E.J. Lattice Semiconductor Corporation - <u>LCMX0256C-3T100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Obsolete
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	78
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo256c-3t100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Introduction

June 2013

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

Sleep Mode

• Allows up to 100x static current reduction

■ TransFR[™] Reconfiguration (TFR)

In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

Embedded and Distributed Memory

- Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

Table 1-1. MachXO Family Selection Guide

■ Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip.

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Kbits)	0	0	9.2	27.6
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball caBGA (14x14 mm)		159	211	211
256-ball ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Sheet DS1002

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

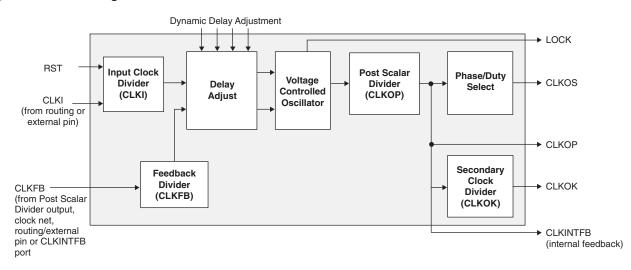
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

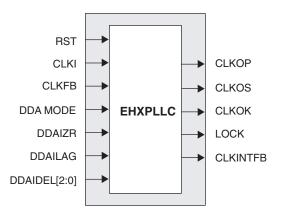

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

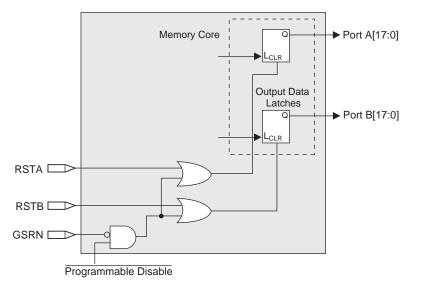
FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0
	·

N = Address bit width


The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

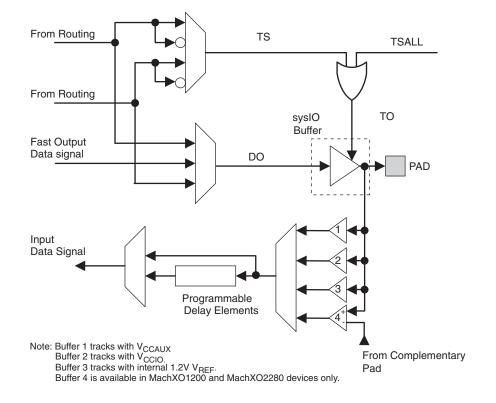
Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
			(all I/O Banks)	(all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

	VCCIO (Typ.)				
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces					
LVTTL	Yes	Yes	Yes	Yes	Yes
LVCMOS33	Yes	Yes	Yes	Yes	Yes
LVCMOS25	Yes	Yes	Yes	Yes	Yes
LVCMOS18			Yes		
LVCMOS15				Yes	
LVCMOS12	Yes	Yes	Yes	Yes	Yes
PCI ¹	Yes				
Differential Interfaces	•	•	•	•	
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes

Top Banks of MachXO1200 and MachXO2280 devices only.
MachXO1200 and MachXO2280 devices only.

Figure 2-18. MachXO2280 Banks

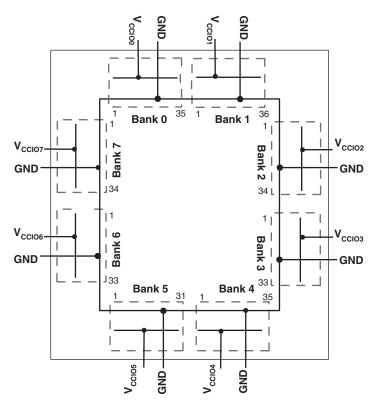
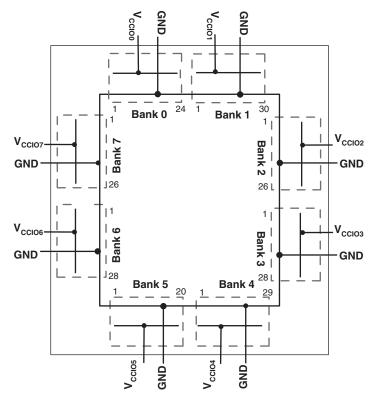



Figure 2-19. MachXO1200 Banks

Supply Current (Sleep Mode)^{1, 2}

Symbol	Parameter	Device	Typ. ³	Max.	Units
		LCMXO256C	12	25	μA
		LCMXO640C	12	25	μA
ICC	Core Power Supply	LCMXO1200C	12	25	μA
		LCMXO2280C	12	25	μA
		LCMXO256C	1	15	μA
L	Augilians Bauan Cumplu	LCMXO640C	1	25	μA
I _{CCAUX} Auxiliary Power Supply	Auxiliary Fower Supply	LCMXO1200C	1	45	μA
		LCMXO2280C	1	85	μA
I _{CCIO}	Bank Power Supply ⁴	All LCMXO 'C' Devices	2	30	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency = 0MHz.

