E.J. Lattice Semiconductor Corporation - <u>LCMX0640C-3T100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

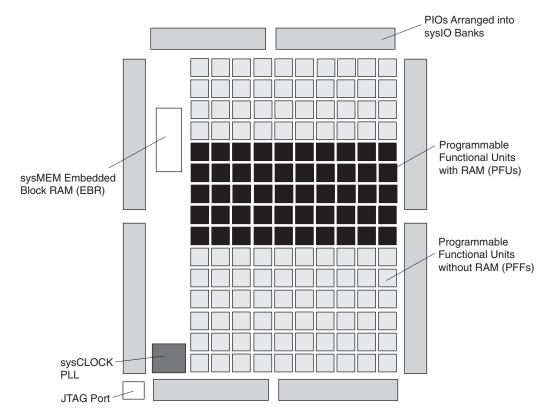
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2011.12	
Product Status	Obsolete
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	
Number of I/O	74
Number of Gates	
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640c-3t100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, highsecurity, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER[®] design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

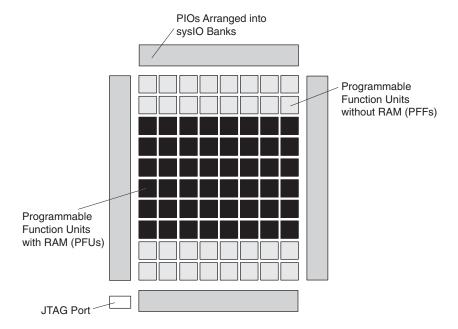


Figure 2-1. Top View of the MachXO1200 Device¹

1. Top view of the MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.

Figure 2-2. Top View of the MachXO640 Device

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

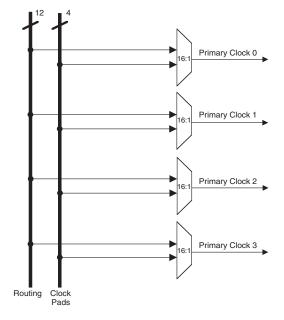
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

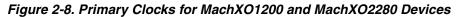
Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.


Clock/Control Distribution Network

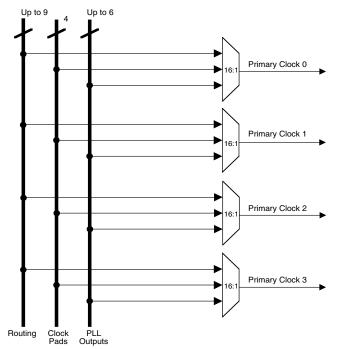

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

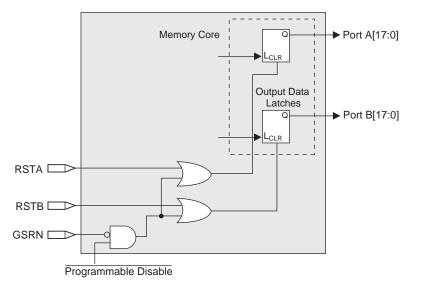

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)		
Single-ended Interfaces				
LVTTL	4mA, 8mA, 12mA, 16mA	3.3		
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3		
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5		
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—		
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	—		
LVCMOS15, Open Drain	4mA, 8mA	—		
LVCMOS12, Open Drain	2mA, 6mA	—		
PCI33 ³	N/A	3.3		
Differential Interfaces				
LVDS ^{1, 2}	N/A	2.5		
BLVDS, RSDS ²	N/A	2.5		
LVPECL ²	N/A	3.3		

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

MachXO Family Data Sheet DC and Switching Characteristics

June 2013

Data Sheet DS1002

Absolute Maximum Ratings^{1, 2, 3}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁴	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁴	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
Maa	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
V _{CC}	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ³	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO²}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	Junction Temperature Commercial Operation	0	+85	°C
t _{JIND}	Junction Temperature Industrial Operation	-40	100	°C
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial	0	+85	°C
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	-40	100	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC} are both 2.5V, they must also be the same supply. 3.3V V_{CCIO} and 1.2V V_{CCIO} should be tied to V_{CCAUX} or 1.2V V_{CC} respectively.

