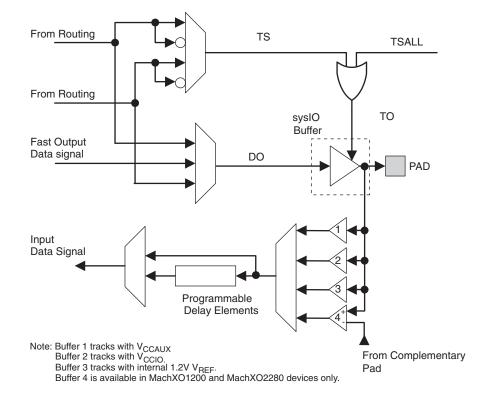

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices



Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
			(all I/O Banks)	(all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

		VC	CIO (Ty	'p.)	
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces					
LVTTL	Yes	Yes	Yes	Yes	Yes
LVCMOS33	Yes	Yes	Yes	Yes	Yes
LVCMOS25	Yes	Yes	Yes	Yes	Yes
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12	Yes	Yes	Yes	Yes	Yes
PCI ¹	Yes				
Differential Interfaces	•	•	•	•	
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes

Top Banks of MachXO1200 and MachXO2280 devices only.
 MachXO1200 and MachXO2280 devices only.

Figure 2-18. MachXO2280 Banks

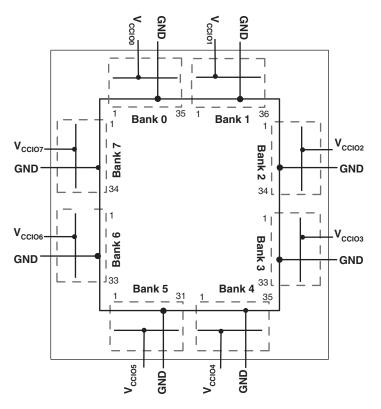
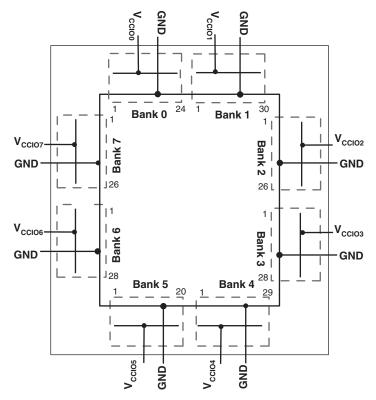



Figure 2-19. MachXO1200 Banks

Figure 2-20. MachXO640 Banks

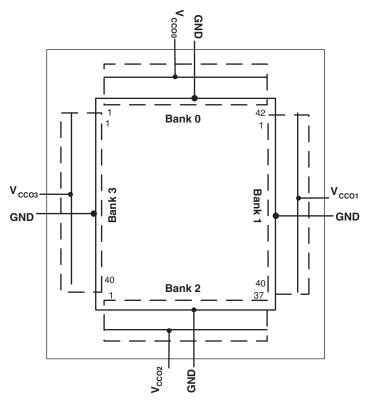
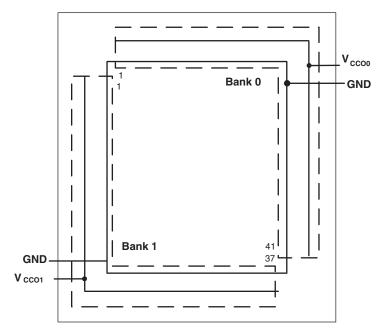



Figure 2-21. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

MachXO Family Data Sheet DC and Switching Characteristics

June 2013

Data Sheet DS1002

Absolute Maximum Ratings^{1, 2, 3}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁴	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁴	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
Maa	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
V _{CC}	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ³	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO²}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	Junction Temperature Commercial Operation	0	+85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial	0	+85	°C
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	-40	100	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both 2.5V, they must also be the same supply. 3.3V V_{CCIO} and 1.2V V_{CCIO} should be tied to V_{CCAUX} or 1.2V V_{CC} respectively.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CC} must reach minimum V_{CC} value before V_{CCAUX} reaches 2.5V.