3. $T_A = 25^{\circ}C$, power supplies at nominal voltage.

4. Per Bank.

Supply Current (Standby)^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	7	mA
		LCMXO640C	9	mA
		LCMXO1200C	14	mA
		LCMXO2280C	20	mA
СС	Core Power Supply	LCMXO256E	4	mA
	LCMXO640E	6	mA	
		LCMXO1200E	10	mA
		LCMXO2280E	12	mA
		LCMXO256E/C	5	mA
	Auxiliary Power Supply	LCMXO640E/C	7	mA
CCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	12	mA
		LCMXO2280E/C	13	mA
ccio	Bank Power Supply ⁶	All devices	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND.

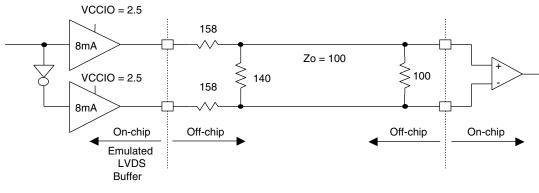
3. Frequency = 0MHz.

4. User pattern = blank.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. Per Bank. $V_{CCIO} = 2.5V$. Does not include pull-up/pull-down.

sysIO Differential Electrical Characteristics LVDS


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0		2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—		+/-10	μΑ
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

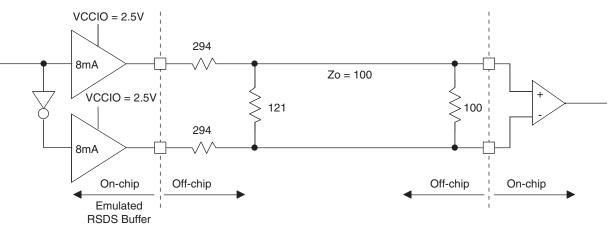
LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.



For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	—	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
AC Characte	eristics			•	•
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t_{PH}^{4}	Output Phase Accuracy		—	0.05	UI
t 1	Output Clock Period Jitter	Clock Period litter		+/-120	ps
t _{OPJIT} 1		f _{OUT} < 100 MHz	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	ns
t _{LOCK} ²	PLL Lock-in Time		—	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Period Jitter	$f_{OUT} \ge 100 \text{ MHz}$	—	+/-200	ps
t _{IPJIT}		f _{OUT} < 100 MHz	—	0.02	UI
t _{FBKDLY}	External Feedback Delay		_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST Pulse Width		10	—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output.

5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.

6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP

		LCN	IXO256		LCMXO640					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
1	PL2A	1		Т	PL2A	3		Т		
2	PL2B	1		С	PL2C	3		Т		
3	PL3A	1		Т	PL2B	3		С		
4	PL3B	1		С	PL2D	3		С		
5	PL3C	1		Т	PL3A	3		Т		
6	PL3D	1		С	PL3B	3		С		
7	PL4A	1		Т	PL3C	3		Т		
8	PL4B	1		С	PL3D	3		С		
9	PL5A	1		Т	PL4A	3				
10	VCCIO1	1			VCCIO3	3				
11	PL5B	1		С	PL4C	3		Т		
12	GNDIO1	1			GNDIO3	3				
13	PL5C	1		Т	PL4D	3		С		
14	PL5D	1	GSRN	С	PL5B	3	GSRN			
15	PL6A	1		Т	PL7B	3				
16	PL6B	1	TSALL	С	PL8C	3	TSALL	Т		
17	PL7A	1		Т	PL8D	3		С		
18	PL7B	1		С	PL9A	3				
19	PL7C	1		Т	PL9C	3				
20	PL7D	1		С	PL10A	3				
21	PL8A	1		Т	PL10C	3				
22	PL8B	1		С	PL11A	3				
23	PL9A	1		Т	PL11C	3				
24	VCCIO1	1			VCCIO3	3				
25	GNDIO1	1			GNDIO3	3				
26	TMS	1	TMS		TMS	2	TMS			
27	PL9B	1		С	PB2C	2				
28	ТСК	1	ТСК		TCK	2	ТСК			
29	PB2A	1		Т	VCCIO2	2				
30	PB2B	1		С	GNDIO2	2				
31	TDO	1	TDO		TDO	2	TDO			
32	PB2C	1		Т	PB4C	2				
33	TDI	1	TDI		TDI	2	TDI			
34	PB2D	1		С	PB4E	2				
35	VCC	-			VCC	-				
36	PB3A	1	PCLK1_1**	Т	PB5B	2	PCLK2_1**			
37	PB3B	1		С	PB5D	2				
38	PB3C	1	PCLK1_0**	Т	PB6B	2	PCLK2_0**			
39	PB3D	1		С	PB6C	2				
40	GND	-			GND	-				
41	VCCIO1	1			VCCIO2	2				
42	GNDIO1	1			GNDIO2	2	1			