2. See recommended voltages by I/O standard in subsequent table.

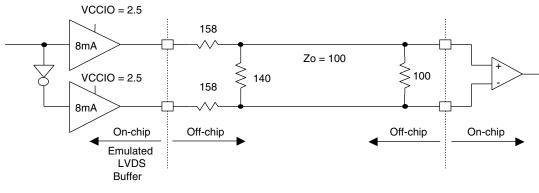
3. V_{CC} must reach minimum V_{CC} value before V_{CCAUX} reaches 2.5V.

MachXO Programming/Erase Specifications

Symbol	Parameter	Min.	Max.	Units
N	Flash Programming Cycles per t _{RETENTION}		1,000	Cycles
N _{PROGCYC}	Flash Functional Programming Cycles		10,000	Cycles
t _{RETENTION}	Data Retention at 125° Junction Temperature	10		Years

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sysIO Differential Electrical Characteristics LVDS


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0		2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—		+/-10	μΑ
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

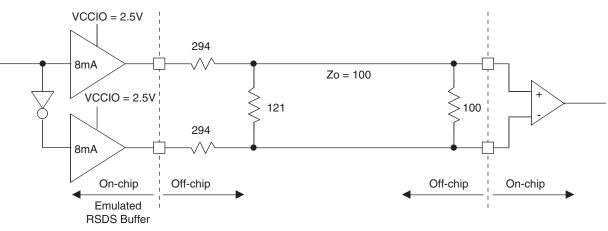
LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.



For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		CMXO1200		LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
82	PT9A	1			PT12C	1		Т
83	GND	-			GND	-		
84	PT8B	1		С	PT11B	1		С
85	PT8A	1		Т	PT11A	1		Т
86	PT7D	1	PCLK1_1****		PT10B	1	PCLK1_1****	
87	PT6F	0	PCLK0_0****		PT9B	1	PCLK1_0****	
88	PT6D	0		С	PT8F	0		С
89	PT6C	0		Т	PT8E	0		Т
90	VCCAUX	-			VCCAUX	-		
91	VCC	-			VCC	-		
92	PT5B	0			PT6D	0		
93	PT4B	0			PT6F	0		
94	VCCIO0	0			VCCIO0	0		
95	PT3D	0		С	PT4B	0		С
96	PT3C	0		Т	PT4A	0		Т
97	PT3B	0			PT3B	0		
98	PT2B	0		С	PT2B	0		С
99	PT2A	0		Т	PT2A	0		Т
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-		

*Supports true LVDS outputs.

**Double bonded to the pin.

***NC for "E" devices.

****Primary clock inputs are single-ended.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA

		LCMXO25	6		LCMXO640				
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
B1	PL2A	1		Т	B1	PL2A	3		Т
C1	PL2B	1		С	C1	PL2C	3		Т
D2	PL3A	1		Т	D2	PL2B	3		С
D1	PL3B	1		С	D1	PL2D	3		С
C2	PL3C	1		Т	C2	PL3A	3		Т
E1	PL3D	1		С	E1	PL3B	3		С
E2	PL4A	1		Т	E2	PL3C	3		Т
F1	PL4B	1		С	F1	PL3D	3		С
F2	PL5A	1		Т	F2	PL4A	3		
G2	PL5B	1		С	G2	PL4C	3		Т
H1	GNDIO1	1			H1	GNDIO3	3		
H2	PL5C	1		Т	H2	PL4D	3		С
J1	PL5D	1	GSRN	С	J1	PL5B	3	GSRN	
J2	PL6A	1		Т	J2	PL7B	3		
K1	PL6B	1	TSALL	С	K1	PL8C	3	TSALL	Т
K2	PL7A	1		Т	K2	PL8D	3		С
L1	PL7B	1		С	L1	PL9A	3		
L2	PL7C	1		Т	L2	PL9C	3		
M1	PL7D	1		С	M1	PL10A	3		
M2	PL8A	1		Т	M2	PL10C	3		
N1	PL8B	1		С	N1	PL11A	3		
M3	PL9A	1		Т	M3	PL11C	3		
N2	GNDIO1	1			N2	GNDIO3	3		
P2	TMS	1	TMS		P2	TMS	2	TMS	
P3	PL9B	1		С	P3	PB2C	2		
N4	TCK	1	ТСК		N4	ТСК	2	ТСК	
P4	PB2A	1		Т	P4	VCCIO2	2		
N3	PB2B	1		С	N3	GNDIO2	2		
P5	TDO	1	TDO		P5	TDO	2	TDO	
N5	PB2C	1		Т	N5	PB4C	2		
P6	TDI	1	TDI		P6	TDI	2	TDI	
N6	PB2D	1		С	N6	PB4E	2		
P7	VCC	-			P7	VCC	-		
N7	PB3A	1	PCLK1_1**	Т	N7	PB5B	2	PCLK2_1**	
P8	PB3B	1		С	P8	PB5D	2		
N8	PB3C	1	PCLK1_0**	Т	N8	PB6B	2	PCLK2_0**	
P9	PB3D	1		С	P9	PB6C	2		
N10	GNDIO1	1		-	N10	GNDIO2	2		
P11	PB4A	1		Т	P11	PB8B	2		
N11	PB4B	1		C	N11	PB8C	2		Т
P12	PB4C	1		T	P12	PB8D	2		C
N12	PB4D	1		C	N12	PB9A	2	+	•