MachXO Programming/Erase Specifications

Symbol	Parameter	Min.	Max.	Units
N	Flash Programming Cycles per t _{RETENTION}		1,000	Cycles
N _{PROGCYC}	Flash Functional Programming Cycles		10,000	Cycles
t _{RETENTION}	Data Retention at 125° Junction Temperature	10		Years

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Initialization Supply Current^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	13	mA
I _{CC}		LCMXO640C	17	mA
		LCMXO1200C	21	mA
	Core Power Supply	LCMXO2280C	23	mA
	Core Power Supply	LCMXO256E	10	mA
		LCMXO640E	14	mA
		LCMXO1200E	18	mA
		LCMXO2280E	20	mA
		LCMXO256E/C	10	mA
	Auxiliary Power Supply	LCMXO640E/C	13	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	24	mA
		LCMXO2280E/C	25	mA
ICCIO	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. Typical user pattern.

5. $T_J = 25^{\circ}$ C, power supplies at nominal voltage.

6. Per Bank, V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	9	mA
		LCMXO640C	11	mA
		LCMXO1200C	16	mA
1	Core Power Supply	LCMXO2280C	22	mA
ICC	Cole Power Supply	LCMXO256E	6	mA
		LCMXO640E	8	mA
		LCMXO1200E	12	mA
		LCMXO2280E	14	mA
		LCMXO256C/E	8	mA
1	Auxiliary Power Supply	LCMXO640C/E	10	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200/E	15	mA
		LCMXO2280C/E	16	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Typical user pattern.

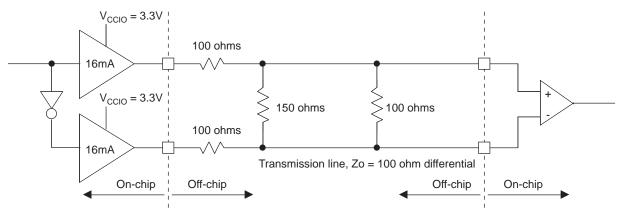
4. JTAG programming is at 25MHz.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

Table 3-2. BLVDS DC Conditions¹

		Nominal		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA


Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LVPECL

The MachXO family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Over	Recommended	Operating	Conditions
0101	11000011111011000	oporating	oonantiono

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	100	Ohms
R _P	Driver parallel resistor	150	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.03	V
V _{OL}	Output low voltage	1.27	V
V _{OD}	Output differential voltage	0.76	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	85.7	Ohms
I _{DC}	DC output current	12.7	mA

1. For input buffer, see LVDS table.

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column	I/O	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Number]_[A/B/C/D/E/F]		Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC	—	No connect.
GND	—	GND - Ground. Dedicated pins.
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}	—	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions	(Used a	as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). $T = true$ and $C = complement$.
[LOC][0]_PLL[T, C]_FB	_	Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]	—	Primary Clock Pads, n per side.
Test and Programming (De	dicate	d pins)
TMS	I	Test Mode Select input pin, used to control the 1149.1 state machine.
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.
1 Applies to MachXO "C" devic		

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	XO256		LCMXO640					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
43	PB4A	1		Т	PB8B	2				
44	PB4B	1		С	PB8C	2		Т		
45	PB4C	1		T	PB8D	2		C		
46	PB4D	1		C	PB9A	2		-		
47	PB5A	1			PB9C	2		Т		
48*	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN			
49	PB5C	1		Т	PB9D	2		С		
50	PB5D	1		C	PB9F	2		-		
51	PR9B	0		C	PR11D	1		С		
52	PR9A	0		T	PR11B	1		C		
53	PR8B	0		C	PR11C	1		T		
54	PR8A	0		T	PR11A	1		T		
55	PR7D	0		C	PR10D	1		C		
56	PR7C	0		Т	PR10C	1		Т		
57	PR7B	0		C	PR10B	1		C		
58	PR7A	0		Т	PR10A	1		Т		
59	PR6B	0		C	PR9D	1		· ·		
60	VCCIO0	0		C	VCCIO1	1				
61	PR6A	0		Т	PR9B	1				
				I						
62	GNDIO0	0			GNDIO1	1				
63	PR5D	0		C	PR7B	1				
64	PR5C	0		Т	PR6C	1				
65	PR5B	0		C	PR6B	1				
66	PR5A	0		Т	PR5D	1				
67	PR4B	0		С	PR5B	1				
68	PR4A	0		Т	PR4D	1				
69	PR3D	0		С	PR4B	1				
70	PR3C	0		Т	PR3D	1				
71	PR3B	0		С	PR3B	1				
72	PR3A	0		Т	PR2D	1				
73	PR2B	0		С	PR2B	1				
74	VCCIO0	0			VCCIO1	1				
75	GNDIO0	0			GNDIO1	1				
76	PR2A	0		Т	PT9F	0		С		
77	PT5C	0			PT9E	0		Т		
78	PT5B	0		С	PT9C	0				
79	PT5A	0		Т	PT9A	0				
80	PT4F	0		С	VCCIO0	0				
81	PT4E	0		Т	GNDIO0	0				
82	PT4D	0	1	С	PT7E	0				
83	PT4C	0		Т	PT7A	0				
84	GND	-			GND	-				

