

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	78
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LFBGA, CSPBGA
Supplier Device Package	100-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo256e-3m100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

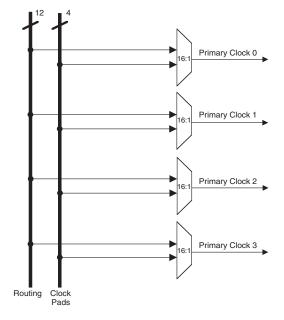
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

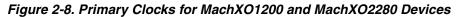
Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.


Clock/Control Distribution Network

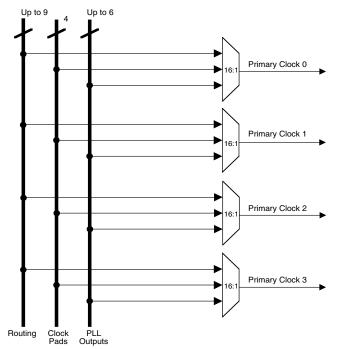
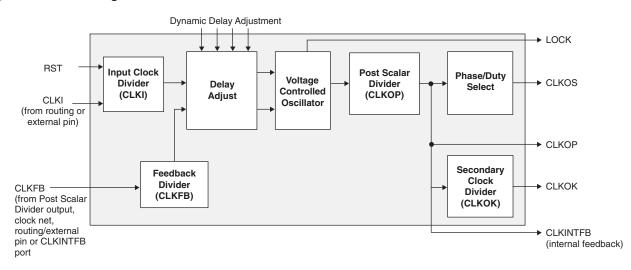

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

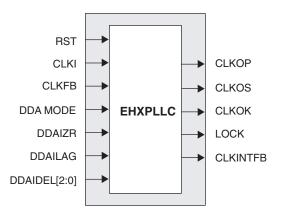

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

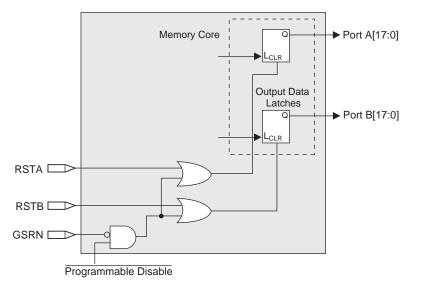

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

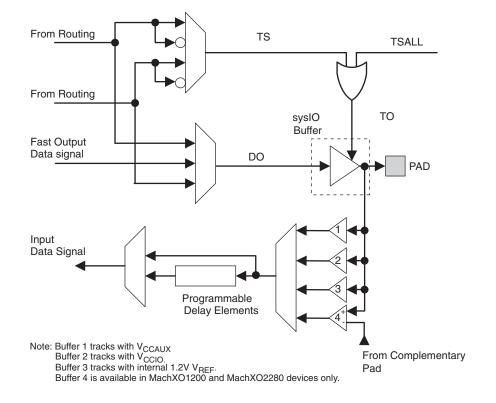
Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA	3.3
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS15, Open Drain	4mA, 8mA	—
LVCMOS12, Open Drain	2mA, 6mA	—
PCI33 ³	N/A	3.3
Differential Interfaces		
LVDS ^{1, 2}	N/A	2.5
BLVDS, RSDS ²	N/A	2.5
LVPECL ²	N/A	3.3

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

Figure 2-18. MachXO2280 Banks

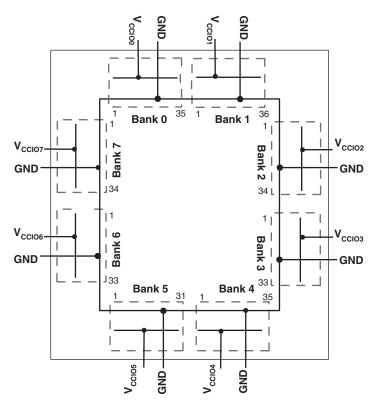
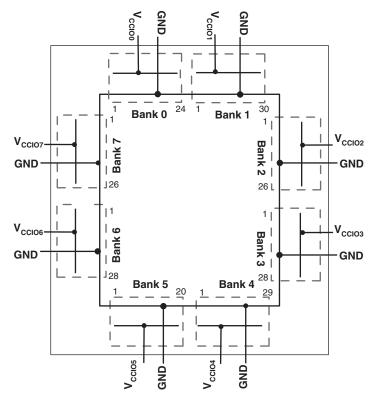



