

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	78
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LFBGA, CSPBGA
Supplier Device Package	100-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo256c-3m100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

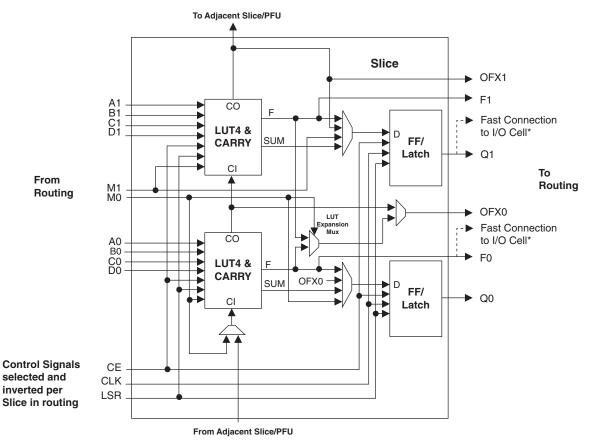
The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.


Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

1. See Figure 2-4 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

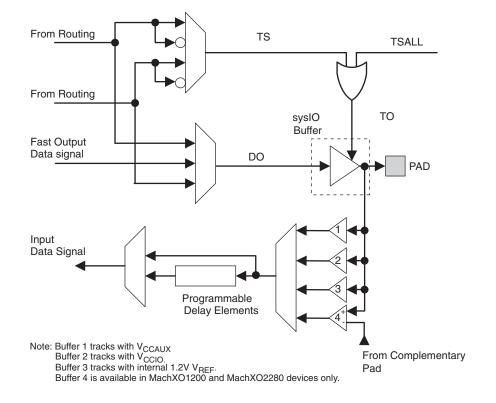
Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0
	·

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, <u>Minimizing System Interruption During Configura-</u> tion Using TransFR Technology for details.

Security

The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

MachXO256 and MachXO640 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
I _{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	+/-1000	μΑ

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

MachXO1200 and MachXO2280 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Non-LVDS (General Purpose syslOs		·			
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	—	—	+/-1000	μA
LVDS Gene	ral Purpose syslOs	·	·			
1 .	Input or I/O Leakage Current	$V_{IN} \leq V_{CCIO}$	—	_	+/-1000	μA
DK_LVDS	Input of 1/O Leakage Current	$V_{IN} > V_{CCIO}$	_	35		mA

1. Insensitive to sequence of V_{CC}, V_{CCAUX}, and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC}, V_{CCAUX}, and V_{CCIO}.

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX), and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU}, I_{PW} or I_{BH}.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 4, 5}	Input or I/O Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μA
'IL, 'IH	Input of I/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—	_	40	μA
I _{PU}	I/O Active Pull-up Current	$0 \leq V_{IN} \leq 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30		150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30		—	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-150	μΑ
V _{BHT} ³	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)		V _{IH} (MIN)	V
C1	I/O Capacitance ²		_	8		pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{IH} (MAX)$	_	8	_	pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0MHz

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Not applicable to SLEEPN pin.

 When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For MachXO1200 and MachXO2280 true LVDS output pins, V_{IH} must be less than or equal to V_{CCIO}.

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	Device	Typ. ³	Max.	Units
		LCMXO256C	12	25	μA
	Core Dower Supply	LCMXO640C	12	25	μA
ICC	Core Power Supply	LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
	Auxiliary Power Supply	LCMXO256C	1	15	μA
L		LCMXO640C	1	25	μA
ICCAUX		LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
ICC	Core Power Supply	LCMXO256E	4	mA
		LCMXO640E	6	mA
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
	Auxiliary Power Supply V _{CCAUX} = 3.3V	LCMXO256E/C	5	mA
		LCMXO640E/C	7	mA
CCAUX		LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
ccio	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.

Initialization Supply Current^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	13	mA
		LCMXO640C	17	mA
		LCMXO1200C	21	mA
	Core Power Supply	LCMXO2280C	23	mA
ICC	Core Power Supply	LCMXO256E	10	mA
		LCMXO640E	14	mA
		LCMXO1200E	18	mA
		LCMXO2280E	20	mA
		LCMXO256E/C	10	mA
	Auxiliary Power Supply	LCMXO640E/C	13	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	24	mA
		LCMXO2280E/C	25	mA
ICCIO	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Frequency = 0MHz.

4. Typical user pattern.

5. $T_J = 25^{\circ}$ C, power supplies at nominal voltage.

