

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	32
Number of Logic Elements/Cells	256
Total RAM Bits	-
Number of I/O	78
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LFBGA, CSPBGA
Supplier Device Package	100-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo256e-4m100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Introduction

June 2013

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

Sleep Mode

• Allows up to 100x static current reduction

■ TransFR[™] Reconfiguration (TFR)

In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

Embedded and Distributed Memory

- Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

Table 1-1. MachXO Family Selection Guide

■ Flexible I/O Buffer

 Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1002

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip.

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Kbits)	0	0	9.2	27.6
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball caBGA (14x14 mm)		159	211	211
256-ball ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO Family Data Sheet Architecture

June 2013

Data Sheet DS1002

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM[™] Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

The MachXO architecture provides up to two sysCLOCK[™] Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown. * Only PFUs at the edges have fast connections to the I/O cell.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

1. See Figure 2-4 for connection details.

2. Requires two PFUs.

PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of pSix Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Figure 2-20. MachXO640 Banks

Figure 2-21. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of

MachXO Family Data Sheet DC and Switching Characteristics

June 2013

Data Sheet DS1002

Absolute Maximum Ratings^{1, 2, 3}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁴	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁴	0.5 to 3.75V	
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
Vaa	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
VCC	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ³	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO²}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	Junction Temperature Commercial Operation	0	+85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial	0	+85	°C
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	-40	100	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both 2.5V, they must also be the same supply. 3.3V V_{CCIO} and 1.2V V_{CCIO} should be tied to V_{CCAUX} or 1.2V V_{CC} respectively.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CC} must reach minimum V_{CC} value before V_{CCAUX} reaches 2.5V.

MachXO Programming/Erase Specifications

Symbol	Parameter	Min.	Max.	Units
Nanagaya	Flash Programming Cycles per t _{RETENTION}		1,000	Cycles
PROGCYC	Flash Functional Programming Cycles		10,000	Cycles
t _{RETENTION}	Data Retention at 125° Junction Temperature	10		Years

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCl ³	3.135	3.3	3.465		
LVDS ^{1, 2}	2.375	2.5	2.625		
LVPECL ¹	3.135	3.3	3.465		
BLVDS ¹	2.375	2.5	2.625		
RSDS ¹	2.375	2.5	2.625		

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		Voi Max.	Vou Min.			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mÅ)	
	-0.3	0.8	20	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
20000000	0.0	0.0	2.0	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
					0.4	2.4	16	-16	
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
	-0.3	07	17	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
2000002.0	-0.5	0.7	1.7	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
	-0.3	0.351/2010	0.651/2010	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
	0.0	0.00 0.00		0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
IVCMOS 1.5	-0.3	0.35	0.65	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4	
	0.0	0.00 4 6610	0.0046600	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.42	0.78	36	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.35\/	0.651/	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("E" Version)	-0.5	0.33 v CC	0.03 V CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5	

1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—	_	+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V_{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.

Table 3-1. LVDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ω
R _S	Driver series resistor	294	Ω
R _P	Driver parallel resistor	121	Ω
R _T	Receiver termination	100	Ω
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	Ω
I _{DC}	DC output current	3.66	mA

