E.J. FLattice Semiconductor Corporation - <u>LCMX0256C-4TN100I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	78
Number of Gates	
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo256c-4tn100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

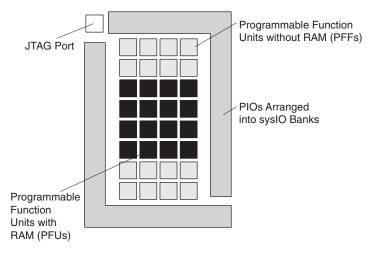
The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

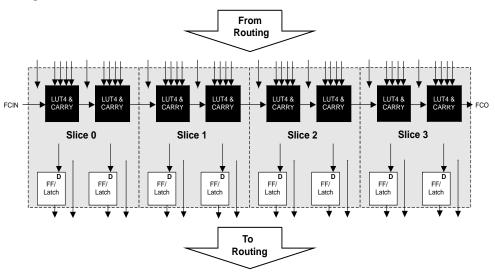
In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.


The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


Figure 2-3. Top View of the MachXO256 Device

PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram

Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

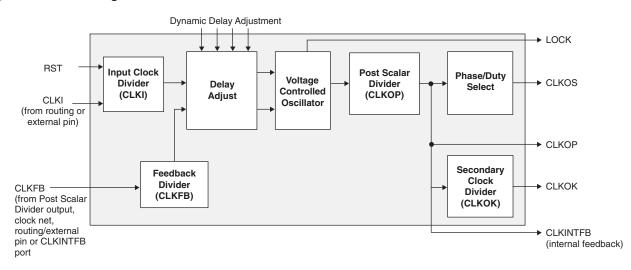
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

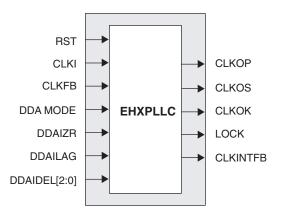

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

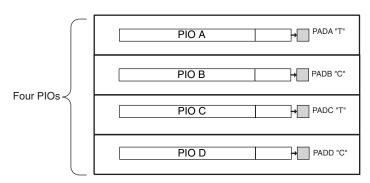
The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36


PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

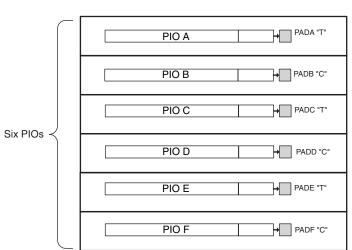

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of Six Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices $\label{eq:machine}$

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

Table 2-8. I/O Support Device by Device

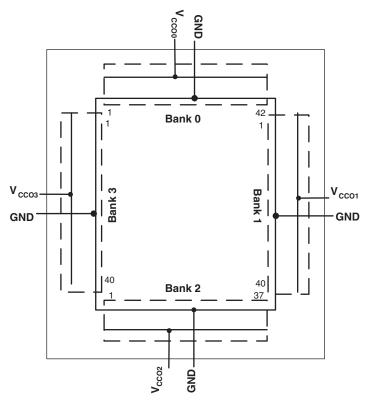
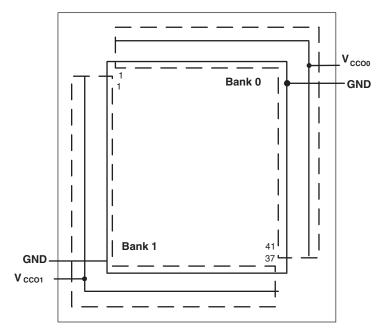
	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
			(all I/O Banks)	(all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