6. Per Bank, V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	9	mA
		LCMXO640C	11	mA
		LCMXO1200C	16	mA
1	Core Power Supply	LCMXO2280C	22	mA
ICC	Core Power Supply	LCMXO256E	6	mA
		LCMXO640E	8	mA
		LCMXO1200E	12	mA
		LCMXO2280E	14	mA
		LCMXO256C/E	8	mA
1	Auxiliary Power Supply	LCMXO640C/E	10	mA
CCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200/E	15	mA
		LCMXO2280C/E	16	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all I/O pins are held at V_{CCIO} or GND.

3. Typical user pattern.

4. JTAG programming is at 25MHz.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)	
Standard	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465
LVCMOS 2.5	2.375	2.5	2.625
LVCMOS 1.8	1.71	1.8	1.89
LVCMOS 1.5	1.425	1.5	1.575
LVCMOS 1.2	1.14	1.2	1.26
LVTTL	3.135	3.3	3.465
PCI ³	3.135	3.3	3.465
LVDS ^{1, 2}	2.375	2.5	2.625
LVPECL ¹	3.135	3.3	3.465
BLVDS ¹	2.375	2.5	2.625
RSDS ¹	2.375	2.5	2.625

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

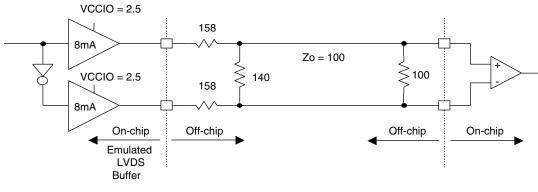
3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL} Max.	V _{OH} Min.		I _{OH} ¹	
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mÅ)	
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
	-0.5	0.0	2.0	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
					0.4	2.4	16	-16	
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
LVCIVIOS 2.5	0.0	0.7	1.7	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.8	-0.3	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
		-0.3 0.33 V CCIO	0.001000	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4	
2001000 1.5	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.35V _{CC}	0.651/05	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("E" Version)	-0.5	0.35 ACC	0.65V _{CC}	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5	

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

sysIO Differential Electrical Characteristics LVDS

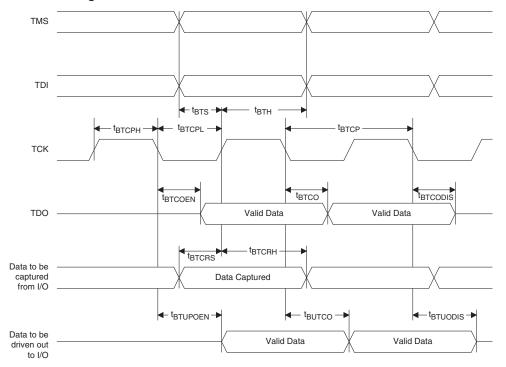

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0		2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—		+/-10	μΑ
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_		6	mA

Over Recommended Operating Conditions

LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)



Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.

Figure 3-5. JTAG Port Timing Waveforms

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	(O256		LCMXO640						
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential			
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**				
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С			
87	PT3D	0		С	PT5A	0		Т			
88	VCCAUX	-			VCCAUX	-					
89	PT3C	0		Т	PT4F	0					
90	VCC	-			VCC	-					
91	PT3B	0		С	PT3F	0					
92	VCCIO0	0			VCCIO0	0					
93	GNDIO0	0			GNDIO0	0					
94	PT3A	0		Т	PT3B	0		С			
95	PT2F	0		С	PT3A	0		Т			
96	PT2E	0		Т	PT2F	0		С			
97	PT2D	0		С	PT2E	0		Т			
98	PT2C	0		Т	PT2B	0		С			
99	PT2B	0		С	PT2C	0					
100	PT2A	0		Т	PT2A	0		Т			

* NC for "E" devices.