Over Recommended Operating Conditions

BLVDS

The MachXO family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

Switching Test Conditions

Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards

 Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	V _T
			LVTTL, LVCMOS 3.3 = 1.5V	—
		0pF	LVCMOS 2.5 = $V_{CCIO}/2$	—
Test ConditionLVTTL and LVCMOS settings (L -> H, H -> L)LVTTL and LVCMOS 3.3 (Z -> H)LVTTL and LVCMOS 3.3 (Z -> L)Other LVCMOS (Z -> H)Other LVCMOS (Z -> L)LVTTL + LVCMOS (H -> Z)LVTTL + LVCMOS (L -> Z)	∞		LVCMOS 1.8 = $V_{CCIO}/2$	—
			LVCMOS 1.5 = $V_{CCIO}/2$	—
			LVCMOS 1.2 = $V_{CCIO}/2$	—
LVTTL and LVCMOS 3.3 (Z -> H)			15	V _{OL}
LVTTL and LVCMOS 3.3 (Z -> L)			1.0	V _{OH}
Other LVCMOS (Z -> H)	188	0nF	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)		opi	V _{CCIO} /2	V _{OH}
LVTTL + LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVTTL + LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		;		LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
P13	PB5A	1			P13	PB9C	2		Т
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN	
P14	PB5C	1		Т	P14	PB9D	2		С
N13	PB5D	1		С	N13	PB9F	2		
N14	PR9B	0		С	N14	PR11D	1		С
M14	PR9A	0		Т	M14	PR11B	1		С
L13	PR8B	0		С	L13	PR11C	1		Т
L14	PR8A	0		Т	L14	PR11A	1		Т
M13	PR7D	0		С	M13	PR10D	1		С
K14	PR7C	0		Т	K14	PR10C	1		Т
K13	PR7B	0		С	K13	PR10B	1		С
J14	PR7A	0		Т	J14	PR10A	1		Т
J13	PR6B	0		С	J13	PR9D	1		
H13	PR6A	0		Т	H13	PR9B	1		
G14	GNDIO0	0			G14	GNDIO1	1		
G13	PR5D	0		С	G13	PR7B	1		
F14	PR5C	0		Т	F14	PR6C	1		
F13	PR5B	0		С	F13	PR6B	1		
E14	PR5A	0		Т	E14	PR5D	1		
E13	PR4B	0		С	E13	PR5B	1		
D14	PR4A	0		Т	D14	PR4D	1		
D13	PR3D	0		С	D13	PR4B	1		
C14	PR3C	0		Т	C14	PR3D	1		
C13	PR3B	0		С	C13	PR3B	1		
B14	PR3A	0		Т	B14	PR2D	1		
C12	PR2B	0		С	C12	PR2B	1		
B13	GNDIO0	0			B13	GNDIO1	1		
A13	PR2A	0		Т	A13	PT9F	0		С
A12	PT5C	0			A12	PT9E	0		Т
B11	PT5B	0		С	B11	PT9C	0		
A11	PT5A	0		Т	A11	PT9A	0		
B12	PT4F	0		С	B12	VCCIO0	0		
A10	PT4E	0		Т	A10	GNDIO0	0		
B10	PT4D	0		С	B10	PT7E	0		
A9	PT4C	0		Т	A9	PT7A	0		
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**	
B8	PT4A	0	PCLK0_0**	Т	B8	PT5B	0	PCLK0_0**	С
A7	PT3D	0		С	A7	PT5A	0		Т
B7	VCCAUX	-			B7	VCCAUX	-		
A6	PT3C	0		Т	A6	PT4F	0		
B6	VCC	-			B6	VCC	-		
A5	PT3B	0		С	A5	PT3F	0		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP

		L	CMXO640				LCMXO1200		LCMXO2280			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
1	PL2A	3		Т	PL2A	7		Т	PL2A	7	LUM0_PLLT_FB_A	Т
2	PL2C	3		Т	PL2B	7		С	PL2B	7	LUM0_PLLC_FB_A	С
3	PL2B	3		С	PL3A	7		T*	PL3A	7		T*
4	PL3A	3		Т	PL3B	7		C*	PL3B	7		C*
5	PL2D	3		С	PL3C	7		Т	PL3C	7	LUM0_PLLT_IN_A	Т
6	PL3B	3		С	PL3D	7		С	PL3D	7	LUM0_PLLC_IN_A	С
7	PL3C	3		Т	PL4A	7		T*	PL4A	7		T*
8	PL3D	3		С	PL4B	7		C*	PL4B	7		C*
9	PL4A	3			PL4C	7			PL4C	7		
10	VCCIO3	3			VCCI07	7			VCCI07	7		
11	GNDIO3	3			GNDIO7	7			GNDIO7	7		
12	PL4D	3			PL5C	7			PL6C	7		
13	PL5A	3		Т	PL6A	7		T*	PL7A	7		T*
14	PL5B	3	GSRN	С	PL6B	7	GSRN	C*	PL7B	7	GSRN	C*
15	PL5D	3			PL6D	7			PL7D	7		
16	GND	-			GND	-			GND	-		
17	PL6C	3		Т	PL7C	7		Т	PL9C	7		Т
18	PL6D	3		С	PL7D	7		С	PL9D	7		С
19	PL7A	3		Т	PL10A	6		T*	PL13A	6		T*
20	PL7B	3		С	PL10B	6		C*	PL13B	6		C*
21	VCC	-			VCC	-			VCC	-		
22	PL8A	3		Т	PL11A	6		T*	PL13D	6		
23	PL8B	3		С	PL11B	6		C*	PL14D	6		С
24	PL8C	3	TSALL		PL11C	6	TSALL		PL14C	6	TSALL	Т
25	PL9C	3		Т	PL12B	6			PL15B	6		
26	VCCIO3	3			VCCIO6	6			VCCIO6	6		
27	GNDIO3	3			GNDIO6	6			GNDIO6	6		
28	PL9D	3		С	PL13D	6			PL16D	6		-
29	PL10A	3		Т	PL14A	6	LLM0_PLLT_FB_A	T*	PL17A	6	LLM0_PLLT_FB_A	T*
30	PL10B	3		С	PL14B	6	LLM0_PLLC_FB_A	C*	PL17B	6	LLM0_PLLC_FB_A	C*
31	PL10C	3		т	PL14C	6		т	PL17C	6		Т
32	PL11A	3		т	PL14D	6		С	PL17D	6		С
33	PL10D	3		С	PL15A	6	LLM0_PLLT_IN_A	T*	PL18A	6	LLM0_PLLT_IN_A	T*
34	PL11C	3		т	PL15B	6	LLM0 PLLC IN A	C*	PL18B	6	LLM0 PLLC IN A	C*
35	PL11B	3		С	PL16A	6		Т	PL19A	6		Т
36	PL11D	3		С	PL16B	6		С	PL19B	6		С
37	GNDIO2	2			GNDIO5	5			GNDIO5	5		
38	VCCIO2	2			VCCI05	5			VCCI05	5		
39	TMS	2	TMS		TMS	5	TMS		TMS	5	TMS	
40	PB2C	2			PB2C	5	-	т	PB2A	5	-	Т
41	PB3A	2		Т	PB2D	5		C	PB2B	5		C
42	ТСК	2	тск		ТСК	5	тск	-	TCK	5	ТСК	
43	PB3B	2		C	PB3A	5		т	PB3A	5		т
44	PB3C	2		T	PB3B	5		C	PB3B	5		C
45	PB3D	2		, C	PR4A	5		т	PR4A	5		т
46	PR4A	2		т	PB4R	5		Ċ	PB4R	5		C.
47		2	TDO			5	ТЛО		TDO	5	ΤDO	5
48	PR/R	2	.50	C	PR4D	5	.50		PR4D	5	.50	
40	PB4C	2		т	PR5A	5		т	PR6A	5		т
49 50		2			PRER	5			PRER	5		
50	Г 04U	2		Ū	FDOD	э		Ū	FDOD	3		U

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200		LCMXO2280			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		Т
66	PB8D	2		С	PB10B	4		С	PB13B	4		С
67	PB9A	2		Т	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		Т	PB10D	4		С	PB13D	4		С
69	PB9B	2		С	PB10F	4		-	PB14D	4		-
70**	SLEEPN	-	SLEEPN	-	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
71	PB9D	2		С	PB11C	4		т	PB16C	4		т
72	PB9F	2		, , , , , , , , , , , , , , , , , , ,	PB11D	4		C	PB16D	4		C
73	PB11D	1		С	PB16B	3		C	PB20B	3		C C
74	PB11B	1		C C	PB16A	3		т	PB20A	3		т
75	PR11C	1		T	PR15B	3		C*	PR19B	3		C
76	PR10D	1		C	PR15A	3		- T*	PR19A	3		Т
77	PR11A	1		T	PR14D	3		C	PR17D	3		C
78	PR10B	1		C.	PR14C	3		Т	PR17C	3		T
79	PR10C	1		T	PR14B	3		C*	PR17B	3		C*
80	PB10A	1		Т	PR14A	3		- T*	PB17A	3		T*
81	PR9D	1			PR13D	3			PB16D	3		-
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PB8C	1			PB12A	3		 T*	PB15A	3		T*
86	PB8A	1			PB11B	3		C*	PB14B	3		C*
87	PB7D	1			PR11A	3		т*	PR14A	3		T*
88	GND	-			GND	-			GND	-		-
89	PB7B	1		C	PB10B	3		C*	PB13B	3		C*
90	PR7A	1		т Т	PR10A	3		U T*	PB13A	3		Ŭ T*
91	PB6D	1		C I	PB8B	2		C*	PB10B	2		C*
92	PB6C	1		т т	PB84	2		т*	PB10A	2		т*
92	VCC	-		'	VCC	-		+ '	VCC	-		1
0/	PR5D	1			PRAR	2		C:*	PRAR	2		C:*
97	PR5R	1			PR6A	2		т*	PRA	2		т*
96	PR4D	1			PRSR	2		C:*	PR7R	2		г С:*
07		1		C	PP5A	2		т*	PP7A	2		т*
97 08		1			VCCIO2	2				2		1
30	GNDIO1	1			GNIDIO2	2			GNDIO2	2		
100				т		2				2		
100	FR4A	I		I	PH40	2			FROC	2		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