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

LCMXO256					LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
P13	PB5A	1			P13	PB9C	2		Т	
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN		
P14	PB5C	1		Т	P14	PB9D	2		С	
N13	PB5D	1		С	N13	PB9F	2			
N14	PR9B	0		С	N14	PR11D	1		С	
M14	PR9A	0		Т	M14	PR11B	1		С	
L13	PR8B	0		С	L13	PR11C	1		Т	
L14	PR8A	0		Т	L14	PR11A	1		Т	
M13	PR7D	0		С	M13	PR10D	1		С	
K14	PR7C	0		Т	K14	PR10C	1		Т	
K13	PR7B	0		С	K13	PR10B	1		С	
J14	PR7A	0		Т	J14	PR10A	1		Т	
J13	PR6B	0		С	J13	PR9D	1			
H13	PR6A	0		Т	H13	PR9B	1			
G14	GNDIO0	0			G14	GNDIO1	1			
G13	PR5D	0		С	G13	PR7B	1			
F14	PR5C	0		Т	F14	PR6C	1			
F13	PR5B	0		С	F13	PR6B	1			
E14	PR5A	0		Т	E14	PR5D	1			
E13	PR4B	0		С	E13	PR5B	1			
D14	PR4A	0		Т	D14	PR4D	1			
D13	PR3D	0		С	D13	PR4B	1			
C14	PR3C	0		Т	C14	PR3D	1			
C13	PR3B	0		С	C13	PR3B	1			
B14	PR3A	0		Т	B14	PR2D	1			
C12	PR2B	0		С	C12	PR2B	1			
B13	GNDIO0	0			B13	GNDIO1	1			
A13	PR2A	0		Т	A13	PT9F	0		С	
A12	PT5C	0			A12	PT9E	0		Т	
B11	PT5B	0		С	B11	PT9C	0			
A11	PT5A	0		Т	A11	PT9A	0			
B12	PT4F	0		С	B12	VCCIO0	0			
A10	PT4E	0		Т	A10	GNDIO0	0			
B10	PT4D	0		С	B10	PT7E	0			
A9	PT4C	0		Т	A9	PT7A	0			
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**		
B8	PT4A	0	PCLK0_0**	T	B8	PT5B	0	PCLK0_0**	С	
A7	PT3D	0		C	A7	PT5A	0		T	
B7	VCCAUX	-		-	B7	VCCAUX	-			
A6	PT3C	0		Т	A6	PT4F	0			
B6	VCC	-			B6	VCC	-			
A5	PT3B	0		С	A5	PT3F	0			
		v		~			•	1		

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256					LCMXO640)	
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO2280 Logic Signal Connections: 324 ftBGA