** Primary clock inputs are single-ended.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		L	CMXO1200			L	CMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
42	PB9A	4		Т	PB12A	4		Т
43	PB9B	4		С	PB12B	4		С
44	VCCIO4	4			VCCIO4	4		
45	PB10A	4		Т	PB13A	4		Т
46	PB10B	4		С	PB13B	4		С
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
48	PB11A	4		Т	PB16A	4		Т
49	PB11B	4		С	PB16B	4		С
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-		
51	PR16B	3			PR19B	3		
52	PR15B	3		C*	PR18B	3		C*
53	PR15A	3		T*	PR18A	3		T*
54	PR14B	3		C*	PR17B	3		C*
55	PR14A	3		T*	PR17A	3		T*
56	VCCIO3	3			VCCIO3	3		
57	PR12B	3		C*	PR15B	3		C*
58	PR12A	3		T*	PR15A	3		T*
59	GND	-			GND	-		
60	PR10B	3		C*	PR13B	3		C*
61	PR10A	3		T*	PR13A	3		T*
62	PR9B	3		C*	PR11B	3		C*
63	PR9A	3		T*	PR11A	3		T*
64	PR8B	2		C*	PR10B	2		C*
65	PR8A	2		T*	PR10A	2		T*
66	VCC	-			VCC	-		
67	PR6C	2			PR8C	2		
68	PR6B	2		C*	PR8B	2		C*
69	PR6A	2		T*	PR8A	2		T*
70	VCCIO2	2			VCCIO2	2		
71	PR4D	2			PR5D	2		
72	PR4B	2		C*	PR5B	2		C*
73	PR4A	2		T*	PR5A	2		T*
74	PR2B	2		С	PR3B	2		C*
75	PR2A	2		Т	PR3A	2		T*
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-		
77	PT11C	1			PT15C	1		
78	PT11B	1		С	PT14B	1		С
79	PT11A	1		Т	PT14A	1		Т
80	VCCIO1	1			VCCIO1	1		
81	PT9E	1			PT12D	1		С

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		I	CMXO1200		LCMXO2280					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
82	PT9A	1			PT12C	1		Т		
83	GND	-			GND	-				
84	PT8B	1		С	PT11B	1		С		
85	PT8A	1		Т	PT11A	1		Т		
86	PT7D	1	PCLK1_1****		PT10B	1	PCLK1_1****			
87	PT6F	0	PCLK0_0****		PT9B	1	PCLK1_0****			
88	PT6D	0		С	PT8F	0		С		
89	PT6C	0		Т	PT8E	0		Т		
90	VCCAUX	-			VCCAUX	-				
91	VCC	-			VCC	-				
92	PT5B	0			PT6D	0				
93	PT4B	0			PT6F	0				
94	VCCIO0	0			VCCIO0	0				
95	PT3D	0		С	PT4B	0		С		
96	PT3C	0		Т	PT4A	0		Т		
97	PT3B	0			PT3B	0				
98	PT2B	0		С	PT2B	0		С		
99	PT2A	0		Т	PT2A	0		Т		
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-				

*Supports true LVDS outputs.