Figure 2-19. MachXO1200 Banks

Figure 2-20. MachXO640 Banks

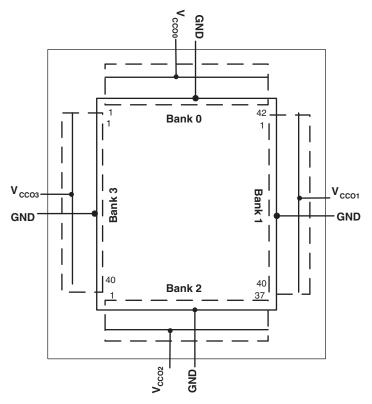
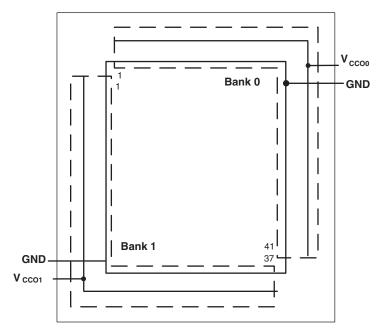
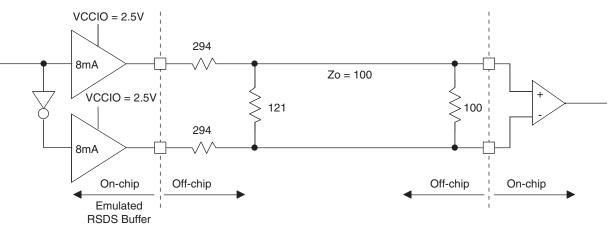