LCMXO2280							
Ball Number	Ball Function	Bank	Dual Function	Differentia			
GND	GNDIO7	7					
VCCIO7	VCCIO7	7					
D4	PL2A	7	LUM0_PLLT_FB_A	Т			
F5	PL2B	7	LUM0_PLLC_FB_A	С			
B3	PL3A	7		T*			
C3	PL3B	7		C*			
E4	PL3C	7	LUM0_PLLT_IN_A	Т			
G6	PL3D	7	LUM0_PLLC_IN_A	С			
A1	PL4A	7		Τ*			
B1	PL4B	7		C*			
F4	PL4C	7		Т			
VCC	VCC	-					
E3	PL4D	7		С			
D2	PL5A	7		Τ*			
D3	PL5B	7		C*			
G5	PL5C	7		Т			
F3	PL5D	7		С			
C2	PL6A	7		Τ*			
VCCIO7	VCCIO7	7					
GND	GNDIO7	7					
C1	PL6B	7		C*			
H5	PL6C	7		Т			
G4	PL6D	7		С			
E2	PL7A	7		T*			
D1	PL7B	7	GSRN	C*			
J6	PL7C	7		Т			
H4	PL7D	7		С			
F2	PL8A	7		T*			
E1	PL8B	7		C*			
GND	GND	-					
J3	PL8C	7		Т			
J5	PL8D	7		С			
G3	PL9A	7		T*			
H3	PL9B	7		C*			
K3	PL9C	7		Т			
K5	PL9D	7		С			
F1	PL10A	7		T*			
VCCIO7	VCCIO7	7					
GND	GNDIO7	7					
G1	PL10B	7		C*			
K4	PL10C	7		T			
K6	PL10D	7		C			

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential		
GND	GNDIO3	3				
VCCIO3	VCCIO3	3				
P15	PR20B	3		С		
N14	PR20A	3		Т		
N15	PR19B	3		С		
M13	PR19A	3		Т		
R15	PR18B	3		C*		
T16	PR18A	3		Τ*		
N16	PR17D	3		С		
M14	PR17C	3		Т		
U17	PR17B	3		C*		
VCC	VCC	-				
U18	PR17A	3		Τ*		
R17	PR16D	3		С		
R16	PR16C	3		Т		
P16	PR16B	3		C*		
VCCIO3	VCCIO3	3				
GND	GNDIO3	3				
P17	PR16A	3		T*		
L13	PR15D	3		С		
M15	PR15C	3		Т		
T17	PR15B	3		C*		
T18	PR15A	3		T*		
L14	PR14D	3		С		
L15	PR14C	3		Т		
R18	PR14B	3		C*		
P18	PR14A	3		T*		
GND	GND	-				
K15	PR13D	3		С		
K13	PR13C	3		Т		
N17	PR13B	3		C*		
N18	PR13A	3		T*		
K16	PR12D	3		С		
K14	PR12C	3		Т		
M16	PR12B	3		C*		
L16	PR12A	3		T*		
GND	GNDIO3	3				
VCCIO3	VCCIO3	3				
J16	PR11D	3		С		
J14	PR11C	3		Т		
M17	PR11B	3		C*		
L17	PR11A	3		T*		
J15	PR10D	2		С		

Conventional Packaging

Industrial							
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3T100I	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	IND
LCMXO256C-4T100I	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	IND
LCMXO256C-3M100I	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	IND
LCMXO256C-4M100I	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100I	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	IND
LCMXO640C-4T100I	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	IND
LCMXO640C-3M100I	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	IND
LCMXO640C-4M100I	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	IND
LCMXO640C-3T144I	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO640C-4T144I	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO640C-3M132I	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO640C-4M132I	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO640C-3B256I	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	IND
LCMX0640C-4B256I	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	IND
LCMX0640C-3FT256I	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	IND
LCMX0640C-4FT256I	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	IND
				-			
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100I	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO1200C-4T100I	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO1200C-3T144I	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO1200C-4T144I	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO1200C-3M132I	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO1200C-4M132I	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO1200C-3B256I	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	IND
LCMXO1200C-4B256I	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	IND
LCMXO1200C-3FT256I	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO1200C-4FT256I	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100I	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO2280C-4T100I	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO2280C-3T144I	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO2280C-4T144I	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO2280C-3M132I	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO2280C-4M132I	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO2280C-3B256I	2280	1.8V/2.5V/3.3V	211	-3	caBGA	256	IND
LCMX02280C-4B256I	2280	1.8V/2.5V/3.3V	211	-4	caBGA	256	IND
LCMXO2280C-3FT256I	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO2280C-4FT256I	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND
LCMX02280C-3FT324I	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	IND
LCMXO2280C-4FT324I	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	IND

MachXO Family Data Sheet Supplemental Information

June 2013

Data Sheet DS1002

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site.