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	(O256		LCMXO640						
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential			
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**				
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С			
87	PT3D	0		С	PT5A	0		Т			
88	VCCAUX	-			VCCAUX	-					
89	PT3C	0		Т	PT4F	0					
90	VCC	-			VCC	-					
91	PT3B	0		С	PT3F	0					
92	VCCIO0	0			VCCIO0	0					
93	GNDIO0	0			GNDIO0	0					
94	PT3A	0		Т	PT3B	0		С			
95	PT2F	0		С	PT3A	0		Т			
96	PT2E	0		Т	PT2F	0		С			
97	PT2D	0		С	PT2E	0		Т			
98	PT2C	0		Т	PT2B	0		С			
99	PT2B	0		С	PT2C	0					
100	PT2A	0		Т	PT2A	0		Т			

* NC for "E" devices.

** Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCMX	(0640		LCMXO1200				LCMXO2280					
Ball	Ball	Daula	Dual	Differential	Ball	Ball	Davida	Dual	Differential	Ball	Ball	Daula	Dual	Differential
J4	Function PL8A	Bank 3	Function	Differential ⊤	J4	PL13A	Bank 6	Function	Differential	J4	Function PL16A	Bank 6	Function	Differential
J5	PL8B	3		C	J5	PL13A	6		C*	J5	PL16B	6		C*
81	PL11A	3		т	81	PL13D	6		т	81	PL16D	6		т
R2	PL11B	3		С	R2	PL13D	6		C	R2	PL16D	6		C
-	-	-		Ű	-	-	-		Ű	GND	GND	-		Ũ
K5	NC	_			K5	PL14A	6	LLM0_PLLT_FB_A	T*	K5	PL17A	6	LLM0_PLLT_FB_A	T*
K4	NC				K4	PL14B	6	LLM0_PLLC_FB_A	C*	K4	PL17B	6	LLM0_PLLC_FB_A	C*
L5	PL10C	3		т	L5	PL14C	6		T	L5	PL17C	6		T
L4	PL10D	3		С	L0 L4	PL14D	6		C	L4	PL17D	6		C
M5	NC	-		<u> </u>	 M5	PL15A	6	LLM0 PLLT IN A	T*	_ : M5	PL18A	6	LLM0_PLLT_IN_A	T*
M4	NC				M4	PL15B	6	LLM0_PLLC_IN_A	C*	M4	PL18B	6	LLM0_PLLC_IN_A	C*
N4	PL11C	3		т	N4	PL16A	6		T	N4	PL19A	6		Т
N3	PL11D	3		C	N3	PL16B	6		C	N3	PL19B	6		C
VCCIO3	VCCIO3	3		<u> </u>	VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		•
GND	GNDIO3	3			GND	GNDIO6	6			GND	GNDIO6	6		
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
P4	TMS	2	TMS		P4	TMS	5	TMS		P4	TMS	5	TMS	
P2	NC	-			P2	PB2A	5		Т	P2	PB2A	5		Т
P3	NC				P3	PB2B	5		C	P3	PB2B	5		C
N5	NC				N5	PB2C	5		т	N5	PB2C	5		т
R3	тск	2	ТСК		R3	TCK	5	ТСК		R3	TCK	5	тск	
N6	NC	2	TOIL		N6	PB2D	5	TOR	С	N6	PB2D	5	Tork	С
T2	PB2A	2		т	T2	PB3A	5		т	T2	PB3A	5		т
T3	PB2B	2		С	T3	PB3B	5		C	T3	PB3B	5		C
R4	PB2C	2		T	R4	PB3C	5		T	R4	PB3C	5		T
R5	PB2D	2		C	R5	PB3D	5		C	R5	PB3D	5		C
P5	PB3A	2		т	P5	PB4A	5		T	P5	PB4A	5		т
P6	PB3B	2		C	P6	PB4B	5		C	P6	PB4B	5		C
T5	PB3C	2		т	T5	PB4C	5		т	T5	PB4C	5		т
M6	TDO	2	TDO		M6	TDO	5	TDO		M6	TDO	5	TDO	
T4	PB3D	2	.50	С	T4	PB4D	5		С	T4	PB4D	5		С
R6	PB4A	2		т	R6	PB5A	5		Т	R6	PB5A	5		т
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
T6	PB4B	2		С	T6	PB5B	5		С	T6	PB5B	5		С
N7	TDI	2	TDI	, , , , , , , , , , , , , , , , , , ,	N7	TDI	5	TDI	Ŭ	N7	TDI	5	TDI	Ŭ
T8	PB4C	2		т	Т8	PB5C	5		т	Т8	PB6A	5		т
T7	PB4D	2		C	T7	PB5D	5		C	T7	PB6B	5		C
M7	NC	_		-	M7	PB6A	5		T	M7	PB7C	5		T
M8	NC				M8	PB6B	5		C	M8	PB7D	5		C
T9	VCCAUX	-			Т9	VCCAUX	-			Т9	VCCAUX	-		•
R7	PB4E	2		т	R7	PB6C	5		Т	R7	PB8C	5		Т
R8	PB4F	2		С	R8	PB6D	5		C	R8	PB8D	5		C
-	-	-			VCCIO5	VCCIO5	5		-	VCCIO5	VCCIO5	5		•
-	-		<u> </u>		GND	GNDIO5	5		<u> </u>	GND	GNDIO5	5		
P7	PB5C	2		т	P7	PB6E	5		т	P7	PB9A	4		т
P8	PB5D	2		C	P8	PB6F	5		C	P8	PB9B	4		C
N8	PB5A	2	<u> </u>	т	N8	PB7A	4		т	N8	PB10E	4		т
N9	PB5B	2	PCLK2_1***	С	N9	PB7B	4	PCLK4_1***	C	N9	PB10F	4	PCLK4_1***	C
P10	PB7B	2		c	P10	PB7D	4		c	P10	PB10D	4		C
P9	PB7A	2		т	P9	PB7C	4		т	P9	PB10C	4		т
M9	PB6B	2	PCLK2_0***	С	M9	PB7F	4	PCLK4_0***	C	M9	PB10B	4	PCLK4_0***	C
		-		, v		. 5/,	т		ý			1		2

