

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	285
Number of Logic Elements/Cells	2280
Total RAM Bits	28262
Number of I/O	211
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA, CSPBGA
Supplier Device Package	256-CABGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo2280e-3bn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Figure 2-1. Top View of the MachXO1200 Device¹

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

1. See Figure 2-4 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices

PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of pSix Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	Device	Typ. ³	Max.	Units
Icc		LCMXO256C	12	25	μA
	Core Power Supply	LCMXO640C	12	25	μA
	Cole Power Supply	LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
Iccaux		LCMXO256C	1	15	μA
	Auxiliary Power Supply	LCMXO640C	1	25	μA
	Auxiliary Fower Supply	LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
Icc		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
	Core Power Supply	LCMXO256E	4	mA
		LCMXO640E	6	mA
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
I _{CCAUX}		LCMXO256E/C	5	mA
	Auxiliary Power Supply	LCMXO640E/C	7	mA
	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

MachXO Internal Timing Parameters¹

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Log	ic Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)		0.28		0.34		0.39	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)		0.44		0.53		0.62	ns
t _{LSR_PFU}	Set/Reset to output of PFU	—	0.90		1.08	—	1.26	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) input setup time	0.10		0.13		0.15		ns
t _{HM_PFU}	Clock to Mux (M0,M1) input hold time	-0.05	—	-0.06	—	-0.07	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.13	—	0.16		0.18		ns
t _{HD_PFU}	Clock to D input hold time	-0.03	—	-0.03	—	-0.04	—	ns
t _{CK2Q_PFU}	Clock to Q delay, D-type register configuration		0.40		0.48		0.56	ns
t _{LE2Q_PFU}	Clock to Q delay latch configuration	—	0.53		0.64	—	0.74	ns
t _{LD2Q_PFU}	D to Q throughput delay when latch is enabled		0.55		0.66		0.77	ns
PFU Dual Por	rt Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.56	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.22		-0.25		ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34		0.39		ns
t _{SUADDR_PFU}	Address Setup Time	-0.46	—	-0.56	—	-0.65	—	ns
t _{HADDR_PFU}	Address Hold Time	0.71	—	0.85		0.99		ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.26		-0.30		ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40		0.47		ns
PIO Input/Ou	tput Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.75		0.90		1.06	ns
t _{OUT_PIO}	Output Buffer Delay		1.29		1.54		1.80	ns
EBR Timing	1200 and 2280 Devices Only)							
t _{CO_EBR}	Clock to output from Address or Data with no output register	_	2.24	_	2.69	_	3.14	ns
t _{COO_EBR}	Clock to output from EBR output Register		0.54	—	0.64	—	0.75	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.31		-0.37		ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26	—	-0.31	—	-0.37	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.57	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.20	—	-0.23	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.36	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.27	—	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.16	—	-0.18	—	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Regis- ter	_	1.03	—	1.23	_	1.44	ns
PLL Paramet	ers (1200 and 2280 Devices Only)							
t _{RSTREC}	Reset Recovery to Rising Clock	1.00		1.00		1.00	_	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	—	1.00	—	1.00	—	ns

1. Internal parameters are characterized but not tested on every device.

Rev. A 0.19

MachXO Family Data Sheet Pinout Information

June 2013

Data Sheet DS1002

Signal Descriptions

Signal Name	I/O	Descriptions			
General Purpose					
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designa- tions are L (Left), B (Bottom), R (Right), T (Top).			
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.			
P[Edge] [Row/Column Number]_[A/B/C/D/E/F]	1/0	[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.			
	1/0	Some of these user programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic.			
		During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-up resistor enabled.			
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.			
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.			
NC	—	No connect.			
GND	—	GND - Ground. Dedicated pins.			
V _{CC}	—	VCC - The power supply pins for core logic. Dedicated pins.			
V _{CCAUX}	_	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.			
V _{CCIOx}	—	V _{CCIO} - The power supply pins for I/O Bank x. Dedicated pins.			
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b This pin has a weak internal pull-up, but when unused, an external pull-up to V_{CC} is recommended. When driven low, the device moves into Sleep mode after a specified time.			
PLL and Clock Functions (Used	as user programmable I/O pins when not used for PLL or clock pins)			
[LOC][0]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). $T = true$ and $C = complement$.			
[LOC][0]_PLL[T, C]_FB	-	Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM (Upper PLL) and LLM (Lower PLL). T = true and C = complement.			
PCLK [n]_[1:0]	—	Primary Clock Pads, n per side.			
Test and Programming (De	dicate	d pins)			
TMS	Ι	Test Mode Select input pin, used to control the 1149.1 state machine.			
ТСК	Ι	Test Clock input pin, used to clock the 1149.1 state machine.			
TDI	Ι	Test Data input pin, used to load data into the device using an 1149.1 state machine.			
TDO	0	Output pin -Test Data output pin used to shift data out of the device using 1149.1.			