- TN1091, MachXO sysIO Usage Guide
- TN1089, MachXO sysCLOCK Design and Usage Guide
- TN1092, Memory Usage Guide for MachXO Devices
- TN1090, Power Estimation and Management for MachXO Devices
- TN1086, MachXO JTAG Programming and Configuration User's Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1097, MachXO Density Migration
- AN8066, Boundary Scan Testability with Lattice sysIO Capability

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

MachXO Family Data Sheet Revision History

June 2013

Revision History

Data Sheet DS1002

Date	Version	Section	Change Summary
February 2005	01.0	—	Initial release.
October 2005	01.1	Introduction	Distributed RAM information in family table updated. Added footnote 1 - fpBGA packaging to the family selection guide.
		Architecture	sysIO Buffer section updated.
			Hot Socketing section updated.
			Sleep Mode section updated.
			SLEEP Pin Characteristics section updated.
			Oscillator section updated.
			Security section updated.
		DC and Switching Characteristics	Recommended Operating Conditions table updated.
			DC Electrical Characteristics table updated.
			Supply Current (Sleep Mode) table added with LCMXO256/640 data.
			Supply Current (Standby) table updated with LCMXO256/640 data.
			Initialization Supply Current table updated with LCMXO256/640 data.
			Programming and Erase Flash Supply Current table updated with LCMXO256/640 data.
			Register-to-Register Performance table updated (rev. A 0.16).
			External Switching Characteristics table updated (rev. A 0.16).
			Internal Timing Parameter table updated (rev. A 0.16).
			Family Timing Adders updated (rev. A 0.16).
			sysCLOCK Timingupdated (rev. A 0.16).
			MachXO "C" Sleep Mode Timing updated (A 0.16).
			JTAG Port Timing Specification updated (rev. A 0.16).
		Pinout Information	SLEEPIN description updated.
			Pin Information Summary updated.
			Power Supply and NC Connection table has been updated.
			Logic Signal Connection section has been updated to include all devices/packages.
		Ordering Information	Part Number Description section has been updated.
			Ordering Part Number section has been updated (added LCMXO256C/LCMXO640C "4W").
		Supplemental Information	MachXO Density Migration Technical Note (TN1097) added.
November 2005	01.2	Pinout Information	Added "Power Supply and NC Connections" summary information for LCMXO1200 and LCMXO2280 in 100 TQFP package.
December 2005	01.3	DC and Switching Characteristics	Supply Current (Standby) table updated with LCMXO1200/2280 data.
		Ordering Information	Ordering Part Number section updated (added LCMXO2280C "4W").
April 2006	02.0	Introduction	Introduction paragraphs updated.
		Architecture	Architecture Overview paragraphs updated.

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
November 2006	02.3	DC and Switching Characteristics	Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.
			Added Flash Download Time table.
December 2006	02.4	Architecture	EBR Asynchronous Reset section added.
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.
February 2007	02.5	Architecture	Updated EBR Asynchronous Reset section.
August 2007	02.6	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.
November 2007	02.7	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.
June 2009	02.8	Introduction	Added 0.8-mm 256-pin caBGA package to MachXO Family Selection Guide table.
		Pinout Information	Added Logic Signal Connections table for 0.8-mm 256-pin caBGA package.
		Ordering Information	Updated Part Number Description diagram and Ordering Part Number tables with 0.8-mm 256-pin caBGA package information.
July 2010	02.9	DC and Switching Characteristics	Updated sysCLOCK PLL Timing table.
June 2013	03.0	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	MachXO1200 and MachXO2280 Hot Socketing Specifications table – Removed footnote 4.
			Added MachXO Programming/Erase Specifications table.