**Double bonded to the pin.

***NC for "E" devices.

****Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640				LCN	IXO1200		LCMXO2280				
Ball	Ball		Dual		Ball	Ball		Dual		Ball	Ball		Dual	
Number		Bank	Function	Differential			Bank	Function	Differential		Function	Bank	Function	Differential
E11	NC				E11	PT10D	1		C	E11	PT15B	1		C
E10 D12	NC	0		с	E10 D12	PT10C PT10B	1		T C	E10 D12	PT15A PT14D	1		T C
D12	PT9D PT9C	0		Т	D12	PT10B PT10A	1		Т	D12	PT14D PT14C	1		т
-	PT9C PT7F	0		C	A14	PT10A PT9F	1		C	A14	PT14C PT14B	1		C I
A14	PT7E			Т		PT9F PT9E			Т		PT14B PT14A			т
A13 C12	PT8B	0		C	A13 C12	PT9D	1		C	A13 C12	PT14A PT13D	1		C
C12	PT8A	0		Т	C11	PT9C	1		т	C12	PT13C	1		Т
-	-	0		1	VCCIO1	VCCIO1	1		1	VCCIO1	VCCIO1	1		1
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
B12	PT7B	0		С	B12	PT9B	1		С	B12	PT12D	1		С
B12 B11	PT7A	0		Т	B12 B11	PT9A	1		Т	B11	PT12C	1		Т
A12	PT7D	0		C	A12	PT8F	1		C	A12	PT12B	1		C
A11	PT7C	0		T	A11	PT8E	1		T	A11	PT12A	1		T
GND	GND	-			GND	GND	-			GND	GND	-		
B10	PT5D	0		С	B10	PT8D	1		С	B10	PT11B	1		С
B10 B9	PT5C	0		T	B9	PT8C	1		Т	B9	PT11A	1		T
D10	PT8D	0		C	D10	PT8B	1		C	D10	PT10F	1		C
D9	PT8C	0		T	D9	PT8A	1		Т	D9	PT10E	1		т
-	-	-			VCCIO1	VCCIO1	1			VCCIO1	VCCIO1	1		
-	-				GND	GNDIO1	1			GND	GNDIO1	1		
C10	PT6D	0		С	C10	PT7F	1		С	C10	PT10D	1		С
C9	PT6C	0		Т	C9	PT7E	1		т	C9	PT10C	1		т
A9	PT6B	0	PCLK0_1***	С	A9	PT7D	1	PCLK1_1***	С	A9	PT10B	1	PCLK1_1***	С
A10	PT6A	0	_	Т	A10	PT7C	1	_	т	A10	PT10A	1		т
E9	PT9B	0		С	E9	PT7B	1		С	E9	PT9D	1		С
E8	PT9A	0		Т	E8	PT7A	1		т	E8	PT9C	1		т
D7	PT5B	0	PCLK0_0***	С	D7	PT6F	0	PCLK1_0***	С	D7	PT9B	1	PCLK1_0***	С
D8	PT5A	0		Т	D8	PT6E	0		т	D8	PT9A	1		т
VCCI00	VCCI00	0			VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0		
GND	GNDIO0	0			GND	GNDIO0	0			GND	GNDIO0	0		
C8	PT4F	0		С	C8	PT6D	0		С	C8	PT8D	0		С
B8	PT4E	0		Т	B8	PT6C	0		т	B8	PT8C	0		Т
A8	VCCAUX	-			A8	VCCAUX	-			A8	VCCAUX	-		
A7	PT4D	0		С	A7	PT6B	0		С	A7	PT7D	0		С
A6	PT4C	0		Т	A6	PT6A	0		Т	A6	PT7C	0		Т
VCC	VCC	-			VCC	VCC	-			VCC	VCC	-		
B7	PT4B	0		С	B7	PT5F	0		С	B7	PT7B	0		С
B6	PT4A	0		Т	B6	PT5E	0		Т	B6	PT7A	0		Т
C6	PT3C	0		Т	C6	PT5C	0		Т	C6	PT6A	0		Т
C7	PT3D	0		С	C7	PT5D	0		С	C7	PT6B	0		С
A5	PT3E	0		Т	A5	PT5A	0		Т	A5	PT6C	0		Т
A4	PT3F	0		С	A4	PT5B	0		С	A4	PT6D	0		С
E7	NC				E7	PT4C	0		Т	E7	PT6E	0		Т
E6	NC				E6	PT4D	0		С	E6	PT6F	0		С
B5	PT3B	0		С	B5	PT3F	0		С	B5	PT5D	0		С
B4	PT3A	0		Т	B4	PT3E	0		Т	B4	PT5C	0		Т
D5	PT2D	0		С	D5	PT3D	0		С	D5	PT5B	0		С
D6	PT2C	0		Т	D6	PT3C	0		Т	D6	PT5A	0		Т
C4	PT2E	0		Т	C4	PT4A	0		Т	C4	PT4A	0		Т
C5	PT2F	0		С	C5	PT4B	0		С	C5	PT4B	0		С
-	-	-			-	-	-			GND	GND	-		
D4	NC				D4	PT2D	0		С	D4	PT3D	0		С

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Ball Number	Ball Function	LCMXO2280 Bank	Dual Eurotian	Differentia
Ball Number			Dual Function	Differentia T*
G2	PL11A	6		C*
H2	PL11B	6		С" Т
L3	PL11C	6		
L5	PL11D	6		C
H1	PL12A	6		Τ*
VCCIO6	VCCIO6	6		
GND	GNDIO6	6		
J2	PL12B	6		C*
L4	PL12C	6		Т
L6	PL12D	6		C
K2	PL13A	6		T*
K1	PL13B	6		C*
J1	PL13C	6		Т
VCC	VCC	-		
L2	PL13D	6		С
M5	PL14D	6		С
M3	PL14C	6	TSALL	Т
L1	PL14B	6		C*
M2	PL14A	6		T*
M1	PL15A	6		T*
N1	PL15B	6		C*
M6	PL15C	6		Т
M4	PL15D	6		С
VCCIO6	VCCIO6	6		
GND	GNDIO6	6		
P1	PL16A	6		Т*
P2	PL16B	6		C*
N3	PL16C	6		Т
N4	PL16D	6		С
GND	GND	-		
T1	PL17A	6	LLM0_PLLT_FB_A	Т*
R1	PL17B	6	LLM0_PLLC_FB_A	C*
P3	PL17C	6		Т
N5	PL17D	6		С
R3	PL18A	6	LLM0_PLLT_IN_A	T*
R2	PL18B	6	LLM0_PLLC_IN_A	C*
P4	PL19A	6		Т
N6	PL19B	6		С
U1	PL20A	6		Т
VCCIO6	VCCIO6	6		
GND	GNDIO6	6		
GND	GNDIO5	5		
VCCIO5	VCCIO5	5		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LCMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
E13	PT16D	1		С
C15	PT16C	1		Т
F13	PT16B	1		С
D14	PT16A	1		Т
A18	PT15D	1		С
B17	PT15C	1		Т
A16	PT15B	1		С
A17	PT15A	1		Т
VCC	VCC	-		
D13	PT14D	1		С
F12	PT14C	1		Т
C14	PT14B	1		С
E12	PT14A	1		Т
C13	PT13D	1		С
B16	PT13C	1		Т
B15	PT13B	1		С
A15	PT13A	1		Т
VCCIO1	VCCIO1	1		
GND	GNDIO1	1		
B14	PT12F	1		С
A14	PT12E	1		Т
D12	PT12D	1		С
F11	PT12C	1		Т
B13	PT12B	1		С
A13	PT12A	1		Т
C12	PT11D	1		С
GND	GND	-		
B12	PT11C	1		Т
E11	PT11B	1		С
D11	PT11A	1		Т
C11	PT10F	1		С
A12	PT10E	1		Т
VCCIO1	VCCIO1	1		
GND	GNDIO1	1		
F10	PT10D	1		С
D10	PT10C	1		Т
B11	PT10B	1	PCLK1_1***	С
A11	PT10A	1		Т
E10	PT9D	1		С
C10	PT9C	1		Т
D9	PT9B	1	PCLK1_0***	С
E9	PT9A	1		Т
B10	PT8F	0		С