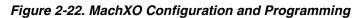
Table 2-9. Supported Input Standards

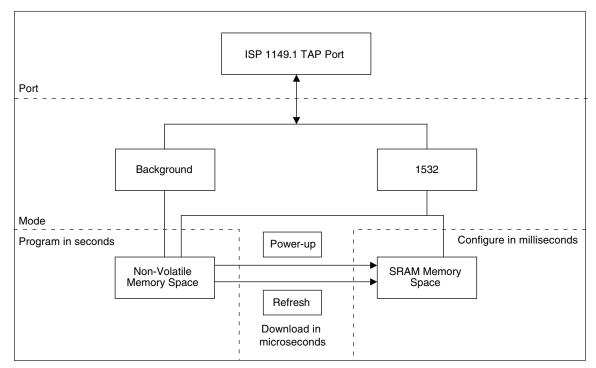
	VCCIO (Typ.)							
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V			
Single Ended Interfaces								
LVTTL	Yes	Yes	Yes	Yes	Yes			
LVCMOS33	Yes	Yes	Yes	Yes	Yes			
LVCMOS25	Yes	Yes	Yes	Yes	Yes			
LVCMOS18			Yes					
LVCMOS15				Yes				
LVCMOS12	Yes	Yes	Yes	Yes	Yes			
PCI ¹	Yes							
Differential Interfaces								
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes			

Top Banks of MachXO1200 and MachXO2280 devices only.
MachXO1200 and MachXO2280 devices only.

Figure 2-20. MachXO640 Banks


Figure 2-21. MachXO256 Banks



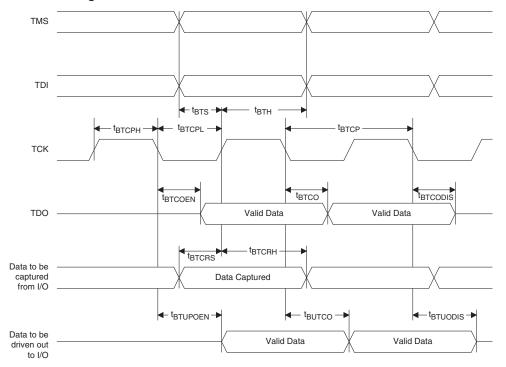
Hot Socketing

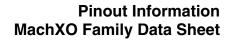
The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

MachXO External Switching Characteristics¹


			-	5	-	4	-3		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Global Clock with	hout PLL) ¹							
		LCMXO256	_	3.5	—	4.2	—	4.9	ns
•	Post Cose t Through 1 LUT	LCMXO640	_	3.5	—	4.2	—	4.9	ns
t _{PD}	Best Case t _{PD} Through 1 LUT	LCMXO1200	_	3.6	—	4.4	—	5.1	ns
		LCMXO2280		3.6	—	4.4	—	5.1	ns
		LCMXO256		4.0	—	4.8	—	5.6	ns
+	Best Case Clock to Output - From PFU	LCMXO640	_	4.0	—	4.8	—	5.7	ns
t _{CO}	Best Case Clock to Output - FIOIII FFO	LCMXO1200	_	4.3	—	5.2	—	6.1	ns
		LCMXO2280		4.3	—	5.2	—	6.1	ns
		LCMXO256	1.3	—	1.6	—	1.8	—	ns
+	Clock to Data Setup - To PFU	LCMXO640	1.1	—	1.3	—	1.5	—	ns
t _{SU}		LCMXO1200	1.1	—	1.3	—	1.6	—	ns
		LCMXO2280	1.1	—	1.3	—	1.5	—	ns
	Clock to Data Hold - To PFU	LCMXO256	-0.3	—	-0.3	—	-0.3	—	ns
+		LCMXO640	-0.1	—	-0.1		-0.1	_	ns
t _H	Clock to Data Hold - TO PPO	LCMXO1200	0.0	—	0.0	—	0.0	—	ns
		LCMXO2280	-0.4	—	-0.4		-0.4	—	ns
		LCMXO256		600	—	550	—	500	MHz
f	Clock Frequency of I/O and PFU Register	LCMXO640		600	—	550	—	500	MHz
f _{MAX_IO}	Clock Frequency of I/O and FFO Register	LCMXO1200	_	600	—	550		500	MHz
		LCMXO2280	_	600	—	550	—	500	MHz
		LCMXO256	_	200	—	220	—	240	ps
+.	Global Clock Skew Across Device	LCMXO640		200	—	220	—	240	ps
t _{SKEW_PRI}	GIODAI GIOCK SKEW ACIOSS DEVICE	LCMXO1200		220	—	240	—	260	ps
		LCMXO2280	_	220	—	240	—	260	ps


Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS2.5V, 12 mA. Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

Power Supply and NC (Cont.)