1. Applies to MachXO "C" devices only. NC for "E" devices.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		LCMXO1200		LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
82	PT9A	1			PT12C	1		Т
83	GND	-			GND	-		
84	PT8B	1		С	PT11B	1		С
85	PT8A	1		Т	PT11A	1		Т
86	PT7D	1	PCLK1_1****		PT10B	1	PCLK1_1****	
87	PT6F	0	PCLK0_0****		PT9B	1	PCLK1_0****	
88	PT6D	0		С	PT8F	0		С
89	PT6C	0		Т	PT8E	0		Т
90	VCCAUX	-			VCCAUX	-		
91	VCC	-			VCC	-		
92	PT5B	0			PT6D	0		
93	PT4B	0			PT6F	0		
94	VCCIO0	0			VCCIO0	0		
95	PT3D	0		С	PT4B	0		С
96	PT3C	0		Т	PT4A	0		Т
97	PT3B	0			PT3B	0		
98	PT2B	0		С	PT2B	0		С
99	PT2A	0		Т	PT2A	0		Т
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-		

*Supports true LVDS outputs.

**Double bonded to the pin.

***NC for "E" devices.

****Primary clock inputs are single-ended.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256	;		LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
P13	PB5A	1			P13	PB9C	2		Т	
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN		
P14	PB5C	1		Т	P14	PB9D	2		С	
N13	PB5D	1		С	N13	PB9F	2			
N14	PR9B	0		С	N14	PR11D	1		С	
M14	PR9A	0		Т	M14	PR11B	1		С	
L13	PR8B	0		С	L13	PR11C	1		Т	
L14	PR8A	0		Т	L14	PR11A	1		Т	
M13	PR7D	0		С	M13	PR10D	1		С	
K14	PR7C	0		Т	K14	PR10C	1		Т	
K13	PR7B	0		С	K13	PR10B	1		С	
J14	PR7A	0		Т	J14	PR10A	1		Т	
J13	PR6B	0		С	J13	PR9D	1			
H13	PR6A	0		Т	H13	PR9B	1			
G14	GNDIO0	0			G14	GNDIO1	1			
G13	PR5D	0		С	G13	PR7B	1			
F14	PR5C	0		Т	F14	PR6C	1			
F13	PR5B	0		С	F13	PR6B	1			
E14	PR5A	0		Т	E14	PR5D	1			
E13	PR4B	0		С	E13	PR5B	1			
D14	PR4A	0		Т	D14	PR4D	1			
D13	PR3D	0		С	D13	PR4B	1			
C14	PR3C	0		Т	C14	PR3D	1			
C13	PR3B	0		С	C13	PR3B	1			
B14	PR3A	0		Т	B14	PR2D	1			
C12	PR2B	0		С	C12	PR2B	1			
B13	GNDIO0	0			B13	GNDIO1	1			
A13	PR2A	0		Т	A13	PT9F	0		С	
A12	PT5C	0			A12	PT9E	0		Т	
B11	PT5B	0		С	B11	PT9C	0			
A11	PT5A	0		Т	A11	PT9A	0			
B12	PT4F	0		С	B12	VCCIO0	0			
A10	PT4E	0		Т	A10	GNDIO0	0			
B10	PT4D	0		С	B10	PT7E	0			
A9	PT4C	0		Т	A9	PT7A	0			
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**		
B8	PT4A	0	PCLK0_0**	Т	B8	PT5B	0	PCLK0_0**	С	
A7	PT3D	0		С	A7	PT5A	0		Т	
B7	VCCAUX	-			B7	VCCAUX	-			
A6	PT3C	0		Т	A6	PT4F	0			
B6	VCC	-			B6	VCC	-			
A5	PT3B	0		С	A5	PT3F	0			