	LCMXO640				LCMXO1200		LCMXO2280					
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		C	PT7B	0		C
131	PT4B	0		C T	PI5C	0		1	PT/A	0		
132	PT4A	0		1	PI5B	0		C	PT6D	0		
133	PT3F	0			P15A	0		T	PI6E	0		1
134	PT3D	0			PI4B	0			P16F	0		C
135	VCCIOO	0			VCCIOO	0			VCCIOO	0		
136	GNDIO0	0			GNDIOO	0			GNDIO0	0		-
137	PI3B	0		U C	PT3D	0			P14B	U		
138	PT2F	0		U -	PI3C	0			P14A	U		
139	PT3A	0		T C	PT3B	0		C T	PT3B	U C		
140	PT2D	0		С -	PT3A	0		T	PT3A	U C		
141	P12E	0		T C	PT2D	0		С -	P12D	U C		С -
142	PT2B	0		C T	PT2C	0		T	P12C	U C		1
143	P12C	U			P12B	U		U T	P12B	U		
144	PT2A	0		Г	PT2A	0		Т	PT2A	0		I T

*Supports true LVDS outputs.

**NC for "E" devices.

***Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCM)	(O640				LCM	/XO1200		LCMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
-	-				VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
-	-				GND	GNDIO4	4			GND	GNDIO4	4		
M10	PB6A	2		Т	M10	PB7E	4		Т	M10	PB10A	4		Т
R9	PB6C	2		Т	R9	PB8A	4		Т	R9	PB11C	4		Т
R10	PB6D	2		С	R10	PB8B	4		С	R10	PB11D	4		С
T10	PB7C	2		Т	T10	PB8C	4		Т	T10	PB12A	4		Т
T11	PB7D	2		С	T11	PB8D	4		С	T11	PB12B	4		С
N10	NC				N10	PB8E	4		Т	N10	PB12C	4		Т
N11	NC				N11	PB8F	4		С	N11	PB12D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
R11	PB7E	2		Т	R11	PB9A	4		Т	R11	PB13A	4		Т
R12	PB7F	2		С	R12	PB9B	4		С	R12	PB13B	4		С
P11	PB8A	2		Т	P11	PB9C	4		Т	P11	PB13C	4		Т
P12	PB8B	2		С	P12	PB9D	4		С	P12	PB13D	4		С
T13	PB8C	2		Т	T13	PB9E	4		Т	T13	PB14A	4		Т
T12	PB8D	2		С	T12	PB9F	4		С	T12	PB14B	4		С
R13	PB9A	2		Т	R13	PB10A	4		Т	R13	PB14C	4		Т
R14	PB9B	2		С	R14	PB10B	4		С	R14	PB14D	4		С
GND	GND	-			GND	GND	-			GND	GND	-		
T14	PB9C	2		Т	T14	PB10C	4		Т	T14	PB15A	4		Т
T15	PB9D	2		С	T15	PB10D	4		С	T15	PB15B	4		С
P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN	
P14	PB9F	2			P14	PB10F	4			P14	PB15D	4		
R15	NC				R15	PB11A	4		Т	R15	PB16A	4		Т
R16	NC				R16	PB11B	4		С	R16	PB16B	4		С
P15	NC				P15	PB11C	4		T	P15	PB16C	4		T
P16	NC	-			P16	PB11D	4		C	P16	PB16D	4		C
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		0
MII	NC					PRI6B	3			M111	PR20B	3		с т
	NC				LII	PRIOA	3			LII	PR2UA	3		I Ot
N12	NC				N12	PRIDD	3		С т*	N12	PRIOD	3		С т*
N13	NC				M12	PRISA DD14D	3			M12	PRI8A	3		I C
M10	NC				M10		3		U T	M10		3		U T
N14	PR11D	1		0		PR1/P	3		с*	N14	PR17P	3		і С*
N15	PB11C	1		т	N14	PR1/A	3		т*	N14	PR174	3		т*
13	PR11R	1			12	PB13D	3		, ,	13	PRIAD	3		, ,
12	PR11A	1		т	12	PB13C	3		т	112	PR16C	3		т
M14	PB10B	1		C C	M14	PB13B	3		C*	M14	PB16B	3		C*
VCCI01	VCCIO1	1		Ű	VCCIO3	VCCIO3	3		Ű	VCCIO3	VCCIO3	3		Ű
GND	GNDIO1	1	<u> </u>		GND	GNDIO3	3			GND	GNDIO3	3		
L14	PR10A	1		т	L14	PR13A	3		T*	L14	PR16A	3		T*
N16	PR10D	1	<u> </u>	C	N16	PR12D	3		С	N16	PR15D	3		С
M16	PR10C	1	<u> </u>	T	M16	PR12C	3		т	M16	PR15C	3		T
M15	PR9D	1	<u> </u>	C.	M15	PR12B	3		C*	M15	PR15B	3		C*
L15	PR9C	1		Т	L15	PR12A	3		T*	L15	PR15A	3		T*
L16	PR9B	1		C.	 L16	PR11D	3		С	_10 L16	PR14D	3		С
K16	PR9A	1		Т	K16	PR11C	3		Т	K16	PR14C	3		Т
K13	PR8D	1		C	K13	PR11B	3		C*	K13	PR14B	3		C*
		I		~			~	I				<u> </u>	I	-