Signal	132 csBGA ¹	256 caBGA / 256 ftBGA ¹	324 ftBGA ¹
VCC	H3, P6, G12, C7	G7, G10, K7, K10	F14, G11, G9, H7, L7, M9
VCCIO0	LCMXO640: B11, C5 LCMXO1200/2280: C5	LCMXO640: F8, F7, F9, F10 LCMXO1200/2280: F8, F7	G8, G7
VCCIO1	LCMXO640: L12, E12 LCMXO1200/2280: B11	LCMXO640: H11, G11, K11, J11 LCMXO1200/2280: F9, F10	G12, G10
VCCIO2	LCMXO640: N2, M10 LCMXO1200/2280: E12	LCMXO640: L9, L10, L8, L7 LCMXO1200/2280: H11, G11	J12, H12
VCCIO3	LCMXO640: D2, K3 LCMXO1200/2280: L12	LCMXO640: K6, J6, H6, G6 LCMXO1200/2280: K11, J11	L12, K12
VCCIO4	LCMXO640: None LCMXO1200/2280: M10	LCMXO640: None LCMXO1200/2280: L9, L10	M12, M11
VCCIO5	LCMXO640: None LCMXO1200/2280: N2	LCMXO640: None LCMXO1200/2280: L8, L7	M8, R9
VCCIO6	LCMXO640: None LCMXO1200/2280: K3	LCMXO640: None LCMXO1200/2280: K6, J6	M7, K7
VCCIO7	LCMXO640: None LCMXO1200/2280: D2	LCMXO640: None LCMXO1200/2280: H6, G6	H6, J7
VCCAUX	P7, A7	T9, A8	M10, F9
GND ²	F1, P9, J14, C9, A10, B4, L13, D13, P2, N11, E1, L2	A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, J10, K8, K9, L6, T1, T16	E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9, K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14, P5, R7
NC ³		LCMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11, R15, R16, P15, P16, M11, L11, N12, N13, M13, M12, K12, J12, F12, F13, E12, E13, D13, D14, B15, A15, C14, B14, E11, E10, E7, E6, D4, D3, B3, B2 LCMXO1200: None LCMXO2280: None	

Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	XO256		LCMXO640					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential		
43	PB4A	1		Т	PB8B	2				
44	PB4B	1		С	PB8C	2		Т		
45	PB4C	1		T	PB8D	2		C		
46	PB4D	1		C	PB9A	2				
47	PB5A	1			PB9C	2		Т		
48*	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN			
49	PB5C	1		Т	PB9D	2		С		
50	PB5D	1		C	PB9F	2		-		
51	PR9B	0		C	PR11D	1		С		
52	PR9A	0		T	PR11B	1		C		
53	PR8B	0		C	PR11C	1		T		
54	PR8A	0		T	PR11A	1		T		
55	PR7D	0		C	PR10D	1		C		
56	PR7C	0		Т	PR10C	1		Т		
57	PR7B	0		C	PR10B	1		C		
58	PR7A	0		Т	PR10A	1		Т		
59	PR6B	0		C	PR9D	1				
60	VCCIO0	0		C	VCCIO1	1				
61	PR6A	0		Т	PR9B	1				
				I						
62	GNDIO0	0			GNDIO1	1				
63	PR5D	0		C	PR7B	1				
64	PR5C	0		Т	PR6C	1				
65	PR5B	0		C	PR6B	1				
66	PR5A	0		Т	PR5D	1				
67	PR4B	0		С	PR5B	1				
68	PR4A	0		Т	PR4D	1				
69	PR3D	0		С	PR4B	1				
70	PR3C	0		Т	PR3D	1				
71	PR3B	0		С	PR3B	1				
72	PR3A	0		Т	PR2D	1				
73	PR2B	0		С	PR2B	1				
74	VCCIO0	0			VCCIO1	1				
75	GNDIO0	0			GNDIO1	1				
76	PR2A	0		Т	PT9F	0		С		
77	PT5C	0			PT9E	0		Т		
78	PT5B	0		С	PT9C	0				
79	PT5A	0		Т	PT9A	0				
80	PT4F	0		С	VCCIO0	0				
81	PT4E	0		Т	GNDIO0	0				
82	PT4D	0		С	PT7E	0				
83	PT4C	0		Т	PT7A	0				
84	GND	-	1		GND	-				