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA

		LCM>	(O640		LCMXO1200			LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
E4	NC				E4	PL2A	7		Т	E4	PL2A	7	LUM0_PLLT_FB_A	Т
E5	NC				E5	PL2B	7		С	E5	PL2B	7	LUM0 PLLC FB A	С
F5	NC				F5	PL3A	7		T*	F5	PL3A	7		T*
F6	NC				F6	PL3B	7		C*	F6	PL3B	7		C*
F3	PL3A	3		т	F3	PL3C	7		Т	F3	PL3C	7	LUM0 PLLT IN A	Т
F4	PL3B	3		С	F4	PL3D	7		С	F4	PL3D	7	LUM0_PLLC_IN_A	С
E3	PL2C	3		т	E3	PL4A	7		T*	E3	PL4A	7		T*
E2	PL2D	3		С	E2	PL4B	7		C*	E2	PL4B	7		C*
C3	NC				C3	PL4C	7		Т	C3	PL4C	7		Т
C2	NC				C2	PL4D	7		С	C2	PL4D	7		С
B1	PL2A	3		т	B1	PL5A	7		T*	B1	PL5A	7		T*
C1	PL2B	3		С	C1	PL5B	7		C*	C1	PL5B	7		C*
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
GND	GNDIO3	3			GND	GNDI07	7			GND	GNDIO7	7		
D2	PL3C	3		т	D2	PL5C	7		Т	D2	PL6C	7		Т
D1	PL3D	3		С	D1	PL5D	7		С	D1	PL6D	7		С
F2	PL5A	3		Т	F2	PL6A	7		T*	F2	PL7A	7		T*
G2	PL5B	3	GSRN	С	G2	PL6B	7	GSRN	C*	G2	PL7B	7	GSRN	C*
E1	PL4A	3		Т	E1	PL6C	7		Т	E1	PL7C	7		Т
F1	PL4B	3		С	F1	PL6D	7		С	F1	PL7D	7		С
G4	NC				G4	PL7A	7		T*	G4	PL8A	7		T*
G5	NC				G5	PL7B	7		C*	G5	PL8B	7		C*
GND	GND	-			GND	GND	-			GND	GND	-		
G3	PL4C	3		Т	G3	PL7C	7		Т	G3	PL8C	7		Т
H3	PL4D	3		С	H3	PL7D	7		С	H3	PL8D	7		С
H4	NC				H4	PL8A	7		T*	H4	PL9A	7		T*
H5	NC				H5	PL8B	7		C*	H5	PL9B	7		C*
-	-				VCCI07	VCCI07	7		_	VCCI07	VCCI07	7		-
-	-				GND	GNDIO7	7			GND	GNDIO7	7		
G1	PL5C	3		Т	G1	PL8C	7		Т	G1	PL10C	7		Т
H1	PL5D	3		С	H1	PL8D	7		С	H1	PL10D	7		С
H2	PL6A	3		т	H2	PL9A	6		T*	H2	PL11A	6		T*
J2	PL6B	3		С	J2	PL9B	6		C*	J2	PL11B	6		C*
J3	PL7C	3		Т	J3	PL9C	6		Т	J3	PL11C	6		Т
КЗ	PL7D	3		С	K3	PL9D	6		С	K3	PL11D	6		С
J1	PL6C	3		т	J1	PL10A	6		T*	J1	PL12A	6		T*
-	-				VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
-	-				GND	GNDIO6	6	-		GND	GNDIO6	6		
K1	PL6D	3		С	K1	PL10B	6	-	C*	K1	PL12B	6		C*
K2	PL9A	3		Т	K2	PL10C	6		т	K2	PL12C	6		Т
L2	PL9B	3		С	L2	PL10D	6		С	L2	PL12D	6		С
L1	PL7A	3		т	L1	PL11A	6		T*	L1	PL13A	6		T*
M1	PL7B	3		С	M1	PL11B	6		C*	M1	PL13B	6		C*
P1	PL8D	3		С	P1	PL11D	6		С	P1	PL14D	6		С
N1	PL8C	3	TSALL	т	N1	PL11C	6	TSALL	т	N1	PL14C	6	TSALL	Т
L3	PL10A	3		т	L3	PL12A	6		T*	L3	PL15A	6		T*
M3	PL10B	3		С	MЗ	PL12B	6	-	C*	MЗ	PL15B	6		C*
M2	PL9C	3		Т	M2	PL12C	6	-	Т	M2	PL15C	6		Т
N2	PL9D	3		С	N2	PL12D	6		С	N2	PL15D	6		С
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6		+	GND	GNDIO6	6		
		<u> </u>	1	L			L -		1			L -	1	1