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCMX	(O640		LCMXO1200					LCMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
D3	NC				D3	PT2C	0		Т	D3	PT3C	0		Т
A3	PT2B	0	-	С	A3	PT3B	0		С	A3	PT3B	0		С
A2	PT2A	0		Т	A2	PT3A	0		Т	A2	PT3A	0		Т
B3	NC				B3	PT2B	0		С	B3	PT2D	0		С
B2	NC				B2	PT2A	0		Т	B2	PT2C	0		Т
VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0		
GND	GNDIO0	0			GND	GNDIO0	0			GND	GNDIO0	0		
A1	GND	-			A1	GND	-			A1	GND	-		
A16	GND	-			A16	GND	-			A16	GND	-		
F11	GND	-			F11	GND	-			F11	GND	-		
G8	GND	-			G8	GND	-			G8	GND	-		
G9	GND	-			G9	GND	-			G9	GND	-		
H7	GND	-			H7	GND	-			H7	GND	-		
H8	GND	-			H8	GND	-			H8	GND	-		
H9	GND	-			H9	GND	-			H9	GND	-		
H10	GND	-			H10	GND	-			H10	GND	-		
J7	GND	-			J7	GND	-			J7	GND	-		
J8	GND	-			J8	GND	-			J8	GND	-		
J9	GND	-			J9	GND	-			J9	GND	-		
J10	GND	-			J10	GND	-			J10	GND	-		
K8	GND	-			K8	GND	-			K8	GND	-		
K9	GND	-			K9	GND	-			K9	GND	-		
L6	GND	-			L6	GND	-			L6	GND	-		
T1	GND	-			T1	GND	-			T1	GND	-		
T16	GND	-			T16	GND	-			T16	GND	-		
G7	VCC	-			G7	VCC	-			G7	VCC	-		
G10	VCC	-			G10	VCC	-			G10	VCC	-		
K7	VCC	-			K7	VCC	-			K7	VCC	-		
K10	VCC	-			K10	VCC	-			K10	VCC	-		
H6	VCCIO3	3			H6	VCCI07	7			H6	VCCI07	7		
G6	VCCIO3	3			G6	VCCI07	7			G6	VCCI07	7		
K6	VCCIO3	3			K6	VCCIO6	6			K6	VCCIO6	6		
J6	VCCIO3	3			J6	VCCIO6	6		ļ	J6	VCCIO6	6		
L8	VCCIO2	2			L8	VCCIO5	5			L8	VCCIO5	5		
L7	VCCIO2	2			L7	VCCIO5	5			L7	VCCIO5	5		
L9	VCCIO2	2			L9	VCCIO4	4			L9	VCCIO4	4		
L10	VCCIO2	2			L10	VCCIO4	4			L10	VCCIO4	4		
K11	VCCIO1	1			K11	VCCIO3	3			K11	VCCIO3	3		
J11	VCCIO1	1			J11	VCCIO3	3			J11	VCCIO3	3		
H11	VCCIO1	1			H11	VCCIO2	2			H11	VCCIO2	2		
G11	VCCIO1	1			G11	VCCIO2	2		+	G11	VCCIO2	2		
F9	VCCIO0	0			F9	VCCIO1	1			F9	VCCIO1	1		
F10	VCCI00	0			F10	VCCI01	1		+	F10	VCCI01	1		
F8	VCCIO0	0			F8	VCCI00	0		+	F8	VCCIO0	0		+
F7	VCCIO0	0			F7	VCCI00	0			F7	VCCI00	0		