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256					LCMXO640)	
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200				LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		т
66	PB8D	2		C	PB10B	4		C	PB13B	4		C
67	PB9A	2		T	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		T	PB10D	4		C	PB13D	4		C
69	PB9B	2		C	PB10F	4		Ū	PB14D	4		0
70**	SLEEPN	-	SLEEPN	Ŭ	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
71	PB9D	2	SELLIN	С	PB11C	4	SELLI N	Т	PB16C	4	SEELIN	т
71	PB9D PB9F	2		U	PB11C PB11D	4		C	PB16C PB16D	4		C
				0					-			c
73	PR11D	1		C	PR16B	3		С	PR20B	3		
74	PR11B	1		C	PR16A	3		T	PR20A	3		Т
75	PR11C	1		Т	PR15B	3		C*	PR19B	3		C
76	PR10D	1		C	PR15A	3		T*	PR19A	3		Т
77	PR11A	1		Т	PR14D	3		C	PR17D	3		C T
78	PR10B	1		С	PR14C	3		T	PR17C	3		T
79	PR10C	1		Т	PR14B	3		C*	PR17B	3		C*
80	PR10A	1		Т	PR14A	3		T*	PR17A	3		T*
81	PR9D	1			PR13D	3			PR16D	3		
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PR8C	1			PR12A	3		T*	PR15A	3		T*
86	PR8A	1			PR11B	3		C*	PR14B	3		C*
87	PR7D	1			PR11A	3		T*	PR14A	3		T*
88	GND	-			GND	-			GND	-		
89	PR7B	1		С	PR10B	3		C*	PR13B	3		C*
90	PR7A	1		Т	PR10A	3		T*	PR13A	3		T*
91	PR6D	1		С	PR8B	2		C*	PR10B	2		C*
92	PR6C	1		Т	PR8A	2		T*	PR10A	2		T*
93	VCC	-			VCC	-			VCC	-		
94	PR5D	1			PR6B	2		C*	PR8B	2		C*
95	PR5B	1			PR6A	2		T*	PR8A	2		T*
96	PR4D	1			PR5B	2		C*	PR7B	2		C*
97	PR4B	1		С	PR5A	2		T*	PR7A	2		T*
98	VCCIO1	1			VCCIO2	2			VCCIO2	2		
99	GNDIO1	1			GNDIO2	2			GNDIO2	2		
100	PR4A	1		Т	PR4C	2			PR5C	2		