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP

	LCMXO640				LCMXO1200						LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
1	PL2A	3		Т	PL2A	7		Т	PL2A	7	LUM0_PLLT_FB_A	Т
2	PL2C	3		Т	PL2B	7		С	PL2B	7	LUM0_PLLC_FB_A	С
3	PL2B	3		С	PL3A	7		T*	PL3A	7		T*
4	PL3A	3		T	PL3B	7		C*	PL3B	7		C*
5	PL2D	3		C	PL3C	7		T	PL3C	7	LUM0_PLLT_IN_A	T
6	PL3B	3		C	PL3D	7		C	PL3D	7	LUM0_PLLC_IN_A	C
7	PL3C	3		T	PL4A	7		T*	PL4A	7	20110_1220_11	T*
8	PL3D	3		C	PL4B	7		C*	PL4B	7		C*
9	PL4A	3		0	PL4C	7		0	PL4C	7		
10	VCCIO3	3			VCCIO7	7			VCCIO7	7		
	GNDIO3	3			GNDIO7	7			GNDIO7	7		
11												
12	PL4D	3			PL5C	7			PL6C	7		
13	PL5A	3		Т	PL6A	7		T*	PL7A	7		T*
14	PL5B	3	GSRN	С	PL6B	7	GSRN	C*	PL7B	7	GSRN	C*
15	PL5D	3			PL6D	7			PL7D	7		ļ
16	GND	-			GND	-			GND	-		ļ
17	PL6C	3		Т	PL7C	7		Т	PL9C	7		Т
18	PL6D	3		С	PL7D	7		С	PL9D	7		С
19	PL7A	3		Т	PL10A	6		T*	PL13A	6		T*
20	PL7B	3		С	PL10B	6		C*	PL13B	6		C*
21	VCC	-			VCC	-			VCC	-		
22	PL8A	3		Т	PL11A	6		T*	PL13D	6		1
23	PL8B	3		С	PL11B	6		C*	PL14D	6		С
24	PL8C	3	TSALL		PL11C	6	TSALL		PL14C	6	TSALL	Т
25	PL9C	3		Т	PL12B	6			PL15B	6		
26	VCCIO3	3			VCCIO6	6			VCCIO6	6		
27	GNDIO3	3			GNDIO6	6			GNDIO6	6		
28	PL9D	3		С	PL13D	6			PL16D	6		
29	PL10A	3		T	PL14A	6	LLM0_PLLT_FB_A	T*	PL17A	6	LLM0_PLLT_FB_A	T*
30	PL10B	3		C	PL14B	6	LLM0 PLLC FB A	C*	PL17B	6	LLM0_PLLC_FB_A	C*
31	PL10D	3		T	PL14C	6		T	PL17C	6		T
31	PL10C	3		T	PL14C PL14D	6		C	PL17D	6		C
	PL10D	3		C	PL14D PL15A	6		T*	PL18A	6	LLM0_PLLT_IN_A	T*
33					-		LLMO_PLLT_IN_A		-			
34	PL11C	3		Т	PL15B	6	LLM0_PLLC_IN_A	C*	PL18B	6	LLM0_PLLC_IN_A	C*
35	PL11B	3		С	PL16A	6		Т	PL19A	6		Т
36	PL11D	3		С	PL16B	6		С	PL19B	6		С
37	GNDIO2	2			GNDIO5	5			GNDIO5	5		
38	VCCIO2	2			VCCIO5	5			VCCIO5	5		ļ
39	TMS	2	TMS		TMS	5	TMS		TMS	5	TMS	
40	PB2C	2			PB2C	5		Т	PB2A	5		Т
41	PB3A	2		Т	PB2D	5		С	PB2B	5		С
42	TCK	2	TCK		TCK	5	ТСК		TCK	5	ТСК	
43	PB3B	2		С	PB3A	5		Т	PB3A	5		Т
44	PB3C	2		Т	PB3B	5		С	PB3B	5		С
45	PB3D	2		С	PB4A	5		Т	PB4A	5		Т
46	PB4A	2		Т	PB4B	5		С	PB4B	5		С
47	TDO	2	TDO		TDO	5	TDO		TDO	5	TDO	
48	PB4B	2		С	PB4D	5			PB4D	5		[
49	PB4C	2		Т	PB5A	5		Т	PB5A	5		Т
50	PB4D	2		C	PB5B	5		C	PB5B	5		C