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

LCMXO640			LCMXO1200					LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
-	-				VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
-	-				GND	GNDIO4	4			GND	GNDIO4	4		
M10	PB6A	2		Т	M10	PB7E	4		Т	M10	PB10A	4		Т
R9	PB6C	2		Т	R9	PB8A	4		Т	R9	PB11C	4		Т
R10	PB6D	2		С	R10	PB8B	4		С	R10	PB11D	4		С
T10	PB7C	2		Т	T10	PB8C	4		Т	T10	PB12A	4		Т
T11	PB7D	2		С	T11	PB8D	4		С	T11	PB12B	4		С
N10	NC				N10	PB8E	4		Т	N10	PB12C	4		Т
N11	NC				N11	PB8F	4		С	N11	PB12D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
R11	PB7E	2		Т	R11	PB9A	4		Т	R11	PB13A	4		Т
R12	PB7F	2		С	R12	PB9B	4		С	R12	PB13B	4		С
P11	PB8A	2		Т	P11	PB9C	4		Т	P11	PB13C	4		Т
P12	PB8B	2		С	P12	PB9D	4		С	P12	PB13D	4		С
T13	PB8C	2		Т	T13	PB9E	4		Т	T13	PB14A	4		Т
T12	PB8D	2		С	T12	PB9F	4		С	T12	PB14B	4		С
R13	PB9A	2		Т	R13	PB10A	4		Т	R13	PB14C	4		Т
R14	PB9B	2		С	R14	PB10B	4		С	R14	PB14D	4		С
GND	GND	-			GND	GND	-			GND	GND	-		
T14	PB9C	2		Т	T14	PB10C	4		Т	T14	PB15A	4		Т
T15	PB9D	2		С	T15	PB10D	4		С	T15	PB15B	4		С
P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN	
P14	PB9F	2			P14	PB10F	4			P14	PB15D	4		
R15	NC				R15	PB11A	4		Т	R15	PB16A	4		Т
R16	NC				R16	PB11B	4		С	R16	PB16B	4		С
P15	NC				P15	PB11C	4		T	P15	PB16C	4		T
P16	NC	-			P16	PB11D	4		C	P16	PB16D	4		C
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		0
MII	NC					PRI6B	3			M111	PR20B	3		с т
	NC				LII	PRIOA	3			LII	PR2UA	3		I Ot
N12	NC				N12	PRIDD	3		С т*	N12	PRIOD	3		С т*
N13	NC				M12	PRISA DD14D	3			M12	PRI8A	3		I C
M10	NC				M10		3		U T	M10		3		U T
N14	PR11D	1		0		PR1/P	3		с*	N14	PR17P	3		і С*
N15	PB11C	1		т	N14	PR1/A	3		т*	N14	PR174	3		т*
13	PR11R	1			12	PB13D	3		, ,	13	PRIAD	3		, ,
12	PR11A	1		т	12	PB13C	3		т	112	PR16C	3		т
M14	PB10B	1		C C	M14	PB13B	3		C*	M14	PB16B	3		C*
VCCI01	VCCIO1	1		Ű	VCCIO3	VCCIO3	3		Ű	VCCIO3	VCCIO3	3		Ű
GND	GNDIO1	1	<u> </u>		GND	GNDIO3	3			GND	GNDIO3	3		
L14	PR10A	1		т	L14	PR13A	3		T*	L14	PR16A	3		T*
N16	PR10D	1	<u> </u>	C	N16	PR12D	3		С	N16	PR15D	3		С
M16	PR10C	1	<u> </u>	T	M16	PR12C	3		т	M16	PR15C	3		T
M15	PR9D	1	<u> </u>	C.	M15	PR12B	3		C*	M15	PR15B	3		C*
L15	PR9C	1		T	L15	PR12A	3		T*	L15	PR15A	3		T*
L16	PR9B	1		C.	 L16	PR11D	3		C	_10 L16	PR14D	3		С
K16	PR9A	1		Т	K16	PR11C	3		Т	K16	PR14C	3		Т
K13	PR8D	1		C	K13	PR11B	3		C*	K13	PR14B	3		C*
		I		~			~	I				<u> </u>	I	-