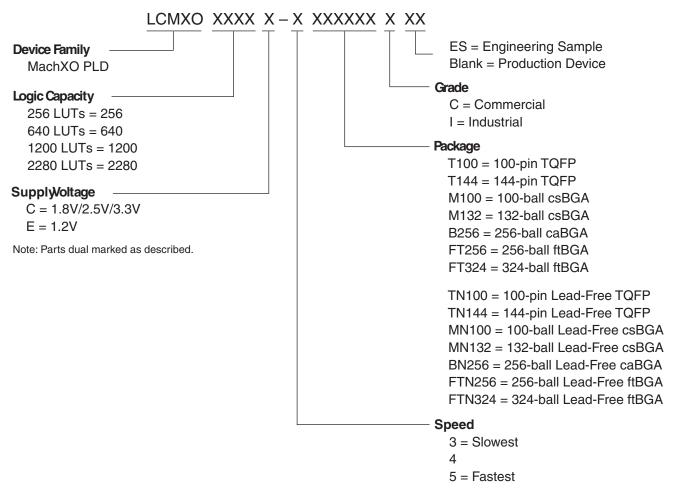
Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Conventional Packaging

		•••					
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO256C-3T100C	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	COM
LCMXO256C-4T100C	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	COM
LCMXO256C-5T100C	256	1.8V/2.5V/3.3V	78	-5	TQFP	100	COM
LCMXO256C-3M100C	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	COM
LCMXO256C-4M100C	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	COM
LCMXO256C-5M100C	256	1.8V/2.5V/3.3V	78	-5	csBGA	100	COM