LCMXO2280 Logic Signal Connections: 324 ftBGA

LCMXO2280										
Ball Number	Ball Function	Bank	Dual Function	Differential						
GND	GNDIO7	7								
VCCIO7	VCCIO7	7								
D4	PL2A	7	LUM0_PLLT_FB_A	Т						
F5	PL2B	7	LUM0_PLLC_FB_A	С						
B3	PL3A	7		Τ*						
C3	PL3B	7		C*						
E4	PL3C	7	LUM0_PLLT_IN_A	Т						
G6	PL3D	7	LUM0_PLLC_IN_A	С						
A1	PL4A	7		Τ*						
B1	PL4B	7		C*						
F4	PL4C	7		Т						
VCC	VCC	-								
E3	PL4D	7		С						
D2	PL5A	7		Τ*						
D3	PL5B	7		C*						
G5	PL5C	7		Т						
F3	PL5D	7		С						
C2	PL6A	7		T*						
VCCI07	VCCI07	7								
GND	GNDIO7	7								
C1	PL6B	7		C*						
H5	PL6C	7		Т						
G4	PL6D	7		С						
E2	PL7A	7		T*						
D1	PL7B	7	GSRN	C*						
J6	PL7C	7		Т						
H4	PL7D	7		С						
F2	PL8A	7		T*						
E1	PL8B	7		C*						
GND	GND	-								
J3	PL8C	7		Т						
J5	PL8D	7		С						
G3	PL9A	7		T*						
H3	PL9B	7		C*						
K3	PL9C	7		Т						
K5	PL9D	7		С						
F1	PL10A	7		T*						
VCCIO7	VCCIO7	7								
GND	GNDIO7	7								
G1	PL10B	7		C*						
K4	PL10C	7		Т						
K6	PL10D	7		С						
L										

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280										
Ball Number	Ball Function	Bank	Dual Function	Differential						
G2	PL11A	6		T*						
H2	PL11B	6		C*						
L3	PL11C	6		Т						
L5	PL11D	6		С						
H1	PL12A	6		Τ*						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
J2	PL12B	6		C*						
L4	PL12C	6		Т						
L6	PL12D	6		С						
K2	PL13A	6		T*						
K1	PL13B	6		C*						
J1	PL13C	6		Т						
VCC	VCC	-								
L2	PL13D	6		С						
M5	PL14D	6		С						
M3	PL14C	6	TSALL	Т						
L1	PL14B	6		C*						
M2	PL14A	6		T*						
M1	PL15A	6		T*						
N1	PL15B	6		C*						
M6	PL15C	6		Т						
M4	PL15D	6		С						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
P1	PL16A	6		T*						
P2	PL16B	6		C*						
N3	PL16C	6		Т						
N4	PL16D	6		С						
GND	GND	-								
T1	PL17A	6	LLM0_PLLT_FB_A	T*						
R1	PL17B	6	LLM0_PLLC_FB_A	C*						
P3	PL17C	6		Т						
N5	PL17D	6		С						
R3	PL18A	6	LLM0_PLLT_IN_A	T*						
R2	PL18B	6	LLM0_PLLC_IN_A	C*						
P4	PL19A	6		Т						
N6	PL19B	6		С						
U1	PL20A	6		Т						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
GND	GNDIO5	5								
VCCIO5	VCCIO5	5								

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>