LCMXO2280 Logic Signal Connections: 324 ftBGA

LCMXO2280										
Ball Number	Ball Function	Bank	Dual Function	Differential						
GND	GNDIO7	7								
VCCIO7	VCCIO7	7								
D4	PL2A	7	LUM0_PLLT_FB_A	Т						
F5	PL2B	7	LUM0_PLLC_FB_A	С						
B3	PL3A	7		Τ*						
C3	PL3B	7		C*						
E4	PL3C	7	LUM0_PLLT_IN_A	Т						
G6	PL3D	7	LUM0_PLLC_IN_A	С						
A1	PL4A	7		Τ*						
B1	PL4B	7		C*						
F4	PL4C	7		Т						
VCC	VCC	-								
E3	PL4D	7		С						
D2	PL5A	7		Τ*						
D3	PL5B	7		C*						
G5	PL5C	7		Т						
F3	PL5D	7		С						
C2	PL6A	7		T*						
VCCIO7	VCCI07	7								
GND	GNDIO7	7								
C1	PL6B	7		C*						
H5	PL6C	7		Т						
G4	PL6D	7		С						
E2	PL7A	7		T*						
D1	PL7B	7	GSRN	C*						
J6	PL7C	7		Т						
H4	PL7D	7		С						
F2	PL8A	7		T*						
E1	PL8B	7		C*						
GND	GND	-								
J3	PL8C	7		Т						
J5	PL8D	7		С						
G3	PL9A	7		T*						
H3	PL9B	7		C*						
K3	PL9C	7		Т						
K5	PL9D	7		С						
F1	PL10A	7		T*						
VCCIO7	VCCI07	7								
GND	GNDIO7	7								
G1	PL10B	7		C*						
K4	PL10C	7		Т						
K6	PL10D	7		С						
L										

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280										
Ball Number	Ball Function	Bank	Dual Function	Differential						
E13	PT16D	1		С						
C15	PT16C	1		Т						
F13	PT16B	1		С						
D14	PT16A	1		Т						
A18	PT15D	1		С						
B17	PT15C	1		Т						
A16	PT15B	1		С						
A17	PT15A	1		Т						
VCC	VCC	-								
D13	PT14D	1		С						
F12	PT14C	1		Т						
C14	PT14B	1		С						
E12	PT14A	1		Т						
C13	PT13D	1		С						
B16	PT13C	1		Т						
B15	PT13B	1		С						
A15	PT13A	1		Т						
VCCIO1	VCCIO1	1								
GND	GNDIO1	1								
B14	PT12F	1		С						
A14	PT12E	1		Т						
D12	PT12D	1		С						
F11	PT12C	1		Т						
B13	PT12B	1		С						
A13	PT12A	1		Т						
C12	PT11D	1		С						
GND	GND	-								
B12	PT11C	1		Т						
E11	PT11B	1		С						
D11	PT11A	1		Т						
C11	PT10F	1		С						
A12	PT10E	1		Т						
VCCIO1	VCCIO1	1								
GND	GNDIO1	1								
F10	PT10D	1		С						
D10	PT10C	1		Т						
B11	PT10B	1	PCLK1_1***	С						
A11	PT10A	1		Т						
E10	PT9D	1		С						
C10	PT9C	1		Т						
D9	PT9B	1	PCLK1_0***	С						
E9	PT9A	1		Т						
B10	PT8F	0		С						

MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.