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100C	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	COM
LCMXO640C-4T100C	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	COM
LCMXO640C-5T100C	640	1.8V/2.5V/3.3V	74	-5	TQFP	100	COM
LCMXO640C-3M100C	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	COM
LCMXO640C-4M100C	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	COM
LCMXO640C-5M100C	640	1.8V/2.5V/3.3V	74	-5	csBGA	100	COM
LCMXO640C-3T144C	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO640C-4T144C	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO640C-5T144C	640	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO640C-3M132C	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO640C-4M132C	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO640C-5M132C	640	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO640C-3B256C	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	COM
LCMXO640C-4B256C	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	COM
LCMXO640C-5B256C	640	1.8V/2.5V/3.3V	159	-5	caBGA	256	COM
LCMXO640C-3FT256C	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	COM
LCMXO640C-4FT256C	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	COM
LCMXO640C-5FT256C	640	1.8V/2.5V/3.3V	159	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100C	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO1200C-4T100C	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO1200C-5T100C	1200	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO1200C-3T144C	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO1200C-4T144C	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO1200C-5T144C	1200	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO1200C-3M132C	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO1200C-4M132C	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO1200C-5M132C	1200	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO1200C-3B256C	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO1200C-4B256C	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO1200C-5B256C	1200	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO1200C-3FT256C	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO1200C-4FT256C	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO1200C-5FT256C	1200	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100C	1200	1.2V	73	-3	TQFP	100	COM
LCMXO1200E-4T100C	1200	1.2V	73	-4	TQFP	100	COM
LCMXO1200E-5T100C	1200	1.2V	73	-5	TQFP	100	COM
LCMXO1200E-3T144C	1200	1.2V	113	-3	TQFP	144	COM
LCMXO1200E-4T144C	1200	1.2V	113	-4	TQFP	144	COM
LCMXO1200E-5T144C	1200	1.2V	113	-5	TQFP	144	COM
LCMXO1200E-3M132C	1200	1.2V	101	-3	csBGA	132	COM
LCMXO1200E-4M132C	1200	1.2V	101	-4	csBGA	132	COM
LCMXO1200E-5M132C	1200	1.2V	101	-5	csBGA	132	COM
LCMXO1200E-3B256C	1200	1.2V	211	-3	caBGA	256	COM
LCMXO1200E-4B256C	1200	1.2V	211	-4	caBGA	256	COM
LCMXO1200E-5B256C	1200	1.2V	211	-5	caBGA	256	COM
LCMXO1200E-3FT256C	1200	1.2V	211	-3	ftBGA	256	COM
LCMXO1200E-4FT256C	1200	1.2V	211	-4	ftBGA	256	COM
LCMXO1200E-5FT256C	1200	1.2V	211	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100C	2280	1.2V	73	-3	TQFP	100	COM
LCMXO2280E-4T100C	2280	1.2V	73	-4	TQFP	100	COM
LCMXO2280E-5T100C	2280	1.2V	73	-5	TQFP	100	COM
LCMXO2280E-3T144C	2280	1.2V	113	-3	TQFP	144	COM
LCMXO2280E-4T144C	2280	1.2V	113	-4	TQFP	144	COM
LCMXO2280E-5T144C	2280	1.2V	113	-5	TQFP	144	COM
LCMXO2280E-3M132C	2280	1.2V	101	-3	csBGA	132	COM
LCMXO2280E-4M132C	2280	1.2V	101	-4	csBGA	132	COM
LCMXO2280E-5M132C	2280	1.2V	101	-5	csBGA	132	COM
LCMXO2280E-3B256C	2280	1.2V	211	-3	caBGA	256	COM
LCMXO2280E-4B256C	2280	1.2V	211	-4	caBGA	256	COM
LCMXO2280E-5B256C	2280	1.2V	211	-5	caBGA	256	COM
LCMXO2280E-3FT256C	2280	1.2V	211	-3	ftBGA	256	COM
LCMXO2280E-4FT256C	2280	1.2V	211	-4	ftBGA	256	COM
LCMXO2280E-5FT256C	2280	1.2V	211	-5	ftBGA	256	COM
LCMXO2280E-3FT324C	2280	1.2V	271	-3	ftBGA	324	COM
LCMXO2280E-4FT324C	2280	1.2V	271	-4	ftBGA	324	COM
LCMXO2280E-5FT324C	2280	1.2V	271	-5	ftBGA	324	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100C	1200	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200E-4TN100C	1200	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200E-5TN100C	1200	1.2V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200E-3TN144C	1200	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200E-4TN144C	1200	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200E-5TN144C	1200	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200E-3MN132C	1200	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200E-4MN132C	1200	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200E-5MN132C	1200	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO1200E-3BN256C	1200	1.2V	211	-3	Lead-Free caBGA	256	COM
LCMXO1200E-4BN256C	1200	1.2V	211	-4	Lead-Free caBGA	256	COM
LCMXO1200E-5BN256C	1200	1.2V	211	-5	Lead-Free caBGA	256	COM
LCMXO1200E-3FTN256C	1200	1.2V	211	-3	Lead-Free ftBGA	256	COM
LCMXO1200E-4FTN256C	1200	1.2V	211	-4	Lead-Free ftBGA	256	COM
LCMXO1200E-5FTN256C	1200	1.2V	211	-5	Lead-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100C	2280	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280E-4TN100C	2280	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280E-5TN100C	2280	1.2V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280E-3TN144C	2280	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280E-4TN144C	2280	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280E-5TN144C	2280	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280E-3MN132C	2280	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280E-4MN132C	2280	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280E-5MN132C	2280	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO2280E-3BN256C	2280	1.2V	211	-3	Lead-Free caBGA	256	COM
LCMXO2280E-4BN256C	2280	1.2V	211	-4	Lead-Free caBGA	256	COM
LCMXO2280E-5BN256C	2280	1.2V	211	-5	Lead-Free caBGA	256	COM
LCMXO2280E-3FTN256C	2280	1.2V	211	-3	Lead-Free ftBGA	256	COM
LCMXO2280E-4FTN256C	2280	1.2V	211	-4	Lead-Free ftBGA	256	COM
LCMXO2280E-5FTN256C	2280	1.2V	211	-5	Lead-Free ftBGA	256	COM
LCMXO2280E-3FTN324C	2280	1.2V	271	-3	Lead-Free ftBGA	324	COM
LCMXO2280E-4FTN324C	2280	1.2V	271	-4	Lead-Free ftBGA	324	COM
LCMXO2280E-5FTN324C	2280	1.2V	271	-5	Lead-Free ftBGA	324	COM