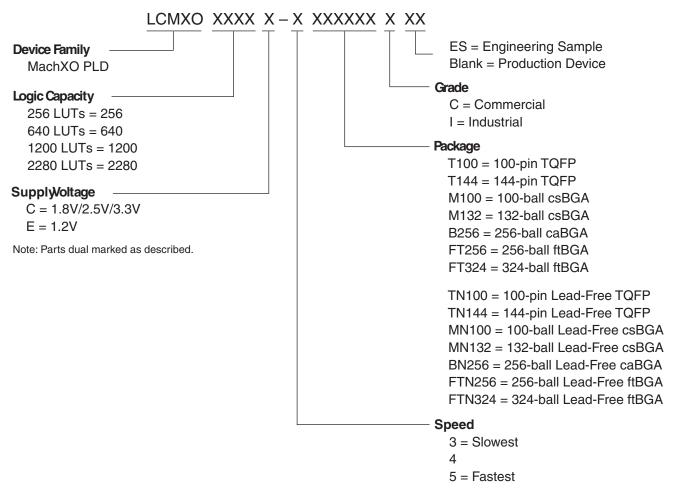
LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200				LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		С	PT7B	0		С
131	PT4B	0		С	PT5C	0		Т	PT7A	0		Т
132	PT4A	0		Т	PT5B	0		С	PT6D	0		
133	PT3F	0			PT5A	0		Т	PT6E	0		Т
134	PT3D	0			PT4B	0			PT6F	0		С
135	VCCIO0	0			VCCIO0	0			VCCIO0	0		1
136	GNDIO0	0			GNDIO0	0			GNDIO0	0		1
137	PT3B	0		С	PT3D	0		С	PT4B	0		Т
138	PT2F	0		С	PT3C	0		Т	PT4A	0		С
139	PT3A	0		Т	PT3B	0		С	PT3B	0		С
140	PT2D	0		С	PT3A	0		Т	PT3A	0		Т
141	PT2E	0		Т	PT2D	0		С	PT2D	0		С
142	PT2B	0		С	PT2C	0		Т	PT2C	0		Т
143	PT2C	0		Т	PT2B	0		С	PT2B	0		С
144	PT2A	0		Т	PT2A	0		Т	PT2A	0		Т

*Supports true LVDS outputs.

**NC for "E" devices.

***Primary clock inputs arer single-ended.



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100I	256	1.2V	78	-3	Lead-Free TQFP	100	IND
LCMXO256E-4TN100I	256	1.2V	78	-4	Lead-Free TQFP	100	IND
LCMXO256E-3MN100I	256	1.2V	78	-3	Lead-Free csBGA	100	IND
LCMXO256E-4MN100I	256	1.2V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100I	640	1.2V	74	-3	Lead-Free TQFP	100	IND
LCMXO640E-4TN100I	640	1.2V	74	-4	Lead-Free TQFP	100	IND
LCMXO640E-3MN100I	640	1.2V	74	-3	Lead-Free csBGA	100	IND
LCMXO640E-4MN100I	640	1.2V	74	-4	Lead-Free csBGA	100	IND
LCMXO640E-3TN144I	640	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO640E-4TN144I	640	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO640E-3MN132I	640	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO640E-4MN132I	640	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO640E-3BN256I	640	1.2V	159	-3	Lead-Free caBGA	256	IND
LCMXO640E-4BN256I	640	1.2V	159	-4	Lead-Free caBGA	256	IND
LCMXO640E-3FTN256I	640	1.2V	159	-3	Lead-Free ftBGA	256	IND
LCMXO640E-4FTN256I	640	1.2V	159	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100I	1200	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200E-4TN100I	1200	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200E-3TN144I	1200	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200E-4TN144I	1200	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200E-3MN132I	1200	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200E-4MN132I	1200	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200E-3BN256I	1200	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO1200E-4BN256I	1200	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO1200E-3FTN256I	1200	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200E-4FTN256I	1200	1.2V	211	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100I	2280	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280E-4TN100I	2280	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280E-3TN144I	2280	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280E-4TN144I	2280	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280E-3MN132I	2280	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280E-4MN132I	2280	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO2280E-3BN256I	2280	1.2V	211	-3	Lead-Free caBGA	256	IND
LCMXO2280E-4BN256I	2280	1.2V	211	-4	Lead-Free caBGA	256	IND
LCMXO2280E-3FTN256I	2280	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO2280E-4FTN256I	2280	1.2V	211	-4	Lead-Free ftBGA	256	IND
LCMXO2280E-3FTN324I	2280	1.2V	271	-3	Lead-Free ftBGA	324	IND
LCMXO2280E-4FTN324I	2280	1.2V	271	-4	Lead-Free ftBGA	324	IND