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100C	1200	1.2V	73	-3	TQFP	100	COM
LCMXO1200E-4T100C	1200	1.2V	73	-4	TQFP	100	COM
LCMXO1200E-5T100C	1200	1.2V	73	-5	TQFP	100	COM
LCMXO1200E-3T144C	1200	1.2V	113	-3	TQFP	144	COM
LCMXO1200E-4T144C	1200	1.2V	113	-4	TQFP	144	COM
LCMXO1200E-5T144C	1200	1.2V	113	-5	TQFP	144	COM
LCMXO1200E-3M132C	1200	1.2V	101	-3	csBGA	132	COM
LCMXO1200E-4M132C	1200	1.2V	101	-4	csBGA	132	COM
LCMXO1200E-5M132C	1200	1.2V	101	-5	csBGA	132	COM
LCMXO1200E-3B256C	1200	1.2V	211	-3	caBGA	256	COM
LCMXO1200E-4B256C	1200	1.2V	211	-4	caBGA	256	COM
LCMXO1200E-5B256C	1200	1.2V	211	-5	caBGA	256	COM
LCMXO1200E-3FT256C	1200	1.2V	211	-3	ftBGA	256	COM
LCMXO1200E-4FT256C	1200	1.2V	211	-4	ftBGA	256	COM
LCMXO1200E-5FT256C	1200	1.2V	211	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100C	2280	1.2V	73	-3	TQFP	100	COM
LCMXO2280E-4T100C	2280	1.2V	73	-4	TQFP	100	COM
LCMXO2280E-5T100C	2280	1.2V	73	-5	TQFP	100	COM
LCMXO2280E-3T144C	2280	1.2V	113	-3	TQFP	144	COM
LCMXO2280E-4T144C	2280	1.2V	113	-4	TQFP	144	COM
LCMXO2280E-5T144C	2280	1.2V	113	-5	TQFP	144	COM
LCMXO2280E-3M132C	2280	1.2V	101	-3	csBGA	132	COM
LCMXO2280E-4M132C	2280	1.2V	101	-4	csBGA	132	COM
LCMXO2280E-5M132C	2280	1.2V	101	-5	csBGA	132	COM
LCMXO2280E-3B256C	2280	1.2V	211	-3	caBGA	256	COM
LCMXO2280E-4B256C	2280	1.2V	211	-4	caBGA	256	COM
LCMXO2280E-5B256C	2280	1.2V	211	-5	caBGA	256	COM
LCMXO2280E-3FT256C	2280	1.2V	211	-3	ftBGA	256	COM
LCMXO2280E-4FT256C	2280	1.2V	211	-4	ftBGA	256	COM
LCMXO2280E-5FT256C	2280	1.2V	211	-5	ftBGA	256	COM
LCMXO2280E-3FT324C	2280	1.2V	271	-3	ftBGA	324	COM
LCMXO2280E-4FT324C	2280	1.2V	271	-4	ftBGA	324	COM
LCMXO2280E-5FT324C	2280	1.2V	271	-5	ftBGA	324	COM