* Supports true LVDS outputs. ** NC for "E" devices. *** Primary clock inputs are single-ended.

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280 Ball Number Ball Function Bank Dual Function Differ									
				Differentia					
G2	PL11A	6		C*					
H2	PL11B	6		С^ Т					
L3	PL11C	6							
L5	PL11D	6		C					
H1	PL12A	6		Т*					
VCCIO6	VCCIO6	6							
GND	GNDIO6	6							
J2	PL12B	6		C*					
L4	PL12C	6		Т					
L6	PL12D	6		С					
K2	PL13A	6		T*					
K1	PL13B	6		C*					
J1	PL13C	6		Т					
VCC	VCC	-							
L2	PL13D	6		С					
M5	PL14D	6		С					
M3	PL14C	6	TSALL	Т					
L1	PL14B	6		C*					
M2	PL14A	6		T*					
M1	PL15A	6		T*					
N1	PL15B	6		C*					
M6	PL15C	6		Т					
M4	PL15D	6		С					
VCCIO6	VCCIO6	6							
GND	GNDIO6	6							
P1	PL16A	6		T*					
P2	PL16B	6		C*					
N3	PL16C	6		Т					
N4	PL16D	6		С					
GND	GND	-							
T1	PL17A	6	LLM0_PLLT_FB_A	T*					
R1	PL17B	6	LLM0_PLLC_FB_A	C*					
P3	PL17C	6		Т					
N5	PL17D	6		С					
R3	PL18A	6	LLM0_PLLT_IN_A	T*					
R2	PL18B	6	LLM0_PLLC_IN_A	C*					
P4	PL19A	6		Т					
N6	PL19B	6		С					
U1	PL20A	6		T					
VCCIO6	VCCIO6	6		•					
GND	GNDIO6	6							
GND	GNDIO5	5							
VCCIO5	VCCIO5	5							

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280								
Ball Number	Ball Function	Bank	Dual Function	Differential				
GND	GNDIO3	3						
VCCIO3	VCCIO3	3						
P15	PR20B	3		С				
N14	PR20A	3		Т				
N15	PR19B	3		С				
M13	PR19A	3		Т				
R15	PR18B	3		C*				
T16	PR18A	3		Τ*				
N16	PR17D	3		С				
M14	PR17C	3		Т				
U17	PR17B	3		C*				
VCC	VCC	-						
U18	PR17A	3		Τ*				
R17	PR16D	3		С				
R16	PR16C	3		Т				
P16	PR16B	3		C*				
VCCIO3	VCCIO3	3						
GND	GNDIO3	3						
P17	PR16A	3		T*				
L13	PR15D	3		С				
M15	PR15C	3		Т				
T17	PR15B	3		C*				
T18	PR15A	3		T*				
L14	PR14D	3		С				
L15	PR14C	3		Т				
R18	PR14B	3		C*				
P18	PR14A	3		T*				
GND	GND	-						
K15	PR13D	3		С				
K13	PR13C	3		Т				
N17	PR13B	3		C*				
N18	PR13A	3		T*				
K16	PR12D	3		С				
K14	PR12C	3		Т				
M16	PR12B	3		C*				
L16	PR12A	3		T*				
GND	GNDIO3	3						
VCCIO3	VCCIO3	3						
J16	PR11D	3		С				
J14	PR11C	3		Т				
M17	PR11B	3		C*				
L17	PR11A	3		T*				
J15	PR10D	2		С				