MachXO Family Data Sheet Revision History

June 2013

Revision History

Data Sheet DS1002

Date	Version	Section	Change Summary
February 2005	01.0	—	Initial release.
October 2005	01.1	Introduction	Distributed RAM information in family table updated. Added footnote 1 - fpBGA packaging to the family selection guide.
		Architecture	sysIO Buffer section updated.
			Hot Socketing section updated.
			Sleep Mode section updated.
			SLEEP Pin Characteristics section updated.
			Oscillator section updated.
			Security section updated.
		DC and Switching Characteristics	Recommended Operating Conditions table updated.
			DC Electrical Characteristics table updated.
			Supply Current (Sleep Mode) table added with LCMXO256/640 data.
			Supply Current (Standby) table updated with LCMXO256/640 data.
			Initialization Supply Current table updated with LCMXO256/640 data.
			Programming and Erase Flash Supply Current table updated with LCMXO256/640 data.
			Register-to-Register Performance table updated (rev. A 0.16).
			External Switching Characteristics table updated (rev. A 0.16).
			Internal Timing Parameter table updated (rev. A 0.16).
			Family Timing Adders updated (rev. A 0.16).
			sysCLOCK Timingupdated (rev. A 0.16).
			MachXO "C" Sleep Mode Timing updated (A 0.16).
			JTAG Port Timing Specification updated (rev. A 0.16).
		Pinout Information	SLEEPIN description updated.
			Pin Information Summary updated.
			Power Supply and NC Connection table has been updated.
			Logic Signal Connection section has been updated to include all devices/packages.
		Ordering Information	Part Number Description section has been updated.
			Ordering Part Number section has been updated (added LCMXO256C/LCMXO640C "4W").
		Supplemental Information	MachXO Density Migration Technical Note (TN1097) added.
November 2005	01.2	Pinout Information	Added "Power Supply and NC Connections" summary information for LCMXO1200 and LCMXO2280 in 100 TQFP package.
December 2005	01.3	DC and Switching Characteristics	Supply Current (Standby) table updated with LCMXO1200/2280 data.
		Ordering Information	Ordering Part Number section updated (added LCMXO2280C "4W").
April 2006	02.0	Introduction	Introduction paragraphs updated.
		Architecture	Architecture Overview paragraphs updated.

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary			
November 2006	lovember 2006 02.3 DC and Sv Characte		Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.			
			Added Flash Download Time table.			
December 2006	2006 02.4 Architecture		EBR Asynchronous Reset section added.			
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.			
February 2007	02.5	Architecture	Updated EBR Asynchronous Reset section.			
August 2007	02.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.			
November 2007 02.7		DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.			
		Pinout Information	Added Thermal Management text section.			
		Supplemental Information	Updated title list.			
June 2009	02.8	Introduction	Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table.			
		Pinout Information	Added Logic Signal Connections table for 0.8-mm 256-pin caBGA package.			
		Ordering Information	Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information.			
July 2010	02.9	DC and Switching Characteristics	Updated sysCLOCK PLL Timing table.			
June 2013	03.0	All	Updated document with new corporate logo.			
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.			
		DC and Switching Characteristics	MachXO1200 and MachXO2280 Hot Socketing Specifications table – Removed footnote 4.			
			Added MachXO Programming/Erase Specifications table.			