Figure 2-21. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of



For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

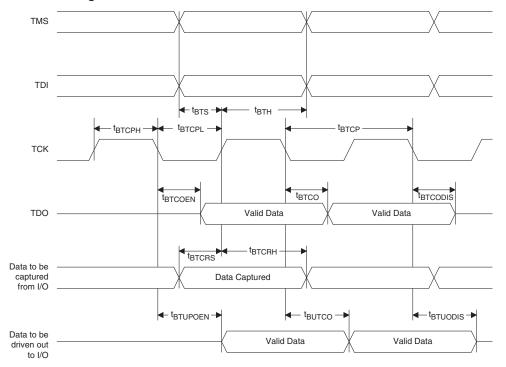


Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

Figure 3-5. JTAG Port Timing Waveforms

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

	LCMXO256					LCMXO640			
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640		LCMXO1200				LCMXO2280			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		т
66	PB8D	2		C	PB10B	4		C	PB13B	4		C
67	PB9A	2		T	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		T	PB10D	4		C	PB13D	4		C
69	PB9B	2		C	PB10F	4		Ū	PB14D	4		0
70**	SLEEPN	-	SLEEPN	Ŭ	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
71	PB9D	2	SELLIN	С	PB11C	4	SELLI N	Т	PB16C	4	SEELIN	Т
71	PB9D PB9F	2		U	PB11C PB11D	4		C	PB16C PB16D	4		C
				0					-			c
73	PR11D	1		С	PR16B	3		С	PR20B	3		
74	PR11B	1		C	PR16A	3		T	PR20A	3		Т
75	PR11C	1		Т	PR15B	3		C*	PR19B	3		C
76	PR10D	1		C	PR15A	3		T*	PR19A	3		Т
77	PR11A	1		Т	PR14D	3		C	PR17D	3		C T
78	PR10B	1		С	PR14C	3		T	PR17C	3		T
79	PR10C	1		Т	PR14B	3		C*	PR17B	3		C*
80	PR10A	1		Т	PR14A	3		T*	PR17A	3		T*
81	PR9D	1			PR13D	3			PR16D	3		
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PR8C	1			PR12A	3		T*	PR15A	3		T*
86	PR8A	1			PR11B	3		C*	PR14B	3		C*
87	PR7D	1			PR11A	3		T*	PR14A	3		T*
88	GND	-			GND	-			GND	-		
89	PR7B	1		С	PR10B	3		C*	PR13B	3		C*
90	PR7A	1		Т	PR10A	3		T*	PR13A	3		T*
91	PR6D	1		С	PR8B	2		C*	PR10B	2		C*
92	PR6C	1		Т	PR8A	2		T*	PR10A	2		T*
93	VCC	-			VCC	-			VCC	-		
94	PR5D	1			PR6B	2		C*	PR8B	2		C*
95	PR5B	1			PR6A	2		T*	PR8A	2		T*
96	PR4D	1			PR5B	2		C*	PR7B	2		C*
97	PR4B	1		С	PR5A	2		T*	PR7A	2		T*
98	VCCIO1	1			VCCIO2	2			VCCIO2	2		
99	GNDIO1	1			GNDIO2	2			GNDIO2	2		
100	PR4A	1		Т	PR4C	2			PR5C	2		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LCMXO2280		B 1/2
Ball Number	Ball Function	Bank	Dual Function	Differential
J13	PR10C	2		Т
M18	PR10B	2		C*
L18	PR10A	2		T*
GND	GNDIO2	2		
VCCIO2	VCCIO2	2		
H16	PR9D	2		С
H14	PR9C	2		Т
K18	PR9B	2		C*
J18	PR9A	2		T*
J17	PR8D	2		С
VCC	VCC	-		
H18	PR8C	2		Т
H17	PR8B	2		C*
G17	PR8A	2		Τ*
H13	PR7D	2		С
H15	PR7C	2		Т
G18	PR7B	2		C*
F18	PR7A	2		T*
G14	PR6D	2		С
G16	PR6C	2		Т
VCCIO2	VCCIO2	2		
GND	GNDIO2	2		
E18	PR6B	2		C*
F17	PR6A	2		T*
G13	PR5D	2		С
G15	PR5C	2		Т
E17	PR5B	2		C*
E16	PR5A	2		T*
GND	GND	-		
F15	PR4D	2		С
E15	PR4C	2		Т
D17	PR4B	2		C*
D18	PR4A	2		T*
B18	PR3D	2		С
C18	PR3C	2		Т
C16	PR3B	2		C*
D16	PR3A	2		T*
C17	PR2B	2		С
D15	PR2A	2		Т
VCCIO2	VCCIO2	2		
GND	GNDIO2	2		
GND	GNDIO1	1		
VCCIO1	VCCIO1	1		

Conventional Packaging

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.		
LCMXO256C-3T100C	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	COM		
LCMXO256C-4T100C	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	COM		
LCMXO256C-5T100C	256	1.8V/2.5V/3.3V	78	-5	TQFP	100	COM		
LCMXO256C-3M100C	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	COM		
LCMXO256C-4M100C	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	COM		
LCMXO256C-5M100C	256	1.8V/2.5V/3.3V	78	-5	csBGA	100	COM		

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100C	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	COM
LCMXO640C-4T100C	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	COM
LCMXO640C-5T100C	640	1.8V/2.5V/3.3V	74	-5	TQFP	100	COM
LCMXO640C-3M100C	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	COM
LCMXO640C-4M100C	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	COM
LCMXO640C-5M100C	640	1.8V/2.5V/3.3V	74	-5	csBGA	100	COM
LCMXO640C-3T144C	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO640C-4T144C	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO640C-5T144C	640	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO640C-3M132C	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO640C-4M132C	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO640C-5M132C	640	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO640C-3B256C	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	COM
LCMXO640C-4B256C	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	COM
LCMXO640C-5B256C	640	1.8V/2.5V/3.3V	159	-5	caBGA	256	COM
LCMXO640C-3FT256C	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	COM
LCMXO640C-4FT256C	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	COM
LCMXO640C-5FT256C	640	1.8V/2.5V/3.3V	159	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100C	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO1200C-4T100C	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO1200C-5T100C	1200	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO1200C-3T144C	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO1200C-4T144C	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO1200C-5T144C	1200	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO1200C-3M132C	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO1200C-4M132C	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO1200C-5M132C	1200	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO1200C-3B256C	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO1200C-4B256C	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO1200C-5B256C	1200	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO1200C-3FT256C	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO1200C-4FT256C	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO1200C-5FT256C	1200	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM

Lead-Free Packaging

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	COM
LCMXO256C-4TN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	COM
LCMXO256C-5TN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free TQFP	100	COM
LCMXO256C-3MN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	COM
LCMXO256C-4MN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	COM
LCMXO256C-5MN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free csBGA	100	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	COM
LCMXO640C-4TN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	COM
LCMXO640C-5TN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free TQFP	100	COM
LCMXO640C-3MN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	COM
LCMXO640C-4MN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	COM
LCMXO640C-5MN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free csBGA	100	COM
LCMXO640C-3TN144C	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO640C-4TN144C	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO640C-5TN144C	640	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO640C-3MN132C	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO640C-4MN132C	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO640C-5MN132C	640	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO640C-3BN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	COM
LCMXO640C-4BN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	COM
LCMXO640C-5BN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free caBGA	256	COM
LCMXO640C-3FTN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640C-4FTN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	COM
LCMXO640C-5FTN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100C	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200C-4TN100C	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200C-5TN100C	1200	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200C-3TN144C	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200C-4TN144C	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200C-5TN144C	1200	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200C-3MN132C	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200C-4MN132C	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200C-5MN132C	1200	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO1200C-3BN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO1200C-4BN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO1200C-5BN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO1200C-3FTN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO1200C-4FTN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO1200C-5FTN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM

MachXO Family Data Sheet Revision History

June 2013

Revision History

Data Sheet DS1002

Date	Version	Section	Change Summary				
February 2005	01.0	—	Initial release.				
October 2005	01.1	Introduction	Distributed RAM information in family table updated. Added footnote 1 - fpBGA packaging to the family selection guide.				
		Architecture	sysIO Buffer section updated.				
			Hot Socketing section updated.				
			Sleep Mode section updated.				
			SLEEP Pin Characteristics section updated.				
			Oscillator section updated.				
			Security section updated.				
		DC and Switching Characteristics	Recommended Operating Conditions table updated.				
			DC Electrical Characteristics table updated.				
			Supply Current (Sleep Mode) table added with LCMXO256/640 data.				
			Supply Current (Standby) table updated with LCMXO256/640 data.				
			Initialization Supply Current table updated with LCMXO256/640 data.				
			Programming and Erase Flash Supply Current table updated with LCMXO256/640 data.				
			Register-to-Register Performance table updated (rev. A 0.16).				
			External Switching Characteristics table updated (rev. A 0.16).				
			Internal Timing Parameter table updated (rev. A 0.16).				
			Family Timing Adders updated (rev. A 0.16).				
			sysCLOCK Timingupdated (rev. A 0.16).				
			MachXO "C" Sleep Mode Timing updated (A 0.16).				
			JTAG Port Timing Specification updated (rev. A 0.16).				
		Pinout Information	SLEEPIN description updated.				
			Pin Information Summary updated.				
			Power Supply and NC Connection table has been updated.				
			Logic Signal Connection section has been updated to include all devices/packages.				
		Ordering Information	Part Number Description section has been updated.				
			Ordering Part Number section has been updated (added LCMXO256C/LCMXO640C "4W").				
		Supplemental Information	MachXO Density Migration Technical Note (TN1097) added.				
November 2005	01.2	Pinout Information	Added "Power Supply and NC Connections" summary information for LCMXO1200 and LCMXO2280 in 100 TQFP package.				
December 2005	01.3	DC and Switching Characteristics	Supply Current (Standby) table updated with LCMXO1200/2280 data.				
		Ordering Information	Ordering Part Number section updated (added LCMXO2280C "4W").				
April 2006	02.0	Introduction	Introduction paragraphs updated.				
		Architecture	Architecture Overview paragraphs